
Section 1
Getting Started with Pascal/MT+

The Pascal/MT+ system includes a compiler, a linker, a large
library of run-time subroutines, and other programming tools to help
you build better programs faster. The programming tools are

• OI8BOBO-, a disassembler
• LIBMT+h

, a software library-building utility
• a dynamic debugger

The Pascal/MT+ system runs under any of the CP/M family of
operating systems on an BOBO, B085, or ZBO-based computer. The
compiler and linker need at least 4BK bytes of memory to run. To
handle larger programs, they both need more memory.

The size of a program developed with Pascal/MT+ depends on the
size of the source code, and on the number of run-time subroutines
it uses. Typically, the minimum size of a simple program is about
8K bytes.

Figure 1-1 illustrates the software development process using
the Pascal/MT+.system.

OTHER
Pascali Assembler

MODULES

The Pascal/MT+ system is supplied on three separate disks.
These disKs contain a number of files of different types. Table 1-1
describes ~he filetypes used in the Pascal/MT+ system. Table 1-2
briefly descr.ibes the contents of each distribution disk.

Filetype I
BLD
COM
CMD
DOC

ERL

ERR
LIB
MAC
PAS

PRN
PSY
SRC

SYP
SYM
TXT

nnn

Document file; contains printable text in
ASCII form
Relocatable object file; contains relocatable
object code generated by the compiler
Error message file output by compiler

Pascal source file; contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)
Print file output by compiler
Intermediate symbol file used by linker
Pascal source file; contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)
Symbol file used by debugger
Symbol file used by SID
Text file; contains text of messages output
by compiler

File I
LINKMT.COM
MTPLUS.COM
MTPLUS.OOO
MTPLUS.OOI
MTPLUS.OO2
MTPLUS.OO3
MTPLUS.OO4
MTPLUS.OOS
MTPLUS.OO6
PASLIB.ERL
ROVLMGR.ERL
MOOl.SRC

MOO2.SRC
OEMOPROG. SRC

LIBMT+ input command file to produce
IOERR.ERL

LINK/MT+ input command file for
linking AMOIO, FPRTNS, REALIO, and
TRAN9S11
LINK/MT+ input command file for
linking just AMOIO and FPRTNS

LINK/MT+input commandfile to produce
STRIP.COM

Document file containing instructions
for XREF, cross reference utility

Document file containing instructions
for INDEXER, source file index
utility ,

BCD ar i thmetic module (does not
include square root or
transcendentals)

Debugging module that can be linked to
a program

Software floating-point math module
(contains REALIO.ERL)

Hardware floating-point transcendental
math module for AMD95ll

Heapmanagement and garbage collection
module. PASLIB.ERL contains only
USCO!style stack/heap routines.

Random I/O file processing module

Real arithmetic I/O module used only
with AMD9511

Transcendental math module for use
with AMD9511

Transcendental math module (for
software floating-point only)

Module containing KEYPRESSED,RENAME,
and EXTRACTutilities

Source for @CHN;chain routine can be
al tered to do bank switching in a
non-CP/M environment

:t:
;
I
I
I
;;
T
II
;;
;
I--========================== _--------------

Source for DIV and MOD routines that
include a direct CP/M call for divide
by 0 error message
Over lay Manager source containing
user-selectable options~ unmodified
version already in PASLIB.ERL

Module containing routines to
interface with the AMD95ll~ must be
customized for specific hardware

Sample program for testing floating-
point math useful for testing AMD95ll

Source for a user-defined halt routine
(current routine calls CP/M)
Source program for Pascal indexing
program
Source for a user-defined I/O error
handling routine

Source for @RNC read next character
routine
Source file for utility program used
wi th LINK/MT to eliminate unused
entry points in an overlay

I

I

~:

Disk 2 (continued)~
File I Content or Use

UTILMOD.SRC Source for module containing
KEYPRESSED, RENAME, and EXTRACT

WNC.SRC Source for @WNC routine
XBDOS.SRC Source for BDOS routine that calls

IOERR
XREF.SRC Source for XREF, cross reference

utility
DBUGHELP.TXT Help file for debugger module
MTERRS.TXT Compiler Error Message Text File

I

ej •
~

The first thing you should do when you receive your Pascal/MT+
system is make copies of both the distribution disks.
Rote: you have certain responsibilities when making copies of
Dig ital Research products. Be sure you read your licensing
agreement.

Although you can use the compiler, linker, and other utilities
directly from the distribution disks, it is more convenient if you
copy specific files from the distribution disks to working system
disks. One way to set up your Pascal/MT+ system is to use one disk
for compiling and another disk for linking. You can use other disks
for the programming tools, assorted source code, and examples.

I

~

~

p.
~

.~
I

~

I

This suggested configuration is just one way of setting up your
disks. The important thing is that all the compiler modules are on
the same disk, and all the linker modules are on one disk. For
simplicity, it is a good idea to put all the related relocatable
files on the same disk as the linker.

Note that the file MTPLUS.006 is only necessary when using the
debugger, and that the compiler can run without the error message
file MTERRS.TXT. If your compiler disk is short of space, you can
eliminate these two files •

The following steps describe how to make a compiler disk and alinker disk:

1) Install both CP/M and the PIP utility on each of two blank
disks. Label one disk as the compiler, and the other asthe linker.

2) Put a text editor on the compiler disk.

3) Copy the following files from the distribution disks to thecompiler disk:

• MTPLUS.COM
• MTPLUS.OOO through MTPLUS.006
• MTERRS.TXT

4) Copy the following files to the linker disk:
• LINKMT.COM
• all the ERL files

1.3 Co~ilin9 and Linking a Si~le Prograa

If you have never used Pascal/MT+ before, the following step-
by-step example shows you how to compile, link, and run a simple
program. This example assumes that you are using a CP/M system with
two disk drives, and that you are familiar with CP/M.

1) Put the compiler disk in drive A and the linker disk indrive B.

2) Using the text editor, create a file called TEST1.PAS and
enter the following program. Put the file on drive BusingPIP.

PROGRAM SIMPLE_EXAMPLE;
VAR

I INTEGER;
BEGIN

WRITELN ('THIS IS JUST A TEST');
FOR I := 1 TO 10 DO

WRITELN (I);
WRITELN ('ALL DONE I)END.

If you examine your directory, you see a file named
TESTl.ERL that contains the relocatable object code
generated by the compiler. If the compiler detects any
errors, correct your source program and try again.

4) Now, log on to drive B, and link the program using the
following command:

Your directory now contains a file named TEST1.COM that is
directly executable under CP/M.

E; I£'

~ Although the test program shown in the preceding steps is very
simple, it demonstrates the essential steps in the development
process of any program, namely editing, compiling, and linking.

Itfyou want to write other simple programs, follow the same
steps, but use your new program's filename instead of TEST1.

I

r-.ii ' J
~rt ~

Section 2
Compiling and Linking

This section tells how to use the compiler with its various
options. It also descr ibes how to link programs using the
Pascal/MT+ linker, as well as different linkers.

The Pascal/MT+ compiler processes source files in three steps
called passes or phases.

• Phase 0 checks the syntax and generates the token file.
• Phase 1 generates the symbol table.
• Phase 2 generates the relocatable object file.

The compiler creates some temporary files on the disk
containing the source file, and under normal conditions it deletes
those files. Make sure there is enough space on the disk, or use
the T option to specify a different disk for the temporary files.
See Section 2.2.3.

The compiler is segmented into overlays as shown in the
following figure.

You invoke the Pascal/MT+ compiler with a command line of the
following form:

MTPLUS <filespec> {<options>}

where <filespec> is the source file to be compiled, and <options> is
a list of optional parameters that you can use to control the
compilation process.

The compiler can read the source file from any disk. The
<filespec> must conform to the standard filespec format, and end
wi th a carriage return/line-feed, and CTRL-Z. Refer to your
operating system manual for a description of a Digital Research
standard filespec.

If you do not specify a filetype, the compiler searches for the
file with no filetype. If the compiler cannot find the file, it
assumes a SRC filetype, assumes a PAS filetype. If the compiler
still cannot find the file, it displays an error message.

Lines :
Errors:
Code
Data

lines of source code compiled (in decimal)
number of errors detected
bytes of code generated (in decimal)
bytes of data reserved (in decimal)

The compiler generates a relocatable object file with the same
filename as the input source program. The relocatable file has the
ERL filetype.

The Pascal/MT+ compiler periodically outputs information during
Phases a and 1 to assure you it is running properly.

During Phase 0, the compiler outputs a + (plus sign) to the
console for every 16 lines of source code it scans.

At the beginning of Phase 1, the compiler indicates the amount
of available memory space. The space is shown as a decimal number
of memory bytes available before generation of the the symbol table.
Phase 1 also indicates available memory space following generation
of the symbol table. This second indication is the amount of memory
left for user symbols after the compiler symbols are loaded.

During Phase 1, the compiler also outputs a # (pound sign) to
the console each time it reads a procedure or function. Symbol
table overflow occurs if too little symbol table space remains for
the current symbol. You can overcome this by using the $K option
and breaking the program into modules. At completion, Phase 1
indicates the total number of bytes remaining in memory.

Phase 2 generates the relocatable object code. During this
phase, the compiler displays the name of each procedure and function
as it is read. The offset from the beginning of the module and the
size of the procedure (in decimal) follow the name.

When the processing is complete, the compiler displays the
following messages:

When the compiler finds a syntax error, it displays the line
containing the error. If you are using the MTERRS.TXT file, the
compiler also displays an error description. If you are not using
the MTERRS.TXT file, or you have a nonsyntax error, the compiler
displays an error identification number.

When all processing is completed, the ERR file generated by the
compiler summarizes all nonsyntactic errors.
Note: In Pascal/MT+, the compilation errors have the same sequence
and mean ing as in Jensen I s and Wirth' s Pascal User Manual and
Report. Appendix A contains a complete list of the error messages,
explanations, and causes.

When the compiler encounters an error, it asks if you want to
continue or stop, unless you use the command line option C. (See
Section 2.2.3.)

If the compiler cannot find an overlay or a procedure within an
overlay, it displays messages of the following form:

Unable to open <filename> <overlay. >
Proc: "<procname>" not found ovl: <filename> <overlay.>

The compiler displays the following procedure names if it
cannot find an overlay name in the entry point table:

001 INITIALI
002 PHASE'l
003 PH2INIT
004 BLK
005 PH2TERM
006 DBGWRITE

The number preceding the name is the group number of the overlay
that contains the procedure.

Usually, you can find a missing overlay by ensuring that the
name is correct, and that it is on the disk. If you cannot find it,
recopy the overlay from your distribution disk. If you are sure the
overlay is on the disk and you still get an error message, it means
the file is corrupted.

Compiler command line options control specific actions of the
compiler such as where it writes the output files. All command line
options are single letters that start with a $ or a t. Certain
options require an additional parameter to specify where to send the
output file or where an input file is located. If you specify more
than one option, do not put ~ny blanks between the options.

Table 2-1 describes the commmand line options. In this table,
d stands for a parameter to specify a disk drive or output device.
The parameters are as follows:

• X sends the output file to the console.
• P sends the output file to the printer.
• @ specifies the logged-in drive.
• Any letter from A to 0 specifies a specific drive.

Option I
Automatically calls the linker
at the end of compilation.
This option requires a linker
input command file with the
same name as the input file.
The linker must be named
LINKMT.COM.

Compiler
automatically
chains.

Uses BCD rather than binary
for real numbers.
Continues on error; default
is to pause and let user
interact and asks on
n each error, one at a time.

Compiler stops
and asks on
each error.

Generates debugger
information in the
object code and writes
the PSY file to the drive
specified by the R option.

No debugger
information
and no PSY
file generated.

The MTERRS.TXT file is on
disk d: where d=@,A ..O.

MTERRS.TXT on
default disk.

MTPLUS.OOO, and MTPLUS.OOI
through MTPLUS.006 are on
drive d: where d=@,A ••O.

Overlays on
default disk.

Puts the PRN (listing file)
on disk d: where d=X,P,@,
A •• 0.

Quiet; suppresses any
unnecessary console
messages.

Compiler
outputs all
messages.

Puts the ERL file on disk
d: where d=@,A ..O.

ERL file on
default disk.

Option I
Td Puts the token file

PASTEMP.TOK on disk
d: where d=@,A ••O.

PASTEMP.TOK on
default disk.

Prints the name of each
procedure and function when
found in source code as an
aid to determining error
locations during Phase O.

Procedure names
not printed.

Generates an extended ERL
file, including disassembler
records.

ERL file cannot
be disassembled.

Makes the @ character
equivalent to the ~
character.

@ not equivalent
to ~

This command line tells the compiler to read the source from drive
A, wr ite the ERL file to dr ive B, display the PRN file on the
console, and call the linker automatically.

Source code compiler options arw special instructions to the
compiler that you put in the program source code. A source code
option is a single lower- or upper-case letter preceded by a dollar
sign, embedded in a comment. The option must be the first item in
the comment. Certain source code options require additional
parameters.

You can put any number of options in a source program, but only
one option per comment is allowed. You cannot place blanks between
the dollar sign and the option letter. The compiler accepts blanks
between the option letter and the parameter.

Pascal/MT+ supports twelve source code compiler options, as
summarized in Table 2-2.

;:: ~

E ~

~ ~

"- ~••

Use RST n instructions
for REAL operation.
Controls entry point
generation.
Includes another source file
into the input stream, for
example, {$I XXX.LIB}.
Removes built-in routines to
save space in symbol table
(n=0 •• 15).

Controls the listing of source
code.
Enter a form-feed in the PRN
file.
Use RST n instructions for
loads and stores in
recursive environments.

R +/-
S +/- Controls recursive/static

variables.
Controls strict type
checking.

w +/-
X +/- Controls exception checking

code.
Initialize hardware stack to
nnnnH.

Use CALL
instructions

Use CALL
instructions

Contents of
location 0006
at beginning
of execution

The following examples show proper source code compiler
options:

{$E+ }
(*$P*)
{$I D:USERFILE.LIB}

Space Reduction: Real Arithmetic (Cn)
The Cn option reduces the amount of object code generated when

using REAL arithemtic. The Cn option tells the compiler to change
all calls to @XOP (the REAL load and store routine) into a restart
instruction. This reduces all 3-byte CALL instructions to l-byte
CALL instructions.

You specify a restart instruction number in the range 0 to 7
and the compiler generates RST n instructions. Be aware that in a
CP/M environment, restart numbers 0 and 7 are not available. If you
have another operating system, you should consult your hardware
documentation.

You must specify the Cn option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @XOP. You must also specify the Cn
option in any modules that use real numbers so the proper RST n
instructions are generated.

The E option generates entry point records in the relocatable
file. You enable the option using a + parameter, and disable it
using a - parameter. E+ is the default.

E+ makes global variables and all procedures and functions
available as entry points. For example, EXTERNAL declarations in
separate modules can reference global variables and all procedures
and functions if the E+ option is in effect. E- suppresses the
generation of entry point records, thus making all variables,
procedures, and functions local.

I<filespec> tells the compiler to include a specified file for
compilation in the input stream of the original program. The
compiler supports only one level of file inclusion, so you cannot
nest include files.

The filespec must contain the drive specification, filename,
and filetype in standard format. If you omit the filetype, the
compiler looks for a file with the type of the main file. The file
must end with a carriage return/line-feed, and CTRL-Z. If you omit
the drive specification, the compiler looks on the default drive.

Symbol Table Space Reduction (Kn)
Predefined identifiers normally take about 6K bytes of symbol

table space. The K option removes unreferenced built-in routine
defini tions from the symbol table to make more room for user
symbols.

&'

~~

~
~HThe K option uses an integer parameter ranging from 0 to 15.

Each integer corresponds to different groups of routines as defined
in Table 2-3. Enter all K options before the words PROGRAM or
MODULE in the source code. Use as many K options as required, but
place only one integer parameter after each letter K. Note that any
reference in a program to the removed symbols generates an undefined
identifier error message.

h ~

~
~

...,

~ ~
ROUND, TRUNC, EXP, LN, ARCTAN, SQRT, COS,
SIN

GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD,
BLOCKWRITE

WRD, HI, LO, SWAP, ADDR, SIZEOF, INLINE,
EXIT, PACK, UNPACK
IORESULT, PAGE, NEW, DISPOSE

TSTBIT, CLRBIT, SETBIT, SHR, SHL
RESET, REWRITE, GET, PUT, ASSIGN, MOVELEFT,
MOVERIGHT, FILLCHAR

MEMAVAIL, MAXAVAIL
SEEKREAD, SEEKWRITE
RIM8S, SIM8S, WAIT

Listing Controls (L,P)
TheL option controls the listing that the compiler generates

during Phase O. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed character
in the PRN file.

Space Reduction: Recursion (On)
The On option operates in a manner analagous to the Cn option.

That is, you specify a restart instruction number in the range 0 to
7, and the compiler generates RST n instructions for every call to
@DYN.

You must specify the On option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @DYN. You must also specify the Cn
option in any modules that use recursion so the proper RST n
instructions are generated.

The R option controls the generation of run-time code that
per forms range checking for array subscr ipts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Refer to Section 4.6.1 for
information on range checking.

The S option controls the stack frame allocation of procedure
and function parameters and local variables. The + parameter causes
recursion. The default parameter is -, and causes nonrecursion.
Pascal/MT+ static.ally allocates global variables in programs and
modules. You must enable the S option before the reserved words
PROGRAM and MODULE. You cannot disable the S option within a
separately compiled unit. You can link modules that use the S+
option with those that do not.

Strict Type and Portability Checking (T,W)

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for both options is -

~
~-m j

'5:~ ~
When the T option is enabled, the compiler performs only weak

type checking. If the T and W options are enabled, and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled, because the STRING data type is not standard.

The T and W opeions check for compatibility with the ISO Pascal
standard. They do not check for all features listed in the
Pascal/MT+ Language Reference Manual, because certain features are
implementation-dependent and others are software routines.

I
I
;;

I
.;f
T

==============2_10=============~~~

In the current release of Pascal/MT+, the X option remains in
effect. Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number overflow, and underflow. Refer to Section 4.6
for information on run-time error handling.

The Z option initializes the stack pointer to nnnnH in non-CP/M
environments. In a CP/M environment, the compiler initializes the
hardware stack by loading the stack pointer register with the
contents of absolute location 0006H. Using the Z option suppresses
this initialization.

You should enter the option as $Z+ only once before the PROGRAM
line in the main program, and not on the individual modules.

LINK/MT+ is the linkage editor that reads relocatable object
modules with filetype ERL and generates an executable command file
with filetype COM. The linker can also generate overlay files.

You invoke LINK/MT+ with a command line of the following
format:

LINKMT <new filespec>=<main module>{,<module>}{ ,<library>}
The linker writes the executable file to the same logical disk

as the <main module>, unless you specify a new <filespec> using an
equal sign. The <main module> and each <module> can be on any
logical drive. You can specify the drive before each file in the
command line.

The linker assumes a ERL filetype for the <main module> and all
<modules> unless you specify a CMD filetype. See the discussion
about th~ IF option for information about CMD files. LINK/MT+ can
link a maximum of 32 files at one time.

A>LINKMT CALC,TRANCEND,FPREALS,PASLIB/s

A>LINKMT B:CALC=CALC,B:TRANCE~D,FPREALS,PASLIB/S

A>LINKMT D:NEWPROG=B:CALC,C:TRANCEND,C:FPREALS,C:PASLIB/S/M

Linker options are special instructions to LINK/MT+ that you
specify in the command line. You specify options as a single lower-
or upper-case letter. Each option must be preceded in the command
line with a slash, I. Some options require an additional parameter.
LINK/MT+ supports 13 options, as summarized in Table 2-4.

Line continuation flag. Used only in
CMD linker command files.

List entry points beginning with $,
?, or @ in addition to other entry
points requiring 1M or Iw to
operate.
Take preceding filename as a CMD
linker command file containing input
filenames, one per line.
Write the output as a HEX file with
nnnnH as the starting location of
the hex format. This option is
independent of the P option. Also,
if you use this option, the compiler
does not generate a COM file.
List modules as they are being
linked.
List all entry points in tabular
form.

Search preceding name as a library,
extracting only the required
routines.
Wr ite a SID-compatible SYM file
(written to the same disk as the COM
file) .

O:n Number the overlay as n and use the
pre vi 0 us fi1enam e as the roo t
program symbol table. By default,
the range of n is 1 to 50, but you
can extend it to 1 to 256 by
altering the overlay manager.

X:nnnn Overlay static variable starting
address when used with overlays, or
amou nt 0 f overlay data area when
used with root modules.

The C option indicates a continued line in a linker input
command (CMD) file. See the discussion of the F option below.

The D:nnnn option tells the linker to start the data area at
the hexadecimal address nnnn. If you do not use the D option, the
code and data are mixed in the object file. By using the D option,
you can solve some memory limitation problems.

However, you should be aware that local file operations depend
on the linker to zero the data area. The linker does not zero the
data area when you use the D switch, so these operations cannot be
guaranteed.

Normally ina CP/M environment, you must use the SUBMIT
facility for typing repetitive sequences, such as linking multiple
files together. LINK/MT+ allows you to enter this data into a file
and have the linker process the filenames from the file. You must
specify a file with a filetype of CMD and follow this filename with
a /F, for example, CFILES/F.

E ~

we ;~

E ;~

;:;: ~

••• if!

The linker reads input from this file and processes the
filenames. Filenames can be on one line, separated by commas, or
each name or group of names can be on a separate line. At the end
of each line except the last, you must place a IC option. The last
line must end with a carriage return or line-feed.

The input from the file is concatenated logically after the
data on the left of the filename. In the command line, additional
options can follow the IF, but not additional object module names.

The following example demonstrates how to use a CMD file to
link the files CALC, TRANCEND, FPREALS, and PASLIB into a CMD file.
Use the following command to link the files:

The linker searches PASLIB for the necessary modules and generates a
link map.

The H:nnnn option tells the linker to generate a HEX file
instead of a COM file, starting the program at the hexadecimal
address nnnn. The specified address is independent of the default
relocation value of IOOH. This means you can relocate the program
to execute at IDOOH, for example, but have the HEX file addresses
start at aOOOH, by using the parameters:

The L option tells the linker to display module code and data
locations as they are linked.

When used with the M or W options, the E option tells the
linker to display all routines as they are linked, including
routines that begin with ? or @, which are reserved for run-time
library routine names. The E option does not enable the L, M, or W
option. E does not display module code and data locations if used
alone.

Memory Map (1M)

The M option generates a map and sends it to the map output
file. Place the M option after the last file named in the parameter
list.

The P:nnnn option tells the linker to start the program at the
hexadecimal address nnnn. If you do not use the P option, the
default address is IDDH.

The linker does not generate space-filling code at the
beginning of the program. The first byte of the COM file is the
byte of code that belongs in the specified starting location.

The syntax of the P option is
/P:nnnn

Run-time Library Search (/S)
The S option tells the linker to search the file whose name the

option follows as a library and to extract only the necessary
modules. The S option must follow the name of the run-time library
in the linker command line. The S option extracts modules from
libraries only. It does not extract procedures and functions from
separately compiled modules.

The order of modules within a library is important. Each
searchable library must contain routines in the correct order and be
followed by IS. PASLIB and FPREALS are specially constructed for
searchabili ty. Unless otherwise indicated, the other ERL files
supplied with the Pascal/MT+ system are not searchable. You cannot
search user-created modules unless they are processed by LIBMT+, as
described in Section 5.3.

The W option tells the linker to generate
file. The file contains information about
program. The linker uses the SYM file when it
V option also enables the W option.

a SID-compatible SYM
entry points in the
links overlays. The

The linker uses three options to process an overlay or a root
program in an overlay scheme. The 0 option numbers the overlay and
indicates that the previous filename is the root program symbol
table. The Vm option sets the address of the overlay area. The X
option controls how the linker allocates data space for overlays.
Section 3.2 explains these overlay options.

You must always link the run-time system PASLIB.ERL with your
compiled program. In addition, you need to link other ERL files
with your program if it makes use of certain features of Pascal/MT+.
The following are such files:

• DEBUGGER: @NLN, @EXT, @ENT generated when the debugger option
is requested. If @XOP and @WRL are undefined, see Section 5.2.
The following files contain the real-number routines:

• BCDREALS: BCD real numbers, @XOP, @RRL, and @WRL.
• FPREALS: Binary real numbers @XOP, @RRL, and @WRL.
• TRANCEND: Support for SIN, COS, ARCTAN, SQRT, LN, EXP, SQR.

Use only with FPREALS.
The following files contain real number routines used with the

AM09511:
• AMOIO: Routines for interfacing with the AMD95ll. You must

edit and recompile these to customize for specific hardware
requirements.

• REALIO: Read and Write real number routines necessary only
when using the AMD95ll.

• TRAN9511:
TRANCEND) •

~ ~

F ~

E .~

E ~

~
~tt

I
;+;
;;
I
;;
;
I================== _------

Message Meaning
Unable to open input file: xxxxxxxx

The linker cannot find the specified input
file.

Incompatible relocatable file format

The ERL file is corrupted, or it has a format
that is incompatible with the format expected
by LINK/MT+.

Duplicate symbol: xxxxxxx

This usually means a run-time routine or
variable has the same name as a user routine or
variable.

SYSMEM not found in SYM file

This means the root program symbol file is
corrupt.

External offset table overflow

This means you have exceeded the 200 externals
plus offset addresses that the linker allows in
its offset table.

Initialization of DSEG not allowed

The linker has encountered a DB or DW
instruction in the Data segment.

Whenyou compile your program using the X option, Pascal/MT+
generates an extended relocatable file containing disassembler
records. If you do not use the X option, the ERL file might be
Microsoft l!l compatible. However, Digital Research does not
guarantee that an ERL file generated by Pascal/MT+ is compatible
with other linkers such as LBO.

However, using LIBMT+to process the ERLfiles generated by the
compiler can result in a Microsoft-compatible relocatable files (see
Section 5.3).

