_ CP(C464
- Firmware

ROM routines and explanations
Bruce Godden, Locomotive Software

L CAS CATALOG CAS CHECK CAS IN ABANDON CAS IN CHAR CAS N CLOSE CAS IN DIRECT CAS IN OPEN CAS INMALISE CAS
NOISY CAS OUT ABANDON CAS OUT CHAR CAS OUT CLOSE. CAS READ CAS RESTORE MOTOR CAS RETURN CAS SET
SPEED CAS START MOTOR CAS STOP MOTOR CAS TEST EOF CAS WRITE GRA ASK CURSOR GRA CLEAR WINDOW GRA GET
OFIGIN GRA GET PAPER GRA GET PEN GRA GET W HEIGHT GRA GET W WITH GRA INTIALISE GRA LINE ABSOLLITE GRA LINE
RELATIVE (GRA MOVE ABSOLLITE GRA MCVE RELATVE GRA PLOT ABSOLUTE GRA PLOT RELATIVE GRA RESET GRA SET OR-
GIN GRA SET PAPER (3R SET PEN GRA TEST ABSCLUTE GRA TEST RELATIVE GRA WIN HEGHT GRA WIN WIDTH GRA WR
CHARH KL CURR SELECTION H KL L ROM DISABLE H KL L ROM ENBLE HIKL LDDR H KL LD H KL POLL SYNCHRONOUS HI
KL PROBE ROM H KL ADM DESELECT HI KL ROM RESTORE HIKL ROM SELECT HI KL LI ROM DISABLE HI KL L) BOM ENABLE
IND GRA LINE IND GRA PLOT IND GRA TEST IND KM TEST BREAK IND MC WAIT PRINTER IND S0R FEAD IND SCAWRITE D TXT
DRAW CURSOR IND TXT OUT ACTION IND TXT UNDRAW CLIRSOR IND TXT UNWRITE IND TXT WRITE CHAR KL ADD FAST
TICKER KL ADD FRAME FLY KL ADD TICKER KL CHOKE OFF KL DEL FAST TICKER KL DEL FRAME FLY KL DEL SYNCHRONOUS
KL DEL TICKER KL DISARM EVENT KL D0 SYNG KL DONE SYNG KL EVENT DISABLE KL EVENT ENABLE KL FIND COMMAND KL
INT BACK KL INIT EVENT KL LOG EXT KL NEW FAST TICKER KL NEW FRAME FLY KL NEXT SYNC KL ROM WALK KL SYNCH
RESET KL TME PLEASE KL TIME SET KM ARM BREAKS KM BREAK EVENT KM CHAR RETURN KM DISARM BREAK KM EXP
BUFFER KM GET CONTROL KM GET DELAY KM GET EXPAND KM GET JOYSTICK KM GET REPEAT KM GET SHFT KM GET
STATE KM GET TRANSLATE KM INTIALISE KM READ CHAR KM READ KEY KM RESET KM SET CONTROL KM SET DELAY KM SET
EXPAND KM SET REPEAT 1M SET SHIFT KM SET TRANSLATE KW TEST KEY KW WAT CHAR KM WAT KEY LOW EXT NTERFLIPT
LEWY FAR CALL LOW FRM JUMP LOW INTERRUPT ENTRY LOW KL FAR ICALL LOW KL FAR PCHL LOW KL LOW PCHL LOW KL
SOE PCHL LOW LOW JUME LOW PCOE MSTRUCTION LOW PCHL INSTRUCTION LONY FAM LAM LOW RESET ENTRY LOW
SIDE CALL LOW LISER RESTART MC BOOT PROGRAM MC BUSY PRINTER MC CLEAR INKS MC JUMP FESTORE MC PAINT
CHAR MC RESET PRINTER WG SCREEN OFFSET MG SEND PRINTER MG SET INKS MC SET MODE MC SOUND REGSTER MG
START PROGRAM MC WAIT FLYBACK SCR ACCESS SCR CHAR INVERT SCR CHAR LMITS SR CHAR POSION SCR CLEAR
SCA DOT POSMON SCA AL BOX SCA FLOOD BOX SCA GET BORDER SCR GET FLASHING SCA GET N SC0R GET LOCATION
SCA HORCZONTAL SCR NTIALSE SCA K DECODE S0 INK ENCODE SCA NEXT BYTE SCR NEXT LUINE SCR PIELS SCH PREV
BYTE SCR PREV LINE SCR REPACK SCR RESET S0R SET BASE SCR SET BORDER SCR SET FLASHING SCA 55T INK SCR SET
MCDE SCA SET OFFSET SCR SW ROLL SCR UNPACK SCR VERTICAL SOUND A ADDRESS SOUND AMPL ENVELOPE SOUND
ARM EVENT SOUND CHECK, SOUND CONTINUE SOUND HOLD SOUND OUELIE SOUND RELEASE SOUND RESET SOUND T
ADDRESS SOUND TONE ENVELOPE TXT CLEAR WINDOW TXT CUR DISABLE TXT CLUR ENABLE TXT CUR OFF TXT CURON TXT
f GET BACK TXT GET CONTROLS TXT GET CURSOR TXT GET M TABLE TXT GET MATRIX TXT GET PAPER TXT GET PEN TXT T

VNDICW TXT INTIALISE TXT INVERSE TXT CUTPUT TXT PLACE CLIRSOR TXT RD CHAR TXT REMOVE CURSOR TXT RESET TXT
SET BACK TXT SET COLUMN TXT SET CURSOR TXT SET GRAPHIC TXT SET M TABLE TXT SET MATRIX TXT SET PAPER TXT SET
PEN TXT SET ROW TXT STR SELECT TXT SWAP STREAMS TXT VALDATE TXT VDU DISABLE TXT VL ENABLE THT WINENABLE

TXT WH CHAR
Published by AMSOFT, a division of
Amstrad Consumer Electronics ple
Brentwood House
169 Kings Road
Brentwood
Essex

All rights reserved

First edition 1984
Reproduction or translation of any part of this publication without the written permission of the copyright
owner is unlawful, Amstrad and Locomotive Software reserve the right to amend or alter the cation
without notice. While every effort has been made to verify that this complex software works as described, it is
not possible to test any program of this complexity under all possible conditions. Therefore the program and this
manual are provided “as is” without warranty of any kind, either express or implied.

s

\ SOFT 158 Copyright © 1984 Locomotive Software and Amstrad Consumer ELectronics plc

’ Fraad g - o : s =if = =
Culy € od fijoafaulk) & &
LS

F iy R Mt LESs T A S L

Preface

The built-in ROM ‘operating system' within the Amstrad CPC464 computer can be
considered to be split into a BASIC interpreter and the ‘firmware’. The firmware i

a collection of lower level routines responsible for all the hardware driving, screen—
handling and real-time event handling. The current volume describes the firmware;
a companion technical manual describes the BASIC language.

Our design aim at Locomotive Software was to produce the most sophisticated
computer possible within the twin constraints of minimum hardware cost and a
very limited timescale. We were also determined to make all the features of the
machine available to a BASIC program. We recognised, however, that muck
software would be written in machine code and made all the firmware routines-
available to an assembler programmer. It was always intended that any or all of the
features within BASIC language should be simple to provide in games, applications
or indeed other programming languages.

This manual was written by one member of the software team with assistance,
corrections and comments (usually constructive) from the others. Thus you will find
it to be accurate, authoritative and also capable of giving clear insights into the
design of the machine. The manual explains not only what the firmware does, but--
how it does it, why it does it and what it is intended to be used for. No apology is
made for the level of detail that is sometimes descended to; we are proud of our
design and we hope that with this manual you will be able to use it as fully as we

intended.

Locomotive Software
Dorking, Surrey
May 1984

The Contents.

1 The Firmware.

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2 ROMs, RAM and the Restart Instructions.

2.1
2.2
2.3
2.4

The Hardware.

The Division of the Firmware.
Controlling the Firmware.
Jumpblocks.

Conventions.

Routine Documentation.

Example of Patching a Jumpblock

Memory Map.

ROM Selection.

The Restart Instructions.
RAM and the Firmware.

3 The Keyboard.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Keyboard Scanning.

Key Translation.

Characters from the Keyboard.

Shift and Caps Lock.

Repeating keys.

Breaks.

Function Keys and Expansion T{ﬂ!E’l!I.E
Joysticks.

4 The Text VDU.

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Text VDU Coordinate Eystemm
Streams.

Text Pen and Paper Inks.

Text Windows.

The Current Position and the Cursor.
Characters and Matrices. -
Character Output and Control Codes.

AMSTRAD CPC 464 FIRMWARE

PAGEC.1

5 The Graphics VDU.

5.1 Graphics VDU Coordinate Systems.
9.2 The Current Graphics Position.

5.3 Graphics Pen and Paper Inks,

9.4 Graphics Write Mode.

5.5 Graphics Window.

5.6 Writing Characters.

6 The Screen.

6.1 Screen Modes.

6.2 Inksand Colours.
6.3 Screen Addresses.
6.4 Screen Memory Map.

7 The Sound Manager.

7.1 The Sound Chip.

72 Tone Periods and Amplitudes.
7.3 Enveloping.

7.4 Sound Commands.

7.5 Sound Queues.

7.6 Synchronisation.

7.7 Holding Sounds.

8 The Cassette Manager.

8.1 File Format.

8.2 Record Format.

8.3 Bit Format.

8.4 The Header Record.

8.5 Read and Write Speeds.

8.6 Cataloguing.

8.7 Reading Files.

8.8 Writing Files.

8.9 Reading and Writing Simultaneously.
8.10 Filenames.

8.11 Cassette Manager Messages.
8.12 Escape Key.

8.13 Low Level Cassette Driving.

PAGE C.2 AMSTRAD CPC 464 FIRMWARE

9 Expansion ROMs, Resident System Extensions and
RAM Programs. -

9.1
9.2
9.3
9.4
9.5
9.6

ROM Addressing.

The Format of an Expansion ROM.
Foreground ROMs and RAM Programs.
Background ROMs.

Resident System Extensions.

External Commands.

10 Interrupts.

10.1
10.2
10.3
10.4
10.5

The Time Interrupt.
External Interrupts.
Nonmaskable Interrupts.
Interrupts and Events.
Interrupt Queues.

11 Events.

11.1
11.2
11.3
11.4

Event Class.

Event Count.

Event Routine.

Disarming and Reinitialising Events.

12 The Machine Pack.

12.1
12.2
12.3

Hardware Interfaces.
The Printer.
Loading and Running Programs.

13 Firmware Jumpblocks.

13.1

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8
13.1.9

The Main Jumpblock.

Entries to the Key Manager.
Entries to the Text VDU,
Entries to the Graphics VDU.
Entries to the Screen Pack.
Entries to the Cassette Manager.
Entries to the Sound Manager.
Entries to the Kernel.

Entries to the Machine Pack.
Entries to Jumper.

AMSTRAD CPC464 FIRMWARE PAGEC.3

13.2 Firmware Indirections.

13.2.1 Text VDU Indirections.

13.2.2 Graphics VDU Indirections.
13.2.3 Screen Pack Indirections.

- 13.2.4 Keyboard Manager Indirections.
13.2.5 Machine Pack Indirections.

13.3 The High Kernel Jumpblock.
134 The Low Kernel Jumpblock.

14 The Main Firmware Jumpblock.
15 The Firmware Indirections.
16 Kernel High Entries.

17 Low Entries to the Kernel.

Appendices

Key Numbering.

Key Translation Tables.

Repeating Keys.

Function Keys and Expansion Strings.
Inks and Colours.

Displayed Character Set.

Text VDU Control Codes.

Notes and Tone Periods.

The Programmable Sound Generator.
Kernel Block Layouts.

The Alternate Register Set.

The Hardware.

EEHEEEﬁﬁQE:”

PAGE C4 AMSTRAD CPC464 FIRMWARE

1 The Firmware.

This manual describes the firmware of the Amstrad CPC464 Microcomputer. It does
not describe the BASIC language supplied with the system. The manual does
describe certain aspects of the BASIC where these affect other programs and it uses
BASIC as an example program when describing some features of the firmware.

The firmware is the program that resides in the lower ROM (see section 2). Its
function is to control the hardware of the computer and to provide useful facilities
for other programs to use. This avoids every program written having to provide its
own facilities.

This manual is expected to be of interest to anyone who would like to know how the
system works. It is indispensible for programmers writing machine code programs,
particularly system programs (e.g. other languages) and games.

The information presented in this manual can be extremely detailed. It covers the
operation of the firmware from the lowest level (e.g. driving the sound chip) to the
highest level (e.g. running a queue of sounds). It is not necessary to understand all
the information given to be able to use the firmware, however, a good grasp of how
the system works will aid the programmer in selecting the most appropriate
method for performing a particular task.

1.1 The Hardware.

The diagram on the following page gives an indication of the different pieces of
hardware in the system and how they connect to each other. For more information
on how the hardware works see Appendix XII and the relevant manufacturer’s data

sheets.

The system centres around the CPU (Central Processing Unit) which is a ZB0A
microprocessor with a 4MHz clock. Next in importance is the gate array which
contains miscellaneous logic to control much of the system. In particular, it controls
ink colours, screen mode and ROM enabling (see section 3). [n conjunction with the
CRTC (Cathode Ray Tube Controller), which is a bo4d chip, the gate array
generates the video signals for the monitor.

The PSG (Programmable Sound Generator) is an AY-3-8912. This chip has three
channels of sound generator, a noise generator, envelope control for each channel
and an 1O port. The way the sound generating hardware is used is described in
section 7. The L/O port is used in input mode to sense the state of the keyboard and

joystick switches. A

AMSTRAD CPC464 FIRMWARE PAGE 1.1

The PPI (Parallel Peripheral Interface), which is an 8255 chip, is used to control the
remainder of the system. It has three ports. Port C iz used as an output port to
control the cassette recorder motor, to write data to the cassette, to strobe data in or
out of the PSG and to select rows of the keyboard. Port B is used as an input port to

sense the frame flyback signal, the Centronics port busy signal and various option
links and to read data from the cassette. Port A is used to communicate with the
PSG and is set into input or output mode as required.

Accesses to memory are synchronised with the video logic - they are constrained to
occur on microsecond boundaries. This has the effect of stretching each Z80 M cycle
(machine cycle) to be a multiple of 4 T states (clock cycles). In practice this alters the
instruction timing so that the effective clock rate is approximately 3.3 MHz.

Monitor |(et= Gate Array —

Speakers CRTC |t > RAM

n u CPU

PSG e - gt—— ROM ==l
B PP y

Keyboard

and = === Centronics Port

Joysticks

#

Cassette Recorder -

PAGE 1.2 AMSTRAD CPC464 FIRMWARE

1.2 The Division of the Firmware.

The firmware is split into ‘packs’ each dealing with a particular part of the system,
usually a hardware device. Each pack has a section of this manual devoted to it
where its operation is explained in detail. The system components and their

associated packs are:

Keyboard: Key Manager.

Screen: Text VDU, Graphics VDU, Screen Pack.
Cassette: Cassette Manager,

Sound: Sound Manager.

Operating System: Kernel, Machine Pack, Jumper.

a. Key Manager

The Key Manager is more fully described in section 3. It deals with scanning the
keyboard, generating characters, function keys, testing for break and scanning the
joysticks.

b. Text VDU

The Text VDU is more fully outlined in section 4. It deals with putting characters
on the sereen, the cursor and obeying control codes.

¢. Graphics VDU

The Graphics VDU is more fully presented in section 5. It deals with plotting points,
testing points and drawing lines on the screen.

d. Screen Pack

The Screen Pack is more fully detailed in section 6. It interfaces the Text and
Graphics VDUSs with the screen hardware and deals with aspects of the screen that
affect both of these packs, such as screen mode or ink colours.

e. Sound Manager

The Sound Manager is more fully discussed in section 7. It deals with queueing,
enveloping, synchronising and generating sounds.

f. Cassette Manager

The Cassette Manager is more fully explained in section 8. It deals with reading
from tape, writing to tape and the cassette motor.

g. Kernel

The Kernel is more fully described in sections 2, 9, 10 and 11. It is the heart of the
operating system and deals with interrupts, events, selecting ROMs and running

programs,

AMSTRAD CPC464 FIRMWARE PAGE13

h. Machine Pack

The Machine Pack is more fully documented in section 12. It deals with the printer
and the low level driving of the hardware.

i. Jumper

Jumper, or rather, the main firmware jumpblock is listed in section 13. The entries
in the jumpblock are described in detail in section 14. Jumper sets up the firmware
jumpblock.

1.3 Controlling the Firmware.

The firmware is controlled by the user calling published routines rather than by the
user setting the values of system variables. This will allow the firmware's variable
layout to be changed in major ways without the user being affected.

The addresses of the routines the user is to call need to remain constant if the
firmware is altered, This is achieved by using jumpblocks (see below).

The advantage of a routine interface is that it allows a number of different system
variables to be altered by the firmware in a consistent way in one operation. If the
system variables had to be set by the user then the firmware could be left in an
.- daterminate state if some variables had been set but not others. Also, the routine
type of interface ensures that all the required side effects of a change are taken care
of automatically without the user being troubled with all the details. An example of
this is changing the screen mode (see section 6.1) - changing the size of the screen
requires a number of other people to be informed of the change so that illegal screen
positions and inks are not used.

1.4 Jumpblocks.

A jumpblock is a series of jump instructions placed in memory at well-known
locations., The jumps are to the various routines in the firmware that the user might
want to call. Programs that need to use the facilities provided by the routines in the
jumpblock should call the appropriate jumpblock entries.

If the firmware is altered then it is quite likely that the addresses of some of the
routines available to the user will change. By keeping the address of the jumpblock
constant but altering the entries in the jumpblock so that they jump to the new
addresses of the routines, the change is hidden from the user (providing that the
user is only calling routines via the jumpblock and is not accessing the firmware
directly).

To make the change to the firmware completely hidden from the user it is also
necessary to keep the entry and exit conditions of the routines accessed via the
jumpblock constant. The greater part of this manual is taken up with the detailed
entry and exit requirements of the jumphlock entries.

PAGE 14 .. AMSTRAD CPC464 FIRMWARE

The jumpblock is placed in RAM so that the user can alter the entries in it. This
allows the user to trap particular entries and to substitute a new routine that will
replace the standard firmware routine. Provided that the new routine obeys the
entry and exit requirements of the firmware routine, the substitution will not upset

programs unaware of the change.

There are four jumpblocks, These are all listed in section 13. The first and largest
jumpblock is the main firmware jumpblock (see sections 13.1 and 14). This allows
the user to call most firmware routines. The second jumpblock is the indirections
jumpblock (see sections 13.2 and 15). The entries in this jumpblock are used by the
firmware at key moments in order to allow the user to alter the action of the
firmware. The last two jumpblocks are rather special. They are to do with the
Kernel and allow ROMs to be enabled and routines in ROMs to be called. (See

sections 13.3, 13.4, 16 and 17).

Section 1.7 below gives an example of how a jumpblock entry might be changed to
alter the action of the firmware,

1.5 Conventions.

a. Notation

Processor instructions are generally referred to by their standard Z80 mnemonics.
The exceptions that prove the rule are the restart instructions. The mnemonics RST
0. RST 7 are used rather than the more usual Z80 mnemonics RST #00 .. RST #38.

The registers are also referred to by their standard Z80 names. The flag register as a
whole is referred to as F but the individual flags are called by their full name, e.g.
carry. The flags are said to be true when they are set and false when they are clear.
Thus a JP NC instruction would jump if carry was false and not if carry was true.

Hexadecimal numbers are indicated by prefixing the number with #, thus #7F is
the number 127 in hex, All numbers not prefixed by # are in decimal.

Large numbers are often abbreviated by writing them as a multiple of 1024. For
example, 32K bytes means 32 times 1024 (i.e. 32768) bytes.

b. Usage

Routines, where possible, take and return values in registers. Where more
information than may be held in registers is to be passed to a routine, the address of
a data area is given. The location in memory of these data areas is sometimes

critical, see section 2.4.

Where a routine can succeed or fail this condition is normally passed back in the
carry flag. Carry true normally implies success, whilst carry false normally implies
failure.

The alternate register set, AF" BC' DE' HL', is reserved for use by the system. The
user should not execute either an EX AF,AF or an EXX instruction as these will
have unfortunate consequences. (See Appendix XI for a full description.)

AMSTRAD CPC464 FIRMWARE PAGE 1.5

c. General

The logical values true and false are generally represented by ¥FF and #00
respectively. Often, however, any non-zero value is taken to mean true.

The bits in a byte are numbered 0..7, with bit 0 being the least significant bit and
bit 7 being the most significant bit.

Where two byte (word) values are stored (in tables etc) they are always stored with
the less significant byte first and the more significant byte second, unless a specific
indieation to the contrary is given. This is in accordance with the standard way the
ZB0 stores words.

Tables and the like are always laid out with byte 0 being the first byte of the table.
When the address of such a table is given this is the address of byte 0 of the table
unless otherwise indicated.

When the computer is turned on (or when it is reset) it completely initialises itself
before running any program. This initialisation is known as early morning startup,
abbreviated to EMS from now on.

1.6 Routine Documentation.

Each routine described in this manual has entry and exit conditions associated with
it. Where there are other points of interest about the routine these are normally
given in a section after the entry and exit conditions. Such points include whether
interrupts are enabled and a fuller description of the parameters and side effects of
the routine.

There are two reasons for providing this information. Firstly it tells the user what
will happen when the routine is called. Secondly it tells the user what a

replacement routine is expected to do.

The entry conditions tell the caller of the routine what the routine expects to
be passed to it. When calling a routine all values specified must be supplied.
Values may only be left out where the routine documents that they are
optional. When providing a replacement routine to fit this interface only
information that is specified may be used, although not all of it need be used.

The exit conditions tell the caller what values the routine passes back and
which processor registers are preserved. Registers that are documented as
being corrupted may be changed by the routine or may not. The user should
not rely on their contents. When providing a routine to fit this interface it is
extremely important that registers documented as being preserved are indeed
preserved and that the values returned are compatible with the original
routine. Corrupting a register or omitting a result will usually cause the
system to fail, often in subtle and unexpected ways.

AMSTRAD CPC464 FIRMWARE PAGE 1.6

Often a routine will have different exit conditions depending on some
condition or other (usually whether it worked or not). In these cases the

fie differences in the exit conditions are given for each case and all
conditions that remain the same irrespective of the case are given in a
separate section (marked ‘always’).

There are abundant examples of routine interfaces in sections 14 to 17.

1.7 Example of Patching a Jumpblock.

The following is an example of how the jumpblocks may be used. At this stage many
of the concepts introduced may be unfamiliar to the reader, However, since altering
jumpblocks is an important technigue for tailoring the system to a particular
purpose the example is given here. Later sections will explain the actions taken
here.

Suppose an assembler program is being written that is intended to use the printer
when it is finished. While this program is being written it would save time and
paper if the program could be made to use the screen instead of the printer.
However, changing the program itself to use the screen could introduce bugs when
it is changed back to using the printer. What is needed is a way of altering the
action of the firmware that drives the printer - and this is what a RAM jumpblock is
for.

The technique that will be used is to ‘connect’ the printer to a particular text
window. This can be achieved by writing a short routine to send the character to the
screen and patching the entry in the jumpblock for sending characters to the
printer, MC PRINT CHAR, so that it jumps to this routine instead of its normal
routine.

The substitute routine will have to obey the entry/exit conditions for MC PRINT
CHAR. These can be found in the full description of this entry in section 14. Briefly
they are as follows: . :

MC PRINT CHAR:
Entry conditions:
A contains character to print.
Exit conditions:
If the character was sent OK:
Carry true.

If the printer timed out:
Carry false.

Always:

A and other flags corrupt.
All other registers preserved.

AMSTRAD CPC464 FIRMWARE PAGE 1.7

The action of the substitute routine will be to select the screen stream that the
printer cutput is to appear on, to print the character on the stream and then to
restore the stream that was originally selected. To do this the substitute routine
will need to call the routines TXT STR SELECT and TXT OUTPUT. Once again the
full descriptions of these jumpblock entries can be found in section 14. The
entry/exit conditions are as follows:

TXT STR SELECT:

Entry conditions:
A contains stream number to select.

Exit conditions:
A contains previously selected stream number.
HL and flags corrupt.
All other registers preserved.
TXT OUTPUT:
Entry conditions:
A contains character to print.

Exit conditions:
All registers and flags preserved.

The code for the substitute routine could be written as follows (stream 7 has been
chosen as the stream on which printer output is to appear):

PUSH HL
PUSH BC
' LDB, A :Save the character to print
. LDA, 7 :Printer stream number
CALL TXT_STR _SELECT -Select the printer stream
LDC, A :Save the original stream number
" LD A B :Get the character again
CALL TXT_OUTPUT -Send it to the screen
" LDA, C Get the original stream number
CALL TXT_STR_SELECT :Reselect the original stream
" POP BC
POP HL
SCF “The character was sent OK
RET

PAGE 1.8 AMSTRAD CPC464 FIRMWARE

Note the following points:

1/ MC PRINT CHAR preserves HL and BC. The routine above uses B and C for
temporary storage and HL is corrupted by TXT STR SELECT. HL and BC are
therefore pushed and popped to preserve them through the substitute routine.

2/ MC PRINT CHAR returns a success/fail indication in the carry flag. Since the
routine above can never fail it always sets the carry flag to indicate success.

3/ The routine above does not change which text stream is selected. It selects the
stream it is going to print on and restores the previously selected stream when
it has printed the character. The firmware is written in such a way as to allow
routines to restore the original state when they finish if required.

To use the substitute routine it is necessary to patch it into memory and to change
the jumpblock entry for MC PRINT CHAR to jump to it. Assume that some memory
at #ABO0 has been reserved for the substitute routine and that the routine has
been patched into memory. The MC PRINT CHAR entry in the jumpblock is at loca-
tion #BD2B (as can be seen by inspecting section 13.1.8). The three bytes of the
entry should be set to the instruction JP # AB0O by patching as follows:

#BD2B #C3
#BD2C #00
#BD2D #AB

From now on all text sent to the printer will appear on the sereen on stream 7, Of
course, stream 7 should have its window set so that it does not interfere with any

other streams using the screen.

This redirection will remain in force until the jumpblock entry is restored. This can
be achieved by patching the jumpblock back again or by calling JUMP RESTORE
or by causing an EMS initialisation to take place by resetting the system.

AMSTRAD CPC464 FIRMWARE PAGE 1.9

2 ROMs, RAM and the Restart
Instructions.

The system has 32K of ROM and 64K of RAM in the ZB0's 64K address space. To
allow this the ROM can be enabled or disabled as required. Additional expansion
ROMs can be selected giving up to 4632K of program area.

All the T80 restart instructions, except for one, have been reserved for system use.
RST 1 to RST 5 are used to extend the instruction set by implementing special call
and jump instructions that enable and disable ROMs. RST 6 is available to the user.

2.1 Memory Map.

The memory map is complicated by the fact that into the Z80's address space of 64K
bytes has been squeezed 64K bytes of RAM, 39K bytes of ROM and provision for
ROM expansion of up to 252*16K (nearly 4M) bytes. The address space is divided as

follows:
Address RAM ROM
#10000 #10000
Default Screen Upper ROMs
Memory {bank switched)
#C000 #C000
Stack, Firmware
Data & Jumpblock
#B100 . i
oregrou ata
c. #ACOD .
p— Background Data
Memory Pool
7 e #4000
P Background Data
o~ Foreground Data Lower ROM
Firmware Area
#0000 #0000

AMSTRAD CPC4684 FIRMWARE PAGE 2.1

The sizes of the two background areas depend on the background ROM:s fitted to the
machine (see section 9).

The upper foreground data area need not have its lower bound at # ACO0 but this is
the default setting (as used by BASIC). The lower foreground data area need only be
reserved if it is needed (this area is not used by BASIC and is set to zero length). The
memaory pool left between the background data areas is also for the foreground
program to use (see section 9).

The 32K of on-board ROM is split into two sections which are handled separately.
Henceforth these will be discussed as if they were separate ROMs. The firmware
resides in the lower ROM. The BASIC resides in the upper ROM. This upper ROM is
bank switched so that up to 252 expansion ROMs (see section 9) can replace it in the

memory map.

2.2 ROM Selection.

There are two mechanisms for switching ROMs in and out of the address space:

a. ROM State.

The upper and lower ROMs may be enabled and disabled separately. When
the upper ROM is enabled data read from addresses between #C000 and

4FFFF is fetched from the ROM. Similarly, when the lower ROM is enabled
data read from addresses between #0000 and #3FFF is fetched from the ROM.
When the ROMs are disabled data is fetched from RAM.

Note that the ROM state does not affect writing which always changes the
contents of RAM.

b. ROM Select.

Expansion ROMs are supported by switching the upper ROM area between
ROMs. Expansion ROMs are addressed by a separate ROM select address byte
implemented in /O space. ROM select addresses are in the range 0.251,

providing for up to 252 expansion ROMs.

When the machine is first turned on it selects ROM zero. This will usually
select the on board ROM, but an expansion ROM may be fitted at this address,
which will pre-empt the on-board ROM.

See section 9 for a deseription of the use of expansion ROMs,

2.3 The Restart Instructions.

The Kernel supports the store map in a number of ways. In particular a variety of
facilities are provided to handle subroutine addresses extended to include ROM
select and/or ROM state information. Some of the restart instructions are used to
augment the existing Z80 instruction set. The other restarts are reserved.

PAGE 2.2 AMSTRAD CPC464 FIRMWARE

The firmware area between #0000 and #003F is set up so that the restarts operate
whatever the current ROM state is. The user should not alter the contents of this
area except as indicated in section 17.

The restarts are as follows. A fuller description of their operation can be found in
section 17.

a. The Extended Instruction Set.

LOW JUMP (RST 1)

RST 1 jumps to a routine in the lower 16K of memory. The two bytes following
the restart are assumed to be a low address’ - so RST 1 can be considered to be
a three byte instruction, rather like a JP instruction.

The top 2 bits of the ‘low address’ define the ROM enable/disable state
required: the bottom 14 bits give the actual address (in the range #0000 to
#3FFF) to jump to once the ROM state is set up. When the routine returns the
ROM state is restored to its original setting.

The firmware jumpblock, through which firmware routines should be called,
makes extensive use of LOW JUMPs. These LOW JUMPs request the lower
ROM to be enabled, so that the lower ROM may be disabled except when the
firmware is active.

SIDE CALL (RST 2)

RST 2 calls a routine in an associated ROM. It has a very specialised use. A
foreground program (see section 9) may require more than 16K of ROM. The
side call mechanism allows for calls between two, three or four associated
ROMs without reference to their actual ROM select addresses, provided that
the ROMs are installed next to each other and in order.

The two bytes following the restart instruction give the ‘'side address’ of the
routine to call - so the RST 2 can be considered to be a three byte instruction,
rather like a CALL instruction. The top 2 bits of the ‘side address’ specify
which of the four ROMs to select; the bottom 14 bits, when added to #C000,
give the actual routine address. The upper ROM is enabled, the lower ROM is
disabled. Both the ROM state and the ROM select are restored to their
original settings when the routine returns.

FAR CALL (RST 3)

RST 3 calls a routine anywhere in memory, in RAM or in any ROM. The two
bytes following th» restart are assumed to be the address of a ‘far address’. The
“far address’ is a three byte object, which takes the form:

Bytes 0..1: Actual address of routine to call.
Byte 2: ROM select/state required.
The ROM select/state byte may take the following values:

0..251: Select the upper ROM at this ROM select address.
Enable the upper ROM, disable the lower ROM.

AMSTRAD OCPC484 FIRPMWARE PAGE 2.3

252..255: Nochange of ROM select, enable/disable ROMs as follows:

252: Enable upper ROM, enable lower ROM.

253: Enable upper ROM, disable lower ROM.
254: Disable upper ROM, enable lower ROM.
255: Disable upper ROM, disable lower ROM.

Note that the far address’ is not itself contained in the ‘instruction’, but is
pointed at. This is because the ROM select address will depend on the
particular order in which the user has chosen to install expansion ROMs and
must be established at run time.

Both the ROM state and the ROM select are restored to their original settings
when the routine returns.

RAM LAM (RST 4)

RST 4 reads the byte from RAM at the address given by HL. It disables both
ROMSs before reading and restores the state afterwards. This ‘instruction’
avoids the user having to put a read routine into the central 32K of RAM

to access RAM hidden under a ROM.

Writing to a memory location always changes the contents of RAM whatever
the ROM enable state.

FIRM JUMP (RST 5)

RST 5 turns on the lower ROM and jumps to a routine. The two bytes following
the restart are assumed to be the address to jump to - so RST 5 can be
considered to be a three byte instruction, rather like a JP instruction. The
lower ROM is enabled before jumping to the routine and is disabled when the
routine returns. The state of the upper ROM is left unchanged throughout.

b. The Other Restarts.

RESET (RST0)
RST 0 resets the system as if the machine has just been turned on.

USER RESTART (RST 6)

RST 6 is available for the user. It could be used to extend the instruction set in
the same way that other restarts have been used, or it could be used for

another purpose such as a breakpoint instruction in a debugger.

Locations #0030 to #0037 inclusive in RAM may be patched in order to gain
control of the restart. If the lower ROM is enabled when the restart is executed
then the code in ROM at this address causes the current ROM state to be saved
in location #002B. Then the lower ROM is disabled and the firmware jumps to
location #0030 in RAM. If the lower ROM is disabled then the restart calls
#0030 as normal for this Z80 restart instruction.

PAGE 24 AMSTRAD CPC464 FIRMWARE

INTERRUPT (RST 7)
RST 7 is reserved for interrupts (see section 10), it must not be executed by a
program.

2.4 RAM and the Firmware.

The ROM state should be transparent to the user. If the current foreground
program (see section 9) is in ROM then the normal ROM state is to have the upper
ROM enabled and the lower ROM disabled. If the current foreground program is in
RAM then the normal state is to have both ROMs disabled. These states allow the
foreground program free access to the memory pool. When a firmware routine is
called the lower ROM is enabled and the upper ROM is usually disabled. This
allows the firmware free access to the default screen memory (but not to all the
memory pool). When the firmware routine returns the ROM state is automatically

restored to what it was.
The cases where the ROM state is important are:

a. Stack

The hardware stack should never be below #4000, otherwise serious confusion
will oceur when the lower ROM is enabled and the stack is used - for example,
when interrupts oceur or the firmware is called.

Similarly, it is inadvisable to set the stack above #C000 unless 1t is certain
that the upper ROM is never enabled when the stack is in use.

The system provides a stack area immediately below #C000 which is over 256
bytes long. This should be adequate for most purposes.

b. Communication with the firmware.

Most firmware routines take their parameters in registers. However, some use
data areas in memory to pass information. Most firmware routines that use
data areas in memory read these directly without using RAM LAMs (see
above) or the equivalent. These routines are affected by the ROM state and the
ROM select. They will read data from a ROM if the ROM is enabled and the
routine is given a suitable address. (Note that the jumpblock disables the
upper ROM when the firmware is called). Other firmware routines that use
data areas in memory always read from RAM. They are unaffected by the

ROM state and the ROM select.

Routines that always access RAM will mention this in the description of the
routine. Other routines may be assumed to be affected by the ROM state. In
particular the various data blocks used by the Kernel must lie in the central
32K of RAM for the Kernel to be able to use them.

AMSTRAD CPC464 FIRMWARE PAGE 2.5

¢. Communication between upper ROMs.

Programs in upper ROMs may call routines in other ROMs, using the various
Kernel facilities. There is no provision in the firmware, however, for a
program in one ROM to access constants in another.

The majority of firmware routines are called via the firmware jumpblock, which
starts at location #BB00, in the firmware RAM area. The Kernel routines
associated with the memory map are called via one of two other jumpblock areas:
the LOW area between #0000 and #003F, and the HIGH area starting at #B3900.
All of these routines and jumpblocks are copied out of the lower ROM into the
firmware RAM area when the Kernel is initialised. Thus they work independently
of the ROM state.

PAGE 2.6 AMSTRAD CPC464 FIRMWARE

3 The Keyboard.

The Key Manager is the pack associated with the keyboard. All the attributes of the
keyboard are generated and controlled by the Key Manager. These attributes
include repeat speed, shift and control keys, function keys and key translation. The
joysticks are also scanned by the Key Manager.

The Key Manager has three levels of operation. The lowest level scans the
keyboard, the middle level converts the key pressings into key values and the top
level converts the key values into characters. The user may access the Key Manager
at whichever level is most appropriate for a given program. It is usually unwise,
however, for a program to mix accesses at different levels.

3.1 Keyboard Scanning.

The keyboard is completely software scanned. This scan occurs automatically every
fiftieth of a second. The keyboard hardware is read and a bit map noting which keys
are pressed is constructed. This bit map is available for testing if specific keys are
pressed (see KM TEST KEY). As the bit map is constructed keys that are newly
pressed are noted and markers are stored in a buffer until needed. If no newly
pressed keys are found then the last key pressed may be allowed to repeat if it is
still down (see section 3.5). The keyboard is ‘debounced’ in that a key must be
released for two consecutive scans before it is marked as released in the bit map.
This ‘debouncing’ hides multiple operations of the key switch as it opens or closes.

At this stage only four keys are treated specially. The two shift keys and the control
key are not stored in the key buffer themselves. Instead, when any other marker is
stored the states of the shift and control keys are noted and put into the buffer as
well, The escape key generates a marker as normal but may also have other effects
depending on whether the break mechanism is armed (see section 3.6).

There is a problem with scanning the keyboard. If three keys at the corners of a
rectangle in the key matrix are all pressed at the same time then the key at the
fourth corner appears to be pressed as well. There is no way to avoid this problem as
it is a feature of the keyboard hardware. All key combinations used by the firmware
(and the BASIC) have been especially designed to avoid this effect.

3.2 Key Translation.

When the user asks for a key (KM WAIT KEY or KM READ KEY) the next key
pressed marker is read from the key buffer. The marker is converted to a key
number and this is looked up in one of three translation tables.

AMSTRAD CPC464 FIRMWARE PAGE 3.1

Which table is used depends on whether the shift and control keys were pressed
when the key was pressed, One table is used if the control key was pressed, another
is used if either shift key was pressed but control was not, the third is used if neither
shift nor control keys were pressed. The contents of these tables can be altered by
the user as required (by calling KM SET CONTROL, KM SET SHIFT and KM SET

TRANSLATE respectively).

The value extracted from the table may be a system token, an expansion token or a
character. Expansion tokens and characters are used by the top level of the Key
Manager (see 3.3 below) and are passed up from the middle level when they are
found in a table. There are three system tokens, which are obeyed immediately they
are found in a table. After obeying the token the next marker is read from the buffer

and translated.
The default translation tables are described in Appendix I1.

The immediately obeyed System tokens are:

a. Ignore (FFF)
The key pressed is to be ignored.

b. Shiftlock (#FE)

The shift lock is to be toggled (turned on if it is currently off and turned off if it
is on).

c. Caps lock (#FD)
The caps lock is to be toggled (turned on if it is off and off if it is on).

3.3 Characters from the Keyboard.

When the user asks the top level for a character (KM WAIT CHAR or KM READ
CHAR) a key is fetched from the middle level. If this is a character (#00..#7F or
#A0..#FC) then it is passed straight back. If it is one of the 32 expansion tokens
(#80..4#9F) then the string associated with the token is looked up. The characters in
this string are passed out one at a time with each request for a character until the
end of the string is reached.

There is only one character with a special meaning at this level. This is character
HEF which is produced when pressing the escape key generates a break event (see
section 3.6). It has no effects, it is merely a marker for the place in the buffer where
a break event was generated. It is intended to be used to allow all characters before
the break to be discarded. This character is not generated by the translation tables
and thus cannot be changed by altering them.

A single ‘put back’ character is supported. When the user puts back a character this

character will be returned by the next call to the top level of the Key Manager. This
is intended for use by programs that need to test the next character to be read from

the keyboard without losing it (when processing breaks perhaps).

PAGE 3.2 AMSTRAD CPC464 FIRMWARE

3.4 Shift and Caps Lock.

a. Shiftlock
When shift lock is engaged then the keys pressed are translated as if a shift
key is pressed.

The shift lock is toggled by a system token (see 3.2 above) which is normally
generated by pressing CTRL and CAPS LOCK.

b. Capslock

When caps lock is engaged then alphabetic characters read from the kevboard
are converted to their upper case equivalents. This case conversion is applied
before expansion tokens are expanded and so expansions are not capitalised.

The caps lock is toggled by a system token (see 3.2 above) which is normally
generated by pressing CAPS LOCK (without control).

3.5 Repeating keys.

There is a table, which the user can alter as desired, that specifies which keys are
allowed to repeat when held down (see KM SET REPEAT). The default setting for
this table is described in Appendix IIL Briefly, the default is to allow all keys to
repeat except the ESC, TAB, CAPS LOCK, SHIFT, ENTER and CTRL keys and the
12 keys in the numeric keypad (the function keys).

The speed at which keys repeat and the delay before the first repeat can be set by
the user (see KM SET DELAY). The default speed produces up to 25 characters a
second with a 0.6 second start up delay.

A key is allowed to repeat if the following conditions are satisfied:
1/ The appropriate time has passed since the key was first pressed or it last
repeated
2/ The key is still pressed.
3/ No other key has been pressed since the key was first pressed.
4/ The key is marked as allowed to repeat in the repeat table.
5/ There are no keys stored in the key buffer.

Condition 5 above means that the repeat speed and start up delay set the maximum
speed at which a key is allowed to repeat. If a program is slow about removing keys
from the buffer then the generation of keys will adjust itself to this. Thus it is
impossible to get a large number of keys stored in the buffer simply by holding a key
pressed.

When reading or writing from the cassette the ESC key is handled in a different
manner which is described in section 8.12.

AMSTRAD CPC464 FIRMWARE PAGE 3.3

3.6 Breaks.

Breaks can oecur when the keyboard scanner detects that the ESC key is pressed.
When the escape key is found to be pressed the indirection KM TEST BREAK is
called to deal with the break. The default setting for this routine tests whether the
SHIFT, CTRL and ESC keys and no others are pressed. If so then the system is reset
(by executing an RST 0), otherwise the break mechanism is invoked.

If the break mechanism is disarmed then no action is taken other than the normal
insertion of the marker for the escape key into the key buffer. If the break
mechanism is armed then two additional operations take place. Firstly, a special
marker is placed into the key buffer that will generate character #EF when it is
found (irrespective of the translation tables). This is intended to be used to allow the
characters which were in the buffer before the break occurred to be discarded.
Secondly, the synchronous break event is kicked'.

The break mechanism can be armed or disarmed at any time (by calling KM ARM
BREAK or KM DISARM BREAK). The default state is disarmed. When a break is
detected the mechanism is disarmed automatically which prevents multiple breaks
from occurring.

The method BASIC uses to handle breaks should serve as a model for other
programs. BASIC's actions are as follows:

The break mechanism is armed. After each BASIC instruction the
synchronous event queue is polled and if a break event is found (because it has
been kicked as explained above) the break event routine is run.

The break event routine stops sound generation (SOUND HOLD) and then it
discards all characters typed before the break occurred by reading characters
from the keyboard (KM READ CHAR) until either the buffer is empty or the
break event marker (character #EF) is found. BASIC then turns the cursor on
(TXT CUR ON) and waits for the next character to be typed (KM WAIT

CHAR).

If the next character is the escape token (character #FC - the default value
generated by the ESC key) then a flag is set to make BASIC abandon
execution (or run the user's ON BREAK GOSUB subroutine) and the break
event routine returns.

If the next character is any character other than escape then the break will be
ignored. If it is any character other than space then this is ‘put back’ (KM
CHAR RETURN). Before the event routine returns the cursor is turned off
(TXT CUR OFF), sound generation is restarted (SOUND CONTINUE) and the
break mechanism is rearmed. BASIC then continues as if nothing had
happened.

When reading or writing from the cassette the ESC key is handled in
a different manner which is described in section 8.12.

PAGE 3.4 AMSTRAD CPC464 FIRMWARE

3.7 Function Keys and Expansion Tokens.

The Key Manager allows for 32 expansion tokens (values #80..#9F) which may be
placed in the key translation tables. Each token is associated with a string which is
stored in the expansion buffer,

When the user asks the top level for a character a key is fetched from the middle
level. If this key is a character it is passed straight back. However, if it is an
expansion token then the string associated with the token is looked up. The
characters in this string are passed out one at a time with each request for a
character until the end of the string is reached. Values #80..#9F and #EF,
#FD. #FF in the expansion string are treated as characters and are not expanded

or obeyed.

The user may set the string associated with an expansion token (see KM SET
EXPAND) and may cause any key on the keyboard to generate an expansion token.
The default settings for the expansion tokens and the keys with which they are
normally associated are given in Appendix IV. The user may also set the size and
location of the expansion buffer (see KM EXP BUFFER); the default buffer is at

least 100 bytes long.

3.8 Joysticks.

There may be two joysticks connected to the system. These are both scanned in the
same way as keys on the keyboard. Indeed, the second joystick occupies the same
locations in the key matrix as certain other keys and is indistinguishable from
them. The state of the joysticks can be determined by calling the routine KM GET
JOYSTICKE.

Because the joysticks are scanned like keys the pressing of joystick buttons can be
detected like any other key. Firstly, individual direction or buttons can be tested in
the key bit map (see section 3.1) by calling KM TEST KEY. Secondly, the joystick
buttons generate characters when they are pressed (providing the translation
tahles are set suitably) and these characters can be detected. The major problem
with this latter method is that the rate of generation of characters depends on how
fast the keyboard is set to repeat. If the repeat speed is increased to make the
joystick more responsive then the keyboard may become impossible to use.

See Appendix I for the numbering of the keys and joystick buttons and see Appendix
11 for the default translation tables.

AMSTRAD CPC464 FIRMWARE PAGE 3.5

4 The Text VDU.

The Text VDU is a character based screen driver. It controls 8 different streams
each of which can have an area of screen allocated to it (a window). The Text VDU
allows characters to be written to the screen and read from the screen. It also treats
certain ‘characters’ as ‘control codes’ which can have various effects, from moving
the cursor to setting the colour of an ink.

4.1 Text VDU Coordinate Systems.

The Text VDU uses two coordinate systems - logical and physical. Generally the
user specifies positions to the Text VDU in logical coordinates. Physical coordinates
are used internally and occasionally by the user to specify positions to the Text
VDU. Both systems use signed 8 bit numbers and work in character positions. Each
character position is 8 pixels (dots) wide and 8 pixels high. This means that the
position of a coordinate on the screen depends upon the screen mode.

Physical coordinates have columns running left to right and rows running top to
bottom. The character position at the top left corner of the screen is row 0, column 0.

Logical coordinates are similar to physical coordinates except that the character
position at the top left corner of the current text window is row 1, column 1.

4.2 Streams.

The Text VDU has facilities for handling up to 8 streams at once. Each stream has
an independent state (although some facilities are shared and thus affect all
streams when altered). The features that are stream dependent are:

VDU enable.

Cursor enable (enable or disable, on or off).
Cursor position.

Window size.

Pen and paper inks.

Character write mode (opaque or transparent).
Graphics character write mode.

The features that affect all streams include:

Character matrices.
Control code buffer.
Text VDU indirections.
Screen mode.

AMSTRAD CPC464 FIRMWARE PAGE 4.1

All these features are explained in detail in the sections below.

At any time, the stream which is currently selected may be changed without
adverse effects provided that the control code buffer is not in use (see section 4.7 for
further explanation). A stream will remain selected until another stream 1s
selected. This means that a program need not know which stream it is using.

The default stream, selected at EMS, is stream (.

BASIC extends the stream concept to include the printer and cassette files. This
extension is not part of the firmware.

4.3 Text Pen and Paper Inks.

Each stream has a pen and a paper ink associated with it. The text pen ink is used to
set the foreground pixels in characters (see section 4.6). The text paper is used to set
the background pixels in characters and to clear the text window.

The pens and papers can be set to any ink that is valid in the current screen mode
(see section 6.1). The default setting for a stream has the paper set to ink 0 and the
pen set to ink 1. Changing a pen or paper ink does not change the screen; it merely
alters how characters will be written in the future.

4.4 Text Windows.

Each stream has a text window associated with it. This window specifies the area of
the screen where the stream is permitted to write characters. This allows different
streams to use different portions of the screen without interfering with each other.

Windows are trimmed so that they fit within the current screen (whose size varies
with the screen mode, see section 6.1). The smallest size window allowed is 1
character wide and 1 character high.

Before writing to the screen the position to write at is forced to lie ingide the window
(see 4.5 below). This may cause the window to roll. Other operations, such as
obeying certain control codes also cause the write position to be forced inzide the

window.

A text window which does not cover the whole screen is rolled by the firmware
copying areas of screen memory around. There is no alternate method available.
This makes rolling large windows a fairly time consuming process.

A text window which covers the whole screen is rolled by using the hardware rather
than by copying areas of memory. The offset of the start of the screen in the screen
memory can be set (see section 6.4). By changing this offset by +80 or —80 the
whole screen can be rolled up or down by a line of characters.

It is obviously a good idea to prevent windows that are being used from overlapping.
If they are allowed to overlap then the portion in multiple use will merely contain
whatever was written to it last. There is no precedence of windows one over another.
A window occupying the whole sereen will overlap the other windows and so if this
window is rolled it will move the contents of the other windows.

PAGE 4.2 AMSTRAD CPC464 FIRMWARE

The default windows, set up at EMS and after changing screen mode, cover the
whole of the screen. All eight windows overlap,

4.5 The Current Position and the Cursor.

Each stream has a current position associated with it. This is where the next
character to be printed on the screen is expected to be placed. However, if, when a
character is to be printed, the current position is found to lie outside the text
window then it is forced inside. The following steps are applied in turn to force the
current position inside the window;

1/ If the current position is left of the left edge of the window then it is moved
to the right edge of the window and up one line.

2/ If the current position is right of the right edge of the window then it is
moved to the left edge of the window and down one line.

3/ If the current position is now above the top line of the window then it is
moved to the top line of the window and the contents of the window are

rolled down one line,

4/ If the current position is now below the bottom line of the window then it is
moved to the bottom line of the window and the contents of the window are

rolled up one line.

When the cursor is enabled, the current position is marked by the cursor blob.
However, before placing the cursor blob on the screen, the current position is forced
to lie inside the current window just as it is before a character is placed on the
screen. This may cause the current position to move,

If the cursor is disabled then the current position may lie outside the window and it
will not be forced inside the window until, for example, a character is printed.

The current position can be changed directly (by ealling TXT SET CURSOR, TXT
SET ROW or TXT SET COLUMN) or by sending control codes to the Text VDU. The
location the current position is moved to is not forced inside the window
immediately, but only when the window is to be written to, as described above. This
allows the current position to be changed by moving via a position outside the
window, if required.

There are two ways to disable the cursor and prevent the cursor blob from
appearing on the screen, The first, cursor on/off, is intended for use by system
programs. This is used by BASIC, for example, to hide the cursor unless input is
expected. The second, cursor enable/disable, is intended for use by the user. The
cursor blob will only be placed on the sereen if it is both on and enabled.

AMSTRAD CPC464 FIRMWARE PAGE 4.3

The cursor blob is normally an inverse patch. The character at the cursor position is
displayed with the text pen and paper inks reversed. This makes it easy to restore
the original form of the character position if the cursor is moved. It is possible for
the user to alter the form of the cursor blob, if required, by changing the
indirections TXT DRAW CURSOR and TXT UNDRAW CURSOR.

4.6 Characters and Matrices.

A character is displayed on the screen in an area B pixels (dots on the monitor) wide
and 8 pixels high. Thus the maximum number of characters on the screen depends
upon the screen mode, (see section 6.1). Each character has a matrix which is an 8
byte vector that specifies the shape of the character. The first byte of the vector
refers to the top line of the character and the last byte to the bottom line of the
character. The most significant bit of a byte in the vector refers to the leftmost pixel
on a line of the character and the least significant bit refers to the rightmost pixel
on a line of the character. If a bit in the matrix is set then the pixel is in the
foreground. If a bit is clear then the pixel is in the background.

A foreground pixel in the character is always set to the pen ink. The treatment of a
background pixel depends on the character write mode of the VDU. In the default
mode, opague mode, background pixels are set to the paper ink. There i1s another
mode, transparent mode, in which the background pixels are not altered. Thus, in
transparent mode, the character is written over the top of the current contents of
the screen. Thiz is useful for annotating pictures or generating composite
characters.

The Text VDU is capable of printing 256 different characters, although special
effort is required to print the first 32 characters which are usually interpreted as
control codes. The matrices for the characters are normally stored in the ROM but
the user may arrange for any number of the characters to have matrices stored in
RAM where they may then be altered. The default setting, at EMS, 15 to have all the
matrices in ROM. (BASIC takes special action during its own initialisation to
create 16 ‘user defined’ matrices.) The default character set is described in
Appendix VI

When the user sets up a table of user defined matrices, by calling TXT SET M
TABLE, it is initialised with the current settings of the matrices from ROM or
RAM. This means that extending the table does not alter the current matrices.
Contracting the table will make the characters lost revert to their default matrices
in ROM,

When characters are read from the screen (by calling TXT RD CHAR) the pixels on
the screen are converted to the form of a matrix. This is compared with the current
character matrices to find which character it is. This means that changing the
character matrices or altering the screen may make a character unrecognisable, in
particular, changing the pen or paper ink can cause confusion. Usually these
problems result in the character appearing to be a space (character #20) and so
special precautions are taken to avoid generating spaces - after some ink changes
real spaces may be read as block graphic characters #80 or #8F.

To allow the user to change how characters are written to and read from the screen,
the indirections TXT WRITE CHAR and TXT UNWRITE are provided.

PAGE 44 AMSTRAD CPC464 FIRMWARE

4.7 Character Output and Control Codes.

The main character output routine for the Text VDU is TXT OUTPUT. This obeys
controls codes (characters 0..31) and prints all other characters. Characters sent to
TXT OUTPUT pass through various levels of indirection and can be dealt with by

various output routines.

TXT OUTPUT uses the TXT OUT ACTION indirection to sort out whether the
character is a printing character, is a control code to be obeyed or is the parameter

of a control code.

TXT OUT ACTION normally calls TXT WRITE CHAR to print characters on the
screen. However, if the graphic character write mode is selected then characters are
printed using the Graphics VDU character write routine (see 5.6 below]. This mode
ean be selected on a character by charaz‘er basis using a control code or on all
characters sent (see TXT SET GRAPHIC). When graphic character write mode is
selected control codes are mot obeyed but are printed by the graphics routine

instead.

TXT OUT ACTION deals with a control code in the following manner:

1/ The code is stored at the start of the control code buffer.

9/ The code is looked up in the control code table to find out how many
parameters it requires.

3/ If no parameters are required go directly to step 5.

4/ If one or more parameters are required then TXT OUT ACTION returns
but the next characters sent to it are added to the control code buffer rather
than being printed or obeyed. This continues until sufficient parameter
characters have been received.

5/ The code is looked up in the control code table to get the address of the
routine to call to perform the control code and this routine is then executed.

6/ The control code buffer is discarded and the next character sent may be
printed or may be the start of a new control code sequence.

The user can change the operation of a control code by changing the entry for it in
the control code table (see TXT GET CONTROLS). This contains a 3 byte entry for
each code and entries are stored in ascending order (i.e. the entry for #00 first, #01

next and so on).

The first byte of an entry specifies the number of parameters required. This must lie
in the range 0.9 as the control code buffer is only capable of storing up to 9
parameters.

The second and third bytes are the address of the routine to call to obey the code. This
routine should lie in the central 32K of RAM or in the lower ROM (which will be
enabled). It should conform to the following entry/exit conditions:

AMSTRAD CPC464 FIRMWARE PAGE 4.5

Entry:

A contains the last character added to the buffer.
B contains the number of characters in the buffer (including the control code).

C contains the same as A.
HL contains the address of the control code buffer (points at the control code).

Exit:

AF, BC, DE and HL corrupt.
All other registers preserved.

The control code buffer is shared between all the streams. A control code sequence
should be completed before the stream is changed otherwise unexpected effects may

OCELT.

The default control code actions, set at EMS and when TXT RESET is called, are
described in Appendix VIL

It is possible to disable a text stream by calling TXT VDU DISABLE. When
disabled the stream will not write any characters to the screen. Normal operation
can be restored by calling TXT VDU ENABLE. Note, however, that calling these
routines will empty the control code buffer. This effect may be used to avoid
problems when the state of the control buffer is unknown (when printing an error

message perhaps).

PAGE 4.6 AMSTRAD CPC464 FIRMWARE

5 The Graphics VDU.

The Graphics VDU allows individual pixels (dots) on the screen to be set or tested
and lines to be drawn. The plotting takes place on an ideal sereen that is always 640
points wide and 400 points high. This means that more than one point on the ideal
screen will map onto a particular pixel on the real screen. The width of the ideal
screen (640 points) is chosen to be the horizontal number of pixels on the screen in
the highest resolution mode (mode 2). The height of the ideal screen (400 points) is
chosen to be twice the vertical number of pixels on the screen in all modes. This
ensures that the aspect ratio of the screen is approximately unity, i.e. a circle looks
circular and not elliptical.

5.1 Graphics VDU Coordinate Systems.

The Graphics VDU uses 4 coordinate systems. The user specifies positions in user
coordinates or relative coordinates or occasionally in standard coordinates.
Internally the Graphics VDU uses base coordinates (or occasionally standard
coordinates).

User coordinates, relative coordinates and standard coordinates are all very
similar. They all use signed 16 bit numbers and work in points with X-coordinates
running left to right and Y-coordinates running bottom to top. The screen is always
400 points high and 640 points wide whatever the screen mode is. This means thata
pixel (dot on the screen) is mapped onto by 8 points in mode 0, 4 points in mode 1
and 2 points in mode 2. The origin (coordinate (0,0)) of these systems vary:

In standard coordinates the origin is the point at the bottom left corner of the
SCTeen.

The origin of user coordinates can be set by the user. The default origin is at
the bottom left corner of the screen. This makes the default user coordinates

the same as standard coordinates.

The origin of relative coordinates is the current position (see 5.2 below). This
allows plotting to be carried out independently of the position on the screen
and is useful if a particular shape is to be repeated on the screen a number of
times or if it is inconvenient to keep track of the current location.

Base coordinates are a physical coordinate system which deals with pixels,
X-coordinates run left to right and Y-coordinates run bottom to top. Pixel (0,0) is the
pixel at the bottom left corner of the screen. Because this coordinate system works
in pixels the coordinates of positions on the screen depend upon the screen mode.
Base coordinates are unsigned 16 bit numbers and only coordinates that refer to a
pixel on the screen are valid.

AMSTRAD CPC464 FIRMWARE PAGE 5.1

Graphics routines convert from relative coordinates to user coordinates, if
necessary, and then from user coordinates to base coordinates before accessing the
physical screen, During the latter conversion there is a loss of accuracy because of
the mapping of multiple points onto a single pixel. This could make shapes drawn
on the screen appear asymmetrical (particularly circles) but the Graphics VDU
avoids this by rounding the coordinates towards the user origin. Thus symmetrical
shapes should be drawn symmetrically about the user origin to take advantage of
the rounding, If the shape is not centred on the user origin then the asymmetry may

reappear.

5.2 The Current Graphics Position.

The Graphics VDU stores a current position. This is the user coordinate of the last
point specified to the Graphics VDU (or the origin after clearing the graphics
window). The origin of relative coordinates is specified to be at this point, thus
relative coordinates are an offset from the current position.

When drawing a line one end is at the position specified while the other end is at the
current graphics position. When drawing a character on the screen using the
graphics character write routine the character is placed with the current graphics
position being the top left corner of the character.

After plotting or testing a point or drawing a line the current graphics position is
moved to the position specified. After writing a character the current graphics
position is moved right by the width of a character ready for the next character to be

written.

5.3 Graphics Pen and Paper Inks.

The Graphics VDU has a pen (foreground) ink and a paper (background) ink. The
graphics pen ink is used to plot pixels, to draw lines and to set foreground pixels
when writing characters using the graphics write routine (see 5.6 below). The
graphics paper ink is used to clear the graphics window and to set background
pixels when writing characters using the graphics write routine.

The pen and paper can be set to any ink valid in the current screen mode (see
section 6.2). The default has the paper set to ink 0 and the pen set to ink 1.
Changing the pen or paper ink does not change the screen it merely alters how
pixels will be written in the future.

5.4 Graphics Write Mode.

Pixels plotted by the Graphics VDU are plotted using the current graphics write
mode. This specifies how the ink to be plotted interacts with the ink a pixel is

currently set to.

PAGE 5.2 AMSTRAD CPC464 FIRMWARE

There are four write modes:

(: FORCE: NEW = INK

1: EXCLUSIVE-OR: NEW = INK xor OLD
2: AND: NEW = INK and OLD
3: OR: NEW = INK or OLD

NEW is the ink that the pixel will be set to.
OLD is the ink that the pixel is currently set to.
INK is the ink that is to be plotted.

The default Graphics write mode is FORCE mode. The Text VDU always sets pixels
as if it is operating in this mode. Also the graphics window is cleared by writing in
FORCE mode irrespective of the actual write mode.

Provided that suitable ink settings are chosen, AND mode and OR mode allow
particular bits in a pixel to be cleared or set. This allows the Graphics VDU to write
in ‘bit planes’ and by choosing the colours of the inks carefully overlapping shapes
can be drawn and automatically hidden behind one another.

If the inks are chosen suitably, EXCLUSIVE-OR mode can be used to plot over the
current contents of the screen. It is also useful because a shape can be removed from
the screen by redrawing it since exclusive-oring with the same ink twice restores
the original setting of a pixel.

The graphics write mode may be set by calling SCR ACCESS or by using a control
code (see Appendix VII).

5.5 Graphics Window.

The Graphics VDU allows a single window to be specified. This allows the user to
mix text and graphics on the screen without them interfering with each other. If the
text windows are allowed to overlap the graphics window then the contents of the
graphics window will be moved when the text windows are rolled. The graphics

window cannot be rolled.

When plotting points, drawing lines or writing characters no pixel outside the
graphics window is ever written. Unlike the text windows no action is taken to force
a point inside the window - actions outside the window will be lost. Conversely,
when testing points, points outside the window are all deemed to be set to the
current graphics paper ink. Points inside the window are written and read as
expected.

The graphics window is related to a specific area of the screen and not to the user
coordinate system. Thus, changing the origin of the user coordinate system will not
move the location of the window on the screen although it does change the user
coordinates of points in the window.

The default graphics window, set at EMS and after changing screen mode, covers
the whole of the screen.

AMSTRAD CPC464 FIRMWARE PAGE 5.3

5.6 Writing Characters.

The Graphics VDU write character routine draws a character with the current
graphics position at the top left corner of the character. The current position is
moved right by the width of a character in the current screen mode. The distance
moved varies: in mode 0 it is 32 points; in mode 1, 16 points; and in mode 2, 8 points.
Control codes, characters 0..31, are printed and are not obeyed.

The character is always written opaquely irrespective of what mode the Text VDU
is using to write characters. i.e. The character background is set to the graphics

paper ink and the foreground is set to the graphics pen ink. However, the current
graphics write mode is used to plot the pixels in the character (see 5.4 above).

PAGE 5.4 AMSTRAD CPC464 FIRMWARE

6 The Screen Pack.

The Sereen Pack is used by the Text and Graphics VDUs to access the hardware of
the screen. It also controls the features of the screen that affect both the Text VDU

and Graphics VDU, such as what mode the screen 1sin.

6.1 Screen Modes.

The screen has three modes of operation, numbered 0, 1 and 2. The modes have
different resolutions and display different numbers of inks on the screen.

All modes have a vertical resolution of 200 pixels (picture elements or dots on the
screen), The horizontal resolution varies from 160 pixels to 640 pixels. As each
character is 8 pixels by 8 pixels the number of characters across the screen varies
with the mode - from 20 characters to 80 characters. The screen is always 25

characters high.

The number of inks that can be displayed on the screen varies with the screen
resolution. When the screen is 640 pixels wide only 2 inks can be displayed, when
the screen is 320 pixels wide 4 inks can be displayed and when the screen is 160
pixels wide 16 inks can be displayed.

In summary, the modes are:
Mode Pixel Size Character Size Inks

0 160 x 200 20x 25 16
1 320 x 200 40x 25 4
2 640 x 200 80 x 25 2

The default screen mode, set at EMS, is mode 1.
The screen mode is set by calling SCR SET MODE which also has other effects.

Firstly, the screen is cleared to ink 0. If the text and graphics paper inks are not set
to ink 0 then this will become apparent on the screen when characters are written
or windows are cleared, If the user wishes to alter this screen clearing operation for
some reason then it may be intercepted at the SCR MODE CLEAR indirection.

Secondly, the Text and Graphics VDUs are set into standard states. The windows
are all set to cover the whole screen. If the pen and paper inks are out of range for
the new mode then they are masked (with #01 or #03) to bring them into range.
The current text positions are moved to the top left corner of the screen and the text
cursors are turned off (see TXT CUR OFF). The current graphics position and the
user origin are moved to the bottom left corner of the screen.

AMSTRAD CPC464 FIRMWARE PAGE 6.1

6.2 Inks and Colours.

The various screen modes allow pixels (dots on the screen) to be set to different
numbers of inks as follows:

Mode 0: 16 inks, 0..15
Model: 4inks, 0..3
Mode 2: 2inks, 0..1

How the ink for a pixel is encoded into & byte of screen memory is described in
section 6.4. The ink that a pixel is set to determines what colour the pixel is
displayed in. However, the colour associated with an ink is not fixed, it can be

changed.

There are 27 colours available. Each ink may be set to any of these colours. The
border to the screen acts much like an ink and can have its colour specified as well.
The display hardware fetches the ink value from the screen memory for each pixel
as it is displayed. This ink value is used to access a small area of RAM inside the
gate array called the ‘palette’. The palette contains the actual colour which is to be
displayed by the monitor for that particular ink. Changing entries in the palette
thus causes all pixels set to that ink to change colour when they are next displayed
(i.e. within 1/50th of a second or so0).

In fact the Sereen Pack allows two colours to be associated with an ink (or the
border). These are loaded into the palette alternately under software control. If the
two colours associated with an ink are different then the ink will flash, if the colours
are the same then the ink will be steady. The user can change the rate of
alternation, from the default of 5 cycles per second, if required (see SCR SET

FLASHING).

When specifying colours the Sereen Pack uses an ordering that corresponds to a
grey scale on a monochrome monitor. This runs from the darkest colour (black),

colour 0, to the brightest colour (bright white), colour 26. The colours do not appear
to have any particular ordering when viewed on a eolour monitor.

The palette uses a different (and apparently nonsensical) numbering scheme for the
colours, The Screen Pack automatically translates the grey scale number to the
hardware number and vice versa when appropriate. Unless the user is driving the
hardware directly the hardware numbers will never be encountered.

The default settings for the colour of each ink and a list of the 27 colours available
are given in Appendix V.

6.3 Screen Addresses.

The Screen Pack does not use a coordinate system itself. It uses screen addresses.
However, it does work with the physical and base coordinate systems of the Text
and Graphics VDUs described in sections 4.1 and 5.1 respectively. In particular,
routines are provided to convert positions given in physical or base coordinates to
screen addresses.

PAGE 6.2 AMSTRAD CPC464 FIRMWARE

A screen address is, prosaically enough, the address of a byte within the screen
memory. To specify a particular pixel a screen address is often passed to a routine
along with a mask that indicates exactly which pixel is required. Routines are
provided for stepping a screen address up, down, right and left one byte. (The screen
map makes this a non-trivial operation.)

6.4 Screen Memory Map.

The screen is a memory mapped pixel screen. The screen memory fills 16K of RAM
in all modes. The default location for the screen, set at EMS, is the 16K of RAM
starting at #C000, This lies underneath the upper ROM, when it is enabled, which
keeps the screen out of the way of the rest of the system. However, this also means
that the upper ROM has to be disabled whenever the screen is read. The firmware
jumpblock uses LOW JUMP restarts which turn the upper ROM off to ensure that

the screen memory is accessible if required.

It is possible to change the location of the screen memory to any of the 4 16K
memory blocks on 16K boundaries (see SCR SET BASE). However, only #C000 and
#4000 are useful; #0000 and #8000 both overlap firmware jumpblocks or other
system areas. The descriptions below all assume the default screen location at

#C000.

The screen memory map is not simple. Fortunately it is not necessary to understand
it because the Text and Graphics VDUs provide idealised models of the screen.
However, to achieve maximum speed for certain applications (such as animated
games) it may be necessary to access the screen memory directly.

The screen memory is divided into 8 blocks, each 2K bytes long. Block 0 runs from
#0000 to #CTFF, block 1 runs from #CB00 to #CFFF, and so on. Each line of pixels
on the screen uses 80 consecutive bytes from a block. The top line of the screen
comes from block 0, the second line from block 1 and so on until the eighth line
which comes from block 7. The sequence starts with block 0 again on the ninth line
and repeats in this fashion all the way down the screen. The successive lines in a
block are stored consecutively so there are 48 unused bytes at the end of each block.

There is a further complication to this screen map. The description above assumes
that the first byte displayed from the block is the first byte of the block. In practice
the offset in a block of the first byte to be displayed can be set to any even value (see
SCR SET OFFSET). The same offset applies to all eight blocks. A block wraps
aropund from its last byte to its first byte, thus #C7FE, #CTFF and #CO000 are
consecutive bytes in block 0 and could all be on the same line of the screen. Altering
the offset by +|— 80 MOD 2048 (the length of a line) rolls the screen up or down by
one character line (8 pixel lines). This effect is used by the Text VDU when rolling
the entire screen.

The meaning of the bytes accessed as described above varies with the screen mode.
Each byte stores the inks for 2, 4 or 8 pixels. The bits used to encode each pixel are
not arranged in an obvious manner, The following table specifies which bits of
screen memory are used to encode which pixel in the various modes. The bit
numbers given in the table are the bits of the screen byte. They are given in the

AMSTRAD CPC464 FIRMWARE PAGE 6.3

order of bits in the pixel - the first bit given is most significant bit of the pixel and
the last bit is the least significant bit.

Mode 0 Mode 1 Mode 2
Leftmost pixel Bits1,5,3,7 Bits3,7 Bit7
. Bite
Bits 2,6 Bit5
Bit4
Bits 0,4,26 Bits1,5 Bita
. Bit 2
Rightmost pixel Bits 0,4 Bit 1
Bit0

The following diagram illustrates the mapping from pixels on the screen to
addresses in screen memory for the simple case of a base address of #C000 and an

offset of 0.

- 80 BYTES -

200
LINES

: I
...... .I.H.....‘{........,+....".................,....““.........,...”....
I ;
BFTBD AFTBL ..ovvererrmsssenrsrsnssisersassivssss BE 1GH #F TCF
v LY E)) R ——])
#C7D0..#CTFF, #CFDO.. #CFFF, ..., #FFD0.. #FFFF are unused.

PAGE 64

#C000 #O001 ...
HCBOD BCBOLcooiiiinsnnassnssssissanas
YU 101 1) R ————
HDB00 HDBOLocovmrereereeersesrsssesaessens # DB4E #DBAF
FF000 HFO0Loounsnnsesssersrsrenensasssass
3 e e S —
RC050 RCOBLocorrimmvmmmimerbiisasarssiien
#CB:JG #(31.351
[

i '
BCTBO HOTBY ...vviiviiini
#C'Flﬂﬂ #EFEI

v #CO4E H#CO4F

#C84E #CB4F
#D04E #DO4F

... #*F04E FF04F

#FB4E HFB4F
#CO9E #CO9F

.. HCS9E #CRIF

#FFTE #FFTF

sisenne. WCTCE #CTCF
oneees #CFCE #CFCF

1ST
CHAR
ROW

25th
ROW

AMSTRAD CPC464 FIRMWARE

7 The Sound Manager.

The Sound Manager deals with the sound chip. It allows various envelopes and
sounds to be set up and played under the control of the user. Most of the control is
achieved using goftware rather than the sound chip hardware.

7.1 The Sound Chip.

The sound chip used is the General Instruments AY-3-8912. This has three
channels and a pseudo-random noise generator that can be connected to any of the
channels. The chip has a limited number of amplitude envelopes available (see
Appendix IX) but the software enveloping, described below, can achieve all that the
hardware is capable of, and more. Tone enveloping is all done by the software, there
is no hardware support.

The sound generated by the chip uses square waveforms. There is no way to
generate any other waveform.

It is possible to access the sound chip directly should the need arise. However, the
routine MC SOUND REGISTER should be used to write to registers of the sound
chip. This is because the keyboard is attached to the 1/0 port of the sound chip and
the keyboard scanning routine expects to find the sound chip in a standard state
(i.e. not in use). Also, there are timing constraints on accesses to the chip; using MC
SOUND REGISTER will avoid consideration of these details.

The sound chip has three independent sound channels. The outputs from these are
mixed together to form two stereo channels - sound channels A and B are mixed to
form one stereo channel and sound channels B and C are mixed to form the other
stereo channel. The stereo sound is available on the output jack on the back of the
machine. However, there is only a single internal speaker and so the two stereo
channels are mixed together to drive this, The volume of sound from the internal
speaker can be controlled by the volume control knob on the side of the machine
near the on/off switch. This control overrides the other volume control methods
described below.

7.2 Tone Periods and Amplitudes.

The sound chip allows 16 different amplitudes in the range 0..15. Amplitude 0 is no
sound at all, amplitude 15 is maximum volume.

The pitch of a note to be generated is specified by the period of the note rather than
by the frequency. This period is given in 8 microsecond units. Thus, the tone period
specified and the frequency of the tone generated are related by the formula:

AMOTERAT CPO424 FIRPMWARE PAGE 7.1

Tone period = 125 000 / Frequency
See Appendix VIII for a list of the suggested periods for generating musical notes.

7.3 Enveloping.

Real sounds rarely have a constant volume. Enveloping allows an approximation to
the variation in volume of real sounds to be made. The sound is split into a number

of sections each of which can increase the volume, decrease the volume, or keep it
constant. The length of these sections can be varied, as can the rate of increase or
decrease in volume. For example, a note generated by a musical instrument may be
considered to have 3 sections as follows:

Attack: The volume of the note rises rapidly to its peak.
Sustain: The volume of the note remains constant while the note is played.

Decay: The volume falls away slowly to zero as the note finishes.

Attack Sustain Decay

The Sound Manager allows two types of envelopes; amplitude envelopes to control a
sound’s volume and tone envelopes to control its pitch (the pitch is varied in much
the same way as the volume). The user can set up to 15 different envelopes of each
type. The exact formats of the data blocks specifying envelopes are given in SOUND
AMPL ENVELOPE and SOUND TONE ENVELOPE.

a. Amplitude envelopes.

An amplitude envelope is used to control the volume and length of a sound. It
can have up to five sections., Each section can be either a hardware or a

software section. Software sections are either absolute or relative.

PAGE 7.2 AMSTRAD CPC464 FIRMWARE

Hardware sections write values into the sound chip registers 11, 12 and 13 to
set up a hardware envelope. (See Appendix IX for a description of the sound
chip registers). Generally a hardware section will be followed by a software

section that does nothing except wait for a time long enough for the hardware
envelope to operate.

An absolute software section specifies a volume to set and a time to wait before
obeying the next section.

A relative software section specifies an step size, a number of steps and a time

to wait. For each step requested, the current volume 1s changed by the given
step size and then the Sound Manager waits for the given time after each step

before obeying the next step.
Amplitude envelopes are set by calling SOUND AMPL ENVELOFE.

b. Tone envelopes.

A tone envelope controls the pitch of the sound. It can have up to five sections.
Each section can be either an absolute or a relative section. The sections of a
tone envelope are not necessarily related to those of an amplitude envelope.

An absolute section specifies a tone period to set and a time to wait before
obeving the next section.

A relative section specifies an step size, a number of steps and a time to wait.
For each step requested, the current tone period is changed by the given step
size and then the Sound Manager waits for the given time after each step

before obeying the next step.
If the tone envelope is completed before the sound duration expires (see section

7.4f) then the final pitch is held constant. Alternatively, tone envelopes can be
set to repeat themselves automatically. This allows tremulo effects to be

created.
Tone envelopes are set by calling SOUND TONE ENVELOPE.

7.4 Sound Commands.

When a sound is given to the Sound Manager to be played, by calling SOUND
QUEUE, a lot of information needs to be specified. This is described briefly below.
The detailed layout of a sound command data block is described in Appendix X.

a. Initial tone period. :

The sound is issued with an initial tone period. The pitch of the sound can be varied
from this initial value using a tone envelope. If no tone envelope is specified the
pitch remains constant. An initial tone period of zero means no tone is to be
generated, presumably the sound is to be pure noise (see (e) below).

AMOTRAD P44 FIRMWARE PAGE 7.3

b. Initial volume.

The sound is issued with an initial volume. The volume of the sound can be varied
from this initial value using an amplitude envelope. If no amplitude envelope is
specified then the volume remains constant.

c. Tone envelope.

This specifies which tone envelope to use. If no envelope is specified then the pitch of
the sound remains constant.

d. Amplitude envelope.

This specifies which amplitude envelope to use. If no envelope is specified then
default system envelope is used. This keeps the volume of the sound constant and

lasts for 2 seconds.

e. Noise period.

If the noise period is zero then no noise is to be added to the sound. Any other value
sets the period for the pseudo-random noise generator and adds noise to the tone
generated. Note that there is only one noise generator and so if two sounds are to
use it at the same time they will need to agree on the period.

f. Duration.

The length of a sound can be specified in two ways, either as an absolute time
(duration) or as a number of operations of the amplitude envelope. In the latter case
the envelope is run one or more times and the sound finishes when the envelope has
been executed the specified number of times. In the former case, if the duration
finishes before the envelope (if any) then the sound is cut short. If the duration is
longer than the envelope then the final amplitude is held until the duration expires.

g. Channels and Synchronisation Bits.

The sound can be issued to one or more channels. If a sound is issued to more than
one channel then these channels automatically rendezvous with each other.
Rendezvous requirements can be set explicitly as well. Also the sound can be held or
the sound queue can be flushed (see section 7.6).

7.5 Sound Queues.

Each channel has a queue associated with it. Each queue has space to store at least
three sounds, The sound at the head of each queue may be running and making
music on its channel or it may be waiting for various synchronisation requirements
(see 7.6 below). When a sound command is issued the sound is placed into the
queues for the channels specified by the command. When the sound reaches the
head of the queue, and providing its synchronisation requirements are met, it is
executed.

PAGE 7.4 AMSTRAD CPC464 FIRMWARE

If a sound that has the flush bit set is put into a queue then all sounds queued for
that channel are discarded and any executing sound is stopped immediately. Thus a
sound with the flush bit set will move to the head of the queue immediately and
may commence execution.

A routine (SOUND CHECK) is provided to test the status of the sound at the head
of a queue and to determine how much free space is in a queue. It is also possible to
set up a sound event for each queue (by calling SOUND ARM EVENT). This
synchronous event is ‘kicked’ when the queue has a free space in it. The sound event
mechanism allows the generation of sound to be carried on as a background task
whilst some other action is being carried out.

7.6 Synchronisation.

There are two mechanisms to allow sounds on different channels to be
synchronised. These are holding sounds and rendezvous. The purpose of
synchronisation is to ensure that sounds start simultaneously. For example, a
simulation of an instrument might use one channel to generate the fundamental
note and another channel to generate the harmonics of the note. The
synchronisation mechanism, particularly rendezvous, may be used to ensure that
the fundamental and the harmonic sounds start exactly together.

A sound can be specified to be held when it is issued. This means that when it
reaches the head of the sound queue it is not executed immediately. Instead it waits
until it is explicitly released (by ealling SOUND RELEASE) before it starts
execution.

A sound can have rendezvous requirements set on it when it is issued. If a sound is
‘esued to more than one channel then these channels all set rendezvous with each
other automatically. When a sound with a rendezvous set reaches the head of the
sound queue it is not executed immediately. Instead it waits until sounds with
matching rendezvous requirements reach the head of their sound queues. Only
when all rendezvous sounds are found to be present and ready to run do they start.

For instance, a sound on channel A marked to rendezvous with a sound on channel
B will not start until a sound on channel B marked to rendezvous with channel A is
ready to start - and viee versa! If a sound is ready to start on channe] B that is not
marked to rendezvous with channel A then it starts but the sound on channel A
continues to wait for its rendezvous.

7.7 Holding Sounds.

It is possible to stop a sound while it is executing by calling SOUND HOLD. This
will stop a channel making any sound and will save the state of the sound. The
sound can be restarted from where it was held by calling SOUND CONTINUE.
However, if a hardware envelope was running when the sound was held then it is
impossible to predict the effect of restarting the sound. The hardware envelope may
or may not continue from where it was held.

AMSTRAD CPC464 FIRMWARE PAGE 7.5

Calling SOUND HOLD is different from setting the hold bit when 1ssuing a sound
as described in section 7.6 above. SOUND HOLD stops all sounds being generated
at any time whilst the hold bt is a method for synchronising sounds and prevents a
particular sound starting when it reaches the head of the queue.

PAGE 7.6 AMSTRAD CPC464 FIRMWARE

8 The Cassette Manager.

The Cassette Manager deals with reading files from and writing files to tape. These
operations can either be performed on a character by character basis or on a whole
mechanism file at once. The built in cassette mechanism (‘Datacorder’) 1s
completely controlled by software. There is no hardware support for the cassette,
even the timing for reading and writing bits is performed by software.

The format of data on the tape is described in great detail. This will only be of
academic interest to most users, More general information can be found in sections
8.4 onwards.

8.1 File Format.

A file on tape is split into blocks each with a header record and a data record
containing up to 2K (2048) bytes of data. The cassette motor which is under
software control is turned off between each file block to allow time to process the
data read or to generate the data to be written. The motor start-up gap also serves to
separate the blocks from each other.

The general format of a block is as follows:

Motor File header File data
Start-up record record

However, the first and last blocks of a file have an extra pause before and after them
respectively, to separate files on the tape. Their formats are thus:

First block:
Motor Pre-file File header File data
start-up gap record record
Last block:
Motor File header File data Post-file
start-up | record record gap

AMSTRAD CPC464 FIRMWARE PAGE 8.1

There is a strong distinction between the file header record and the file data record.
The header record is written using one synchronisation character (#2C) and the
data record with another (#16). This means that when the Cassette Manager is
searching for a file header it is impossible for it to find a file data record by mistake,
and vice versa. See B.2 below for the use of the synchronisation characters.

8.2 Record Format.

A record can contain any number of data bytes from 1 to 65536. The data is split
into segments each of which is 256 bytes long. The last segment is padded out to 256
bytes with zeros when writing if necessary. When reading a record any extra bytes
are ignored although they are accumulated into the CRC.

The layout of a record is as follows:

Leader Bepmentl |oco00es Segment N Trailer

There are N segments where 256N is the length of data (plus padding) to be written.

A file header record always contains one segment; a file data record contains from
one to eight segments (usually 8 segments).

a. Leader
At the start of all records a leader is written which has the following layout:

Pre-record . Zero Sync
gap 2048 one bits bit byte

The leading gap is there to ensure the failure of any attempt to synchronise on the
end of a preceding record or on data that was on the tape and that has been
over-recorded.

The long sequence of one bits is used to calculate the speed at which the data was
written and hence to caleculate the threshold value used to distinguish one bits from

zero bits.

The single zero bit is used to mark the impending end of the leader and is also used
to determine whether the recording has been inverted (see section 8.3).

The synchronisation byte is there to help prevent spurious synchronisation on
sequences of bits such as might be found in a record. If an incorrect value for the
sync byte is found then an attempt has been made to synchronise on the middle of a

record or on the wrong type of record. This byte is used to distinguish header records
from data records in a file block (header records use #2C while data records use

#16)
PAGE 82 AMSTRAD CPC464 FIRMWARE

b. Segments
Each segment contains 256 data bytes and has the following format:

Byte 1 2 Byte256 | CRC1 | CRC2

‘CRC 1' is the more significant byte and ‘CRC 2’ the less significant byte of the
logical NOT of the CRC caleulated for the 256 bytes in the segment. (The CRC
polynomial used is X" +X" +X' +1' with an initial seed of #FFFF),

¢. Trailer
The trailer is simply an extra 32 one bits written to the end of the record.

8.3 Bit Format.

A bit is written to the tape as a period of low level followed by an equal period of
high level. A one is written to the tape with these periods twice as long as those for a
zero. The length of the period for a zero can be set by the user (see CAS SET
SPEED).

The tape circuitry has a tendency to move the positions of edges (transitions from
high to low or low to high) so as to balance out the difference between ones and zeros
written to tape. Precompensation is used - which adds to the period of a one bit and
subtracts from the period of a zero bit to make the waveform closer to the ideal when
it is read.

When reading, the speed at which the recording was made is determined by timing
the one bits in the record leader. As this is a long sequence of the same bit the
edges are not shifted and no precompensation is applied. Since the speed is
established independently for each record this automatically takes into account
most tape speed variations.

Data is written low-high but may be inverted when read (i.e. high-low). It is
important for the firmware to determine whether the waveform being read is
inverted or not. If this is not achieved then the bits will not be read properly as the

following example shows:

Inversiondetected: ¢ 0 10 1 : 1

The zero bit in the record leader is used to determine whether the recording has
been inverted.

Bytes written to the tape are written with the most significant bit first and the least
significant bit last.

Inversion not detected: . y ? i 1

AMSTRAD CPC464 FIRMWARE PAGE 8.3

8.4 The Header Record.

The header record in a file block contains information about the file and about the
data in the following data record. Some of the entries in the header are used by the
system for various purposes. The remaining entries are available for the user to set
when writing a file, and to read when reading a file. These entries are the file type
(byte 18) and all the user fields (bytes 24..63) including the logical length (bytes
94..25) and the entry address (bytes 26..27). The user fields will all be set to zero if

they are not used.

The header is laid out as follows:

System fields

Bytes0.15 Filename Padded to 16 bytes with nulls.

Byte 16 Block number The first block is normally block 1 and block
numbers increase by 1 on successive blocks.

Byte 17 Last block A non-zero value means that this is the last
block of a file.

Byte 18 File type A value recording the type of the file (see

Bytes 19.20 Data length
Bytes21.22 Data location
Byte 23 First block

User fields

below].
The number of data bytes in the data record.
Where the data was written from originally.

A non-zero value means that this is the first
block of a file.

Bytes 24..25 Logical length This is the total length of the file in bytes.

Bytes 26..27 Entry address

Bytes 28..63 Unallocated

The execution address for machine code
programs.

These are unallocated and may be used as
required.

The file type (byte 18) is split into a number of fields:

Bit0 Protection
Bits1..3 File contents
Bits 4..7 Version

PAGE 8.4

If this bit is set the file is protected in some
way.

0 = Internal BASIC.

1 = Binary.

2 = Screen image.

3 = ASCIL

4..7 are unallocated.

ASCII files should be version 1, all other
files should be version 0.

AMSTRAD CPC464 FIRMWARE

8.5 Read and Write Speeds.

The Cassette Manager is capable of reading and writing data at speeds ranging
from 700 baud to 2500 baud. There are two speeds commonly used in this range,
1000 baud (the default speed selected at EMS) and 2000 baud. The default speed is
chosen to be near the slowest speed to give maximum reliability. The reliability at
2000 baud is still good, however, particularly when playing back on the same
machine that was used to record a tape.

Bits are written to the tape as a single cycle of a tone. The tone for a one always has
half the frequency of the tone for a zero. Thus ones are twice as long as zeros on the
tape. This means that the baud rates given above are only averages and vary
according to the actual data written.

Even with the built in cassette mechanism the Cassette Manager has to precompen-
sate the waveform written to the tape to achieve the speeds quoted. This means that

the lengths of bits written are altered (ones lengthened, zeros shortened) to try to
make the waveform read closer to the ideal after the edges of the waveform have

been shifted by the cassette circuitry.

It is only necessary to set the Cassette Manager’s write speed. When reading a rec-
ord from tape the record leader is used to calculate the speed at which it was writ-
ten. This also allows for tape speed variations between different machines.

8.6 Cataloguing.

To generate a catalogue from the tape the Cassette Manager reads a sequence of file
blocks and prints information from them. The file blocks may come from any file, in
any order. Cataloguing continues until the user hits the escape key.

The information is reported as follows:
FILENAME block N L 0k

FILENAME is either the name of the file or ‘Unnamed file' if the filename starts
with a null.

The block number, N, indicates which block of the file it is. Normally block 1 is the
first block of a file.

L is a character representing the file type and protection status of the file. It is
formed by adding #24 (character ‘$") to the file type from the header masked with
#0F. This gives the following characters:

$ an unprotected BASIC program.
% a protected BASIC program.

& a binary file.

: a protected binary file

L an ASCII file.

AMSTRAD CPC464 FIRMWARE PAGE 8.5

Other characters are possible but the above are the standard file types that are
written by the on-board ROM.

The above information is printed when the header record is read correctly.
Ok is printed after the data record has been read correctly.

8.7 Reading Files.

Before a file can be read from it must be opened (by calling CAS IN OPEN). This
sets up the filename (see 8.10 below) and reads the first block of the file so that the

header can be inspected.

The file may either be opened for character input or for direct input, but not both.
The mode of input is set by the first access to the file and not when it is opened. As
soon as one mode is selected it becomes impossible to use the other mode to access

the file.

Character input (calling CAS IN CHAR) allows the user to read the file
sequentially one character at a time. Blocks of the file are read from tape into the
buffer as needed. This is intended for reading text files and similar applications.

Direct input (calling CAS IN DIRECT) reads the whole of the file into memory in
one go. This is intended for loading machine code programs or screen dumps and
similar applications.

Interrupts are disabled whilst reading from tape because this has serious timing
constraints. Disabling interrupts will prevent the various timer interrupts (as
deseribed in section 10.1) from occuring, In particular this might leave the sound
chip making a noise for a long period of time and so the Sound Manager is shut
down (see SOUND RESET).

8.8 Writing Files.

Before a file can be written to it must be opened (by calling CAS OUT OPEN). This
sets up the filename (see 8.10 below) and the rest of the header that will be written
in each file block.

The file may either be opened for character output or for direct output, but not both.
The mode of output is set by the first write to the file and not when it is opened. As
soon as one mode is selected it becomes impossible to use the other mode to write to

the file.

Character output (calling CAS OUT CHAR) allows the user to write to the file one
character at a time. The characters are buffered until a complete block (2048
characters) is ready to be written whereupon a file block is written to the tape.

Direct output (calling CAS OUT DIRECT) writes the whole of the file from memory
in one go. The data written is still packaged into 2048 byte blocks.

Whichever output mode is used, it is important to close the output file properly
(using CAS OUT CLOSE) otherwise the last block of the file will not be written.

PAGE 8.6 AMSTRAD CPC464 FIRMWARE

Interrupts are disabled whilst writing to tape because this has serious timing
constraints. Disabling interrupts will prevent the various timer interrupts (as
described in section 10.1) from occuring. In particular this might leave the sound
chip making a noise for a long period of time and so the Sound Manager is shut
down (see SOUND RESET). -

8.9 Reading and Writing Simultaneously.

The Cassette Manager allows two files to be open simultaneously. One must be open
for reading and the other for writing. Thus it is possible to read from one file and

write to another file at the same time.

When the Cassette Manager is about to read a block it asks the user to press PLAY
and this implies that the tape with the file for reading should be loaded. Similarly,
when it is about to write a block it asks the user to press REC and PLAY and this
implies that the tape to which the file is to be written should be loaded. The
Cassette Manager assumes that the tape is not changed and that the appropriate
cassette controls remain pressed as requested until a prompt is issued. It also
assumes that pressing a key means that the prompt has been obeyed.

It is unwise to attempt to read and write simultaneously with the Cassette Manager
messages turned off. The only notification given of which tape ghould be loaded is in

the prompt messages.

8.10 Filenames.

When the user opens a file for reading or writing the name of the file to be read or
written is specified. The filename is a string of any 16 characters (#00..#FF). If the
file name specified is longer than 16 characters then it is truncated and if it is
shorter than 16 characters it is padded to 16 characters with nulls (character #00).

When opening a file for reading a zero length filename or one that starts with a null
has a special meaning - read the next file on the tape. The Cassette Manager
searches the tape until it finds the first block of a file and it reads this file. Once the -
first block of a file has been found the Cassette Manager will only read from that file

and no other. -

BASIC uses a slightly extended form of the filename. If the first character of a
BASIC filename is an exclamation mark (character #21) the BASIC turns the
prompt messages off (see 8.11 below) and removes the exclamation mark from the
name, This facility is not provided at the Cassette Manager level. :

8.11 Cassette Manager Messages.

The Cassette Manager issues a number of messages to prum]it and inform the user
and to warn when errors have occurred. The messages that prompt or inform the
user may be turned on or off as desired (see CAS NOISY). Messages that inform the

user of errors cannot be turned off by this mechanism.

AMSTRAD CPC464 FIRMWARE PAGE 8.7

a. Prompt messages.
Press PLAY then any key:

This message is issued when the Cassette Manager is about to read the first
block of a file from tape or when it is about to read a block after having written
to tape (see section 8.9). It indicates that the tape containing the file to be read
should be loaded and that the PLAY button on the recorder should be pressed.
The Cassette Manager does not issue this message at other times since it
assumes that the correct tape is still loaded and that the PLAY button is still

pressed.
Press REC and PLAY then any key:

This message is issued when the Cassette Manager is about to write the first
block of a file to tape or when it is about to write a block after having read from
tape. It indicates that the tape on which the file is to be written should be
loaded and that the REC and PLAY buttons on the recorder should be pressed.
The Cassette Manager does not issue this message at other times since it
assumes that the correct tape is still loaded and that the REC and PLAY

buttons are still pressed.
b. Information messages.
Found FILENAME block N

This message is printed when reading from the tape if a header record is found
that for any reason does not match the record that was expected. This may
indicate that the tape is positioned incorrectly (too early or too late) or that the

wrong tape is being played.

Loading FILENAME block N

A block of the file has been found and is being read from tape.
Saving FILENAME block N

A block of the file is being written to tape.

FILENAME in the above messages is the name of the file or ‘Unnamed file’ if the
filename starts with a null.

The block number, N, indicates which block of the file is being read or written. The
first block of a file is normally block 1, the second block 2 ete.

c. Error messages.
Rewind tape

While searching for a block of the file being read, a higher numbered block than
that required has been found. The required block has been missed. This message is
often produced after a read error in the required block when the next block is found.

PAGE 8.8 AMSTRAD CPC464 FIRMWARE

Read error. X’

An-error of some kind occurred whilst reading from the tape. The tape should
be rewound and the block played again. The X is a single letter indicating
what kind of read error occurred:

@’ Bittoolong An impossibly long one or zero has been
measured. This often indicates reading past the
end of the record.

B CRC error Data was read from tape incorrectly.

'd’ Block toolong The data record contains more than the expected
2048 bytes of data.

Write error a

An error occurred whilst writing to the tape. There is only one possible write
error. This indicates that the Cassette Manager was unable to write a bit as
fast as was requested. This error will never occur unless the user has set the

write speed beyond the maximum possible,

8.12 Escape Key.

The escape key on the keyboard may be used to abandon cassette operations at
certain times.

When the Cassette Manager issues one of the prompt messages it calls KM READ
CHAR repeatedly to empty the key buffer out. Then it calls KM WAIT KEY to wait
until the user presses a key to acknowledge the prompt. If the value generated from
the key the user presses is #FC, which is the value normally generated by the
escape key, then the Cassette Manager will abandon the read or write and will
return an error condition to the caller.

When reading from or writing to the cassette interrupts are disabled and the
normal key scanning mechanism is not active. While reading or writing the record
leader the Cassette Manager itself scans the keyboard to test whether key 66, the
escape key, is pressed. If this key is found to be pressed then the Cassette Manager
abandons the read or write and returns to the caller (with an appropriate error
condition). While reading or writing the data in the record there is no way to
interrupt the Cassette Manager, thus pressing ESC may not be detected for several
seconds.

AMSTRAD CPC464 FIRMWARE PAGE 8.9

8.13 Low Level Cassette Driving.

To allow the user to produce a new filing system the record read and write routines,
CAS READ and CAS WRITE, are in the firmware jumpblock. There is a third
routine at this level, CAS CHECK, whose facilities are not used by the higher
levels of the Casssette Manager. It allows the data that has been written to tape to
be compared with the data in store. This could be used to perform a read after write
check if so desired.

Also available in the firmware jumpblock are routines to turn the cassette motor on
and off (CAS START MOTOR and CAS STOP MOTOR). It is not necessary to turn
the motor on and off around a call of CAS READ, CAS WRITE or CAS CHECK as
these routines automatically turn the motor on and off.

PAGE B.10 AMSTRAD CPC464 FIRMWARE

10 Interrupts.

There is only one source of interrupts in an unexpanded machine, namely a regular
time interrupt. Expansion boards may generate interrupts, but suitable software

must be provided to deal with the extra interrupts.

The system runs with interrupts enabled most of the time. It is inadvisable to
disable interrupts for a prolonged period if this is avoidable because the time
interrupts will be missed.

A number of firmware routines enable interrupts and this is remarked upon in their
descriptions. In particular the Kernel routines dealing with ROMs and the restart
instructions (e.g. LOW JUMPF) enable interrupts.

10.1 The Time Interrupt.

The time interrupt occurs roughly once every 1/300th of a second. On machines with
PAL monitors (as in the UK) or SECAM monitors (as in France) the timer is

synchronised with frame flyback every sixth tick. On machines using NSTC
monitors (as in the US) the timer is synchronised with frame flyback every fifth

tick. The time interrupt is processed by the Kernel and presented to the rest of the
system in a number of ways:

a. Fast Ticker Interrupts. Period = 1/300th of a second.
For high resolution or very short period timing (not intended for general use).

b. Sound Generation Interrupt. Period = 1/100th of a second.

This interrupt drives the sound generation firmware, but is otherwise not
visible to the system.

¢. Frame Flyback Interrupt. Period = 1/50th or 1/60th of a second.

For actions which must take place during frame flyback. Ink flashing is
performed during a frame flyback interrupt, for example.

d. Ticker Interrupt. Period = 1/50th of a second.
This is the general purpose ticker interrupt. The keyboard is scanned at the
start of each ticker interrupt.

AMSTRAD CPC464 FIRMWARE PAGE 10.1

e. System Clock.

There is a timer that counts fast ticks i.e. 1/300ths of a second. This can be
used to measure elapsed time without setting up a relatively expensive fast
tick event (see section 10.5). The timer is read by calling KL TIME PLEASE
and may be set by calling KL TIME SET.

10.2 External Interrupts.

The Z80 is run in interrupt mode 1. Which is to say that all interrupts cause an RST
7 to be executed by the processor. The interrupt handling code in the Kernel can
distinguish between the time interrupt and an external interrupt. It does this by
re-enabling interrupts inside the interrupt routine. If the interrupt repeats then it
is assumed to be an external interrupt, otherwise it is taken to be a time interrupt.
Note that this requires that the source of external interrupts should not clear the
interrupt condition until the software resets it.

Before an external interrupt is enabled its interrupt handler must be ‘installed’.
This is done by copying the 5 bytes at address #003B to a new location and
replacing them by suitable code (probably including a jump). When the Kernel
detects an external interrupt it calls address #003B in RAM to process the

interrupt:

Entry:

No conditions.

Exat:
AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:
Interrupts are disabled and must remain disabled.
The lower ROM is disabled.
The upper ROM select and state are indeterminate.
The alternate register set must not be touched.

The interrupt routine must establish whether it can deal with the interrupt, and if
so it must at least clear it. If the interrupt is not the responsibility of the routine
then it should jump to the copy of the bytes taken from location #003B which may
be competent to deal with the interrupt. This requires the code patched at location
#003B to be position independent in case a second external interrupt handler is ins-
talled. The code put at #003B at EMS is position independent - it merely returns.

Note that interrupt handling code must be in RAM somewhere between #0040 and

#BFFF. Interrupt handlers should be as short as possible. If an interrupt requires a
lot of processing beyond that required to clear it, then the interrupt should kick an
avent to do the work outside the interrupt path.

PAGE 10.2 .- AMSTRAD CPC464 FIRMWARE

10.3 Nonmaskable Interrupts.

There is no provision for handling a nonmaskable interrupt (NMI) in the firmware
(despite the fact that NMI is available on the external bus connector). Various
firmware routines (notably those connected with driving the Centronies port, the
PPI to access the sound chip and keyboard, and the cassette) will have timing
constraints violated if NMIs occur whilst they are active. It is recommended that
NMI should not be used.

10.4 Interrupts and Events.

As a general rule hardware interrupts should be transformed into their software
equivalents, ‘events', as soon as possible. The handling of events is more flexible
than the handling of hardware interrupts - for example there are no restrictions on
where event routines may reside, or on interrupt enabling.

Events are described by an event block. This block contains the event class, the
event count and an event routine address. When an event occurs the event block 1s
‘kicked’ and the Kernel arranges for the event routine to be called once for each kick
(the number of kicks outstanding is kept in the event block). The event routine is
not necessarily called immediately. When the event routine is actually run depends

on the event class as follows:

a. Express Asynchronous Events.

This is an unusual class of event. The event routine is called immediately
during interrupt processing. The routine must be accessible by the interrupt
code, it may not enable interrupts, corrupt the IX or IY registers or use the
alternate register set. The routine should be as short as possible.

b. Normal Asynchronous Events.

This is the most flexible sort of event. When the event is kicked the event
routine is not called, but the event block is placed on the interrupt event

pending queue.

Once the current interrupt has been processed, just before the Kernel returns
from the interrupt path, any events on the interrupt event pending queue are
processed. While the events are being processed the system is running with
interrupts enabled and may be regarded as no longer being in the interrupt
path. It is using its own stack rather than the main system stack. This private
stack is 128 bytes long.

The asynchronous event routine is, therefore, called shortly after the event 1s
kicked and is not restricted in what it may do or where it may be located. The
event routine may take as long to run as is needed. Any further kicks received
during the time that the event routine is running will be added to the event
count and will be processed before returning to the interrupted program.

AMSTRAD CPC464 FIRMWARE PAGE 10.3

¢. Synchronous Events.

Synchronous events are queued on the synchronous event pending queue.
They are not processed until the foreground program allows the queue to be
processed. This can be used to control interactions between different parts of

Programs.

10.5 Interrupt Queues.

The various time interrupts provide three sources of ‘kicks' for events. The events to
be kicked when each of the interrupts occur are stored on queues, one queue for each
souree of kicks. The user provides an area of store for the Kernel's use. The size of
the area depends on which queue it is for. The last 7 bytes of the area are always an
event block which the user should initialise appropriately.

a. Fast Ticker Events.

Events on the fast ticker queue are ‘kicked’ on each fast ticker interrupt, i.e.
every 1/300th of a second. A fast ticker block is 9 bytes long.

b. Ticker Events.

Each event on the ticker queue is associated with a timer. The timer may be a
‘one shot’, which goes off once, or a repeater, which goes off periodically. The
timer counts ticker interrupts, i.e. 1/50ths of a second, and when sufficient
have occurred it goes off. Each time the timer associated with an event goes off
the event is kicked. A ticker block is 13 bytes loag.

¢. Frame Flyback Events.

Events on the frame flyback queue are kicked on each frame flyback interrupt,
i.e. every 1/50th of a second on PAL or SECAM machines and every 1/60th of a

second on NSTC machines. A frame flyback block is 9 bytes long.

PAGE 104 .- “AMSTRAD CPC464 FIRMWARE

11 Events.

The event mechanism is primarily provided by the Kernel to support the handling
of interrupts and other external events. However, the mechanism may also be used
to handle internal events in complicated programs (such as a simulation, for
example). An event is characterised by the following:

a. Event Class (see section 11.1)
Events may be synchronous or asynchronous, express or normal.

b. Event Priority (see section 11.1)
Synchronous events have an associated priority.

¢. Event Count (see section 11.2)

Each time an event occurs the count is incremented.
Fach time an event is processed the count is decremented.
The event may be disarmed by setting the count negative.

d. Event Routine (see section 11.3)
The address of the routine which is called to process the event.

An event appears to the Kernel as a data block containing the above values (see
Appendix X for the exact layout of an event block). The block must be in the central
32K bytes of memory, so that the Kernel can access it without worrying about the
ROM enable state.

When an event occurs the associated event block is kicked by calling KL EVENT. If
the event count is negative, the ‘kick’ is ignored, otherwise the event count is
incremented (up to a maximum of 127) and the event routine will be called at some
time in the future - depending on the event class. When the event routine returns
the event count is decremented, unless it has been set to zero or negative in the
meantime.

11.1 Event Class.

Events are either synchronous or asynchronous. Asynchronous events are intended
for the processing of external events which require almost immediate service. The
processing of asynchronous events pre-empts the main program. The processing of
synchronous events is under the complete control of the main program, which will,
in general, deal with them when it is convenient to do so.

AMSTRAD CPC464 FIRMWARE PAGE 11.1

a. Asynchronous Events.

An asynchronous event is processed immediately the event is kicked - or almost
immediately if the kick occurs in the interrupt path - see section 10 on interrupts.
The Kernel does not provide any interlocks between asynchronous events and the
main program or other events, so care must be exercised to avoid interactions. It is
most unwize to call routines that are not re-entrant - for example, the firmware
screen driving routines.

If the event count is still greater than zero when the event routine returns, it is
decremented. If the count remains greater than zero then the process is repeated
(the event routine is called again and the event count is decremented) until the
count becomes zero or is set negative (see 11.2 below).

b. Synchronous Events.

Synchronous events are not processed when the event is kicked, but are placed on
the synchronous event queue, waiting to be processed. Events are queued in
descending order of priority - equal priority events after those already on the queue.

The foreground program should poll the synchronous event queue regularly, to see
if there are any events outstanding. If there are then it should then process them.
The difference between synchronous and asynchronous events is, therefore, that the
foreground program decides when synchronous events should be processed, but the
event ‘kicker’ decides when asynchronous events are to be processed. Provided that
the foreground program takes suitable care, there should be no difficulty in
handling the interactions and resource sharing between synchronous events and
the foreground program.

When the foreground program finds the synchronous event queue is not empty it
should (but is not constrained to) instruct the Kernel to process the first event on
the queue. When a synchronous event routine is run the Kernel remembers the
priority of the event. In the event routine the synchronous event queue may be
polled, but the Kernel hides any events whose priority is less than or equal to that of
the event currently being processed. When the event routine returns the previous
event priority is restored - so the processing of events may be nested.

The synchronous event priorities are split into two ranges, express and normal. All
express events have higher priorities than all normal events. The Kernel provides a
mechanism to disable the processing of normal events, without affecting express
events. This may be used to implement ‘critical regions’ through which normal
events may interact. The synchronous event kicked’ by the Key Manager break
handling mechanism is an example of an express synchronous event.

11.2 Event Count.

The main purpose of the event count is to keep track of the difference between the
number of times the event has been kicked, and the number of times the event has
been processed. This ensures that a kick is not missed if it occurs before the previous
kick has been processed. The event count is normally incremented when the event
is kicked and decremented when the event routine returns. However the exact
action depends on the event count as follows:

PAGE 112 AMSTRAD CPC464 FIRMWARE

Increment.

-128..—-2: The count is not changed - the event is ignored.

o £ This value is illegal.

0: The count is incremented and event processing is initiated
as required by the event class.

1..126: The count is incremented but no further action is taken. The
event is waiting for a previous kick to be processed or for
processing to complete.

127: The count is not changed - the kick is ignored.

Decrement.

-128: This value is illegal.

-127..0: The count is not changed - the event has been disarmed.

1 The count is decremented and event processing is
terminated.

2.127: The count is decremented and event processing continues.

Note that the event routine may disarm itself by setting the count negative (by
convention to —64) and can discard unwanted kicks by setting its count to one.

11.3 Event Routine.

In general the address of the event routine is given as a 3 byte ‘far address’ (see
section 2 on the memory layout). This allows the routine to be located in any ROM

or anywhere in RAM.

A special form of the event class may specify the routine as at a ‘near address’. This
does not change the ROM state and so the routine must be located either in the
lower ROM or in the central 32K of RAM. The ROM select byte of the far address’ is
ignored and the other two bytes taken as the address of the routine. Calling a ‘near
address’ event routine requires a little less work than calling a full ‘far address', and

is used by the firmware itself.

11.4 Disarming and Reinitialising Events.

Before an event block may be reimitialised the évent must be digarmed. This
ensures that the event is removed from the various event pending queues and
prevents the event queues being corrupted when the event block is initialised. An
asynchronous event must not be reinitialised from inside its asynchronous event
routine (because in this case disarming the event does not remove the event from

the interrupt event pending queue).
AMSTRAD CPC464 FIRMWARE PAGE 11.3

Synchronous and asynchronous events are disarmed in different manners.

a. Asynchronous Events.

An asynchronous event should be disarmed by calling KL DISARM EVENT.
This sets the event count to a negative value (-#4) and thus prevents kicks
having any effect. If the event is on the interrupt event pending queue then it
will be discarded only when an attempt is made to process the event and not
immediately that the event is disarmed.

b. Synchronous Events.

A synchronous event should be disarmed by calling KL DEL
SYNCHRONOUS, This sets the event count to a negative value (-64) and
removes the event block from the synchronous event pending queue (if it is on
the queue).

The above procedures prevent the event being successfully kicked, they do not
prevent attempts being made to kick the event. A fast ticker, frame flyback or
ticker event (see section 4.5) will still be on its appropriate queue and will still be
receiving regular attempts to kick it. To prevent time being wasted (and the system
from being slowed down because of it) the event should be removed from the
interrupt queue by calling KL DEL FAST TICKER, KL DEL FRAME FLY or KL
DEL TICKER.

PAGE 114 AMSTRAD CPC464 FIRMWARE

12 The Machine Pack.

The Machine Pack deals with the low level driving of the hardware. It also talks to
the Centronics port (and hence the printer) and is in charge of running ‘load and go’

programs.

12.1 Hardware Interfaces.

The routines provided for driving the hardware are only to be used by those who
understand the hardware and how the firmware drives the hardware. The user
should not access the hardware directly when a Machine Pack routine is provided

for this purpose.

Often there are higher level routines that accomplish the same effects but that also
keep the firmware informed of the current settings. Where possible these higher
level routines should be used and the Machine Pack routines avoided. Using the
Machine Pack routines may cause the firmware to make erroneous assumptions
about the current settings and may cause it to go wrong.

The Machine Pack makes certain assumptions about the state of the hardware
when it accesses it. In particular, PPI port A is assumed to be in output mode and
the sound chip, ULA, CRTC and Centronics port are assumed to be inactive; that is,
not half way through setting a value into a chip register. It is usnally essential that
interrupts be disabled when accessing the hardware directly.

There are four main areas of the hardware that the Machine Pack deals with:

a. The screen.

There are three aspects of the screen display that can be set using Machine
Pack routines. These are the screen mode (set by calling MC SET MODE) and
the screen base and offset (set by calling MC SET OFFSET).

The screen mode sets how many pixels are displayed on the screen and how
many inks may be used as follows:

Mode Resolution Inks

0 160 x 200 16
1 320 x 200 4
2 640 x 200 2

The screen base sets which 16K block of memory is used for the screen
memary. Theoretically, any of #0000, #4000, #8000 or #C000 could be used
but, in practice, other considerations mean that only #4000 and #C000 are
useful.

AMSTRAD CPC464 FIRMWARE PAGE 12.1

The screen offset sets which byte in the screen memory is to be displayed first.
Changing the offset will move the contents of the screen in one go. This is used

for rolling the screen.

A fuller description of the screen layout and its relationship to these aspects
can be found in section 7 on the Screen Pack.

If addresses are to be read back from the CRT controller chip, when using a
light pen for instance, then careful inspection of the way the screen memory is
addressed will be needed to translate the screen address read from the chip to
the actual position on the screen.

The Machine Pack also provides a routine (MC WAIT FLYBACK) to wait
until frame flyback occurs (the start of the vertical retrace period). This may
be used to ensure that operations on the screen are performed with as little
disruption as is possible to the picture on the monitor since no picture is
generated during this period. As an alternative to waiting for frame flyback
explicitly the user should consider setting up a frame flyback event as

described in section 10.5.

The vertical retrace period is not very long, Furthermore, approximately 100
microseconds from its start, a time interrupt occurs that will cause the frame
flyback events to be processed (see section 10). These may take a significant
length of time out of the retrace period.

b. The inks.

The Machine Pack deals with setting the colours of inks. There is a fuller
explanation of the relationship between inks and colours in section 6.2.
Briefly, the colour for each ink and the border can be specified independently
and changed at will. Note, however, that the Machine Pack deals with the
hardware representations of colours and not the grey scale colours that the
Screen Pack uses and also that an ink may only be set to one colour, the
flashing inks are made by the Screen Pack setting two colours alternately.

Two routines are provided for setting the colours of inks. MC SET INKS allows
the colours of all 16 inks and the border to be set (although not all of the inks
may be visible on the screen in the current mode). MC CLEAR INKS sets the
colour of the border ink and sets all 16 inks to the same colour. The latter is
used when clearing the screen to make the operation appear instantaneous.

¢. The sound chip.
A routine, MC SOUND REGISTER, is provided to write to a register of the
sound chip. This is used by the Sound Manager for hardware access.

d. The Centronics port.

Two routines are provided to access the Centronics port. MC BUSY PRINTER
tests if it is busy. MC SEND PRINTER strobes data out of it. Data should not

be sent while the port is busy.

The Centronics port is used by the printer routines provided in the Machine
Pack and described below.

PAGE 12.2 AMSTRAD CPC464 FIRMWARE

12.2 The Printer.

There is a routine, MC PRINT CHAR, which calls an indirection, MC WAIT
PRINTER, for sending characters to the printer, or rather, to the Centronics port.

MC WAIT PRINTER waits until the Centronics port is not busy and then sends the
given character to it. If the port remains busy for a long time then the routine times
out and returns indicating that it has failed to send the character. This time out can
be used to prevent programs ‘hanging’ because they are waiting for a (possibly
non-existent) printer to become ready.

MC WAIT PRINTER allows the user to intercept characters to be sent to the
printer. This could allow special escape sequences to be inserted if needed, or it
could allow the printer to be disabled or the length of the time out to be changed.

12.3 Loading and Running Programs.

The Machine Pack provides two routines for running programs, MC START
PROGRAM and MC BOOT PROGRAM.

MC START PROGRAM is the simpler of the two routines. It completely
re-initialises all the firmware and then enters the given program.

MC BOOT PROGRAM is more complex. It is for loading a program into RAM and
running it. The user supplies a routine to MC BOOT PROGRAM that will load the
program and return its entry point. Before this load routine is called as much of the
firmware as is possible is reset so that the area of memory between #0040 and the
base of the firmware RAM at #B100 is available for use. If the system were not
reset then an active indirection, event or interrupt routine might be overwritten
with disastrous consequences.

If the program is loaded successfully by MC BOOT PROGRAM then the firmware is
completely initialised and the program is entered. However, if the loading fails then
an appropriate message is printed and the previous foreground program is
restarted. If the previous program was itself a RAM program then the default ROM
is entered instead because it is likely that the previous program was corrupted
when the attempt to load the new one was made.

AMSTRAD CPC464 FIRMWARE PAGE 123

13 Firmware Jumpblocks.

There are a number of jumpblocks provided by the firmware. The largest of these is
the main firmware jumpblock. This is intended to be used by programs to access the
firmware routines in the lower ROM. BASIC, for instance, uses these jumps. Note,
however that the firmware does not use this jumpblock for internal communication
with itself This means that altering the jumpblock will cause BASIC to behave
differently but will not cause the firmware to behave differently.

The next most important jumpblock is the indirections jumpblock. The indirections
are jumps that are used by the firmware at key points. This allows the user to alter
the action of firmware routines, The entries in this jumpblock are not intended for
the user to call, only for the firmware to call, Altering an indirection is the method

to make the firmware behave differently.

The remaining two jumpblocks are associated with the Kernel. One is a jumpblock
to allow the user to call various useful Kernel routines to do with changing ROM
states and the like. The other is not a jumpblock as such, just an area where the
routines are at published addresses. These are general utility routines and restarts.
In general neither of these areas should be altered by the user.

The routines in these jumpblocks are briefly listed below. More complete
descriptions of the routines can be found in sections 14, 15 and 16.

13.1 The Main Jumpblock.

The main firmware jumpblock lies in RAM between addresses #BBO0 and #BD39.
Each entry in the jumpblock occupies three bytes and is initialised to use LOW
JUMP restarts (RST1) that cause the lower ROM to be enabled, so that the
firmware routines can be run, and the upper ROM to be disabled, so that the screen
memory is accessible while the firmware is running.

After the jumpblock has been set up at EMS it is not altered by the firmware until
the system is reinitialised. If any entries are changed then it is the user's
responsibility to undo the alterations. This can be achieved by calling JUMP

RESTORE which completely initialises the jumpblock.
13.1.1 Entries to the Key Manager
The Key Manager deals with the keyboard and the joysticks.

INITIALISATION
0 #BB0OO KM INITIALISE Initialise the Key Manager.

AMSTRAD CPC464 FIRMWARE PAGE 13.1

1 #BBO3 KM RESET

CHARACTERS

2 #BBO06 KM WAIT CHAR

3 #BBO09 KM READ CHAR

4 H#BBOC KM CHAR RETURN
#BBOF EM SET EXPAND
#BB12 KM GET EXPAND

7 #BBI15 KM EXP BUFFER

KEYS

8 HBBI1B KM WAIT KEY

9 HBEIB KM READ KEY

10 #BBIE KM TEST KEY

11 #BBZl1 KM GET STATE

12 #BB24 KM GET JOYSTICK

TRANSLATION TABLES

13 #BB27 KM SET TRANSLATE

14 #BB2A KM GET TRANSLATE

15 H#BEZD KM SET SHIFT

16 FBB30 KM GET SHIFT

17 H#BB33 KM SET CONTROL

PAGE 13.2

Reset the Key Manager - clear
all buffers, restore standard

key expansions and
indirections.

Wait for next character from
the keyboard.

Test if a character is available
from the keyboard.

Return a single character to
the keyboard for next time.

Set an expansion string.
Get a character from an
expansion string.

Allocate a buffer for expansion
strings.

Wait for next key from the
keyboard.

Test if a key is available from
the keyboard.

Test if a key is pressed.

Fetch Caps Lock and Shift
Lock states.

Fetch current state of the
joystick(s).

Set entry in key translation
table without shift or control.

Get entry from key translation
table without shift or control.

Set entry in key translation
table when shift key is pressed.

Get entry from key translation
table when shift key is pre.sed.

Set entry in key translation
tab'e when control key is
pressed.

AMSTRAD CPC464 FIRMWARE

18 #BB36

REPEATING

19 #BB39
20 #BB3C

21 #BB3F

22 #BB42

BREAKS
23 HBB45

24 HBB48

25 +#BB4B

KM GET CONTROL

KM SET REPEAT
EM GET REPEAT

KM SET DELAY

KM GET DELAY

KM ARM BREAK

KM DISARM BREAK

KM BREAK EVENT

13.1.2 Entries to the Text VDU

The Text VDU is a character based sereen driver.

INITIALISATION

26 H#BB4E TXT INITIALISE

27 #BB51 TXT RESET

28 #BB54 TXT VDU ENABLE
29 #BB57 TXT VDU DISABLE
CHARACTERS

30 #BB5A TXT OUTPUT

31 #BB5D TXT WR CHAR

32 #BB60 TXT RD CHAR

AMSTRAD CPC464 FIRMWARE

Get entry from key translation
table when control key 1s
pressed.

Set whether a key may repeat.
Ask if a key is allowed to
repeat.

Set start up delay and repeat
speed.

Get start up delay and repeat
speed.

Allow break events to be
generated.

Prevent break events from
being generated.

Generate a break event (if
armed).

Initialise the Text VDU.

Reset the Text VDU - restore
default indirections and
control code functions.

Allow characters to be placed
on the screen.

Prevent characters from being
placed on the screen.

Output a character or control
code to the Text VDU.

Write a character onto the
SCreen.

Read a character from the
SCTEen.

PAGE 13.3

33

#BB63

WINDOWS

34

35

36

#BB66

#BB69

#BB6C

CURSOR

37
38
39
40
41

42
43
44

#BBEF
#BBT2
#BBT5
#BBT8
#BETH
#BBTE
#BEB1
#BB&4

#BBET

#BBEA
#BBED

INES

48
49
a0

a1

52

#BB90
#BB93
#BB96

#BB99

#BB9C

#BBOF

PAGE 134

TXT SET GRAFPHIC

TXT WIN ENABLE

TXT GET WINDOW

TXT CLEAR WINDOW

TXT SET COLUMN
TXT SET ROW
TXT SET CURSOR
TXT GET CURSOR
TXT CURENABLE
TXT CUR DISABLE
TXT CURON

TXT CUR OFF

TXT VALIDATE

TXT PLACE CURSOR
TXT REMOVE CURSOR

TXT SET PEN
TXT GET PEN
TXT SET PAPER

TXT GET PAPER

TXT INVERSE

TXT SET BACK

Turn on or off the Graphics
VDU character writing option.

Set the size of the current text
window.

Get the size of the current text
window.

Clear current window.

Set cursor horizontal position.
Set cursor vertical position.
Set cursor position.

Ask current cursor position.
Allow cursor display - user.
Disallow cursor display - user.
Allow cursor display - system.
display

Disallow CUrsor

-system.
Check if a cursor position is

within the window.
Put a cursor blob on the screen.

Take a cursor blob off the
SCTEen.

Set ink for writing characters.
Get ink for writing characters.
Set ink for writing text
background.

Get ink for
background.

Swap current pen and paper
inks.

Allow or disallow background
being written.

writing text

AMSTRAD CPC464 FIRMWARE

54 W#BBA2 TXT GET BACK
MATRICES

55 WBBAS TXT GET MATRIX

56 #BBAS TXT SET MATRIX

57 #BBAB TXTSETMTABLE
58 #BBAE TXTGETMTAELE
CONTROL CODES

59 #BBBI TXT GET CONTROLS
STREAMS

60 #BBB4 TXT STR SELECT

61 #BBBT TXT SWAFP STREAMS

13.1.3 Entries to.the Graphics VDU

The Graphics VDU deals with individual pixels.

INITIALISATION

62 H#BBBA GRA INITIALISE

63 #BBED GRA RESET

CURRENT POSITION

64 #BBCO GRA MOVE ABSOLUTE
65 #BBC3 GRA MOVE RELATIVE
66 #HBBC6 GRA ASK CURSOR

67 #BBCS GRA SET ORIGIN

68 H#BBCC GRA GET ORIGIN

AMSTRAD CPC464 FIRMWARE

Ask if background is being
written.

Get the address of a character
matrix.

Set a character matrix.

Set the user defined matrix
table address.

Get user defined matrix table
address.

Fetch address of control code
table.

Select a Text VDU stream.
Swap the states of two streams.

Initialise the Graphics VDU.

Reset the Graphics VDU
-restore standard indirections.

Move to an absolute position.
Move relative to current
position.

(et the current position.

Set the origin of the user
coordinates.

Get the origin of the user
coordinates.

PAGE 13.5

WINDOW

69

70

11

72

73

#BBCF

#BBD2

#BBDS

#BBDS

#BBDB

INKS

T4
T

76

77

#BBDE
#BBE1

#BBE4

HBBET

PLOTTING

78

79

#BEEEA

#BBED

TESTING

B0

81

LINE DRAWING

82

83

#BBFO

#BBF3

#BBF6

#BBF9

PAGE 13.6

GRA WIN WIDTH

GRA WIN HEIGHT

GRA GET W WIDTH

GRA GET W HEIGHT

GRA CLEAR WINDOW

GRA SET PEN
GRA GET PEN

GRA SET PAFER

GRA GET PAPER

GRA PLOT ABSOLUTE

GRA PLOT RELATIVE

GRA TEST ABSOLUTE

GRA TEST RELATIVE

GRA LINE ABSOLUTE

GRA LINE RELATIVE

Set left and right edges of the
graphics window.

Set the top and bottom edges of
the graphics window.

Get the left and right edges of
the graphics window.

Get the top and bottom edges of
the graphics window.

Clear the graphics window.

Set the graphies plotting ink.
Get the current
plotting ink.

Set the graphics background
ink.

Get the current
background ink.

graphics

graphics

Plot a point at an absolute
position.

Plot a point relative to the
current position.

Test a point at an absolute

position.

Test a point relative to the
current position.

Draw a line to an absolute
position.

Draw a line relative to the
current position.

AMSTRAD CPC464 FIRMWARE

CHARACTER DRAWING

GRA WR CHAR Put a character on the screen

at the current graphics
position.

84 #BBFC

13.1.4 Entries to the Screen Pack

The Screen Pack interfaces the Text and Graphic VDUs to the screen hardware.
Screen functions that affect both text and graphics (e.g. ink colours) are located in
the Screen Pack.

INITIALISATION

85 #BBFF SCR INITIALISE

86 #BCO2 SCR RESET

SCREEN HARDWARE

87 H#BCO5 SCR SET OFFSET

88 #BCO8 SCR SET BASE

89 #BCOB SCR GET LOCATION
MODE

90 KBCOE SCR SET MODE

91 #BC11 SCR GET MODE

92 #BCl4 SCRCLEAR

93 #BC17 SCR CHAR LIMITS
SCREEN ADDRESSES

94 #BCI1A SCR CHAR POSITION
95 #BC1D SCR DOT POSITION
96 #BC20 SCR NEXT BYTE

AMSTRAD CPC464 FIRMWARE

Initialise the Screen Pack.
Reset the Screen Pack - restore
standard indirections, ink
colours and flash rates.

Set the offset of the start of the
SCTEEN.

Set the area of RAM to use for

the screen memory.

Fetch current base and offset
settings.

. Set screen into a new mode.

Ask the current screen mode.
(lear the screen (to ink zero).

Ask size of the screen in
characters.

Convert physical coordinates
to a screen position.

Convert base coordinates to a
screen position,

Step a screen address right one
byte.

PAGE 13.7

97 HBC23 SCR PREV BYTE

98 #BC26 SCR NEXT LINE

99 #BC29 SCR PREV LINE
INKS

100 #BC2C SCRINK ENCODE
101 #BC2F SCR INK DECODE
102 #BC32 SCR SET INK

103 #BC35 SCR GET INK

104 #BC38 SCR SET BORDER
105 #BC3B SCR GET BORDER
106 #BC3E SCR SET FLASHING
107 #BC41 SCR GET FLASHING
MISCELLANEOUS

108 #BC44 SCRFILL BOX

109 #BC47 SCR FLOOD BOX
110 ¥BC4A SCR CHAR INVERT
111 #BC4D SCR HW ROLL

112 #BC50 SCR SW ROLL

113 #BC53 SCR UNPACK

114 #BC56 SCRREPACK

PAGE 13.8

Step a screen address left one
byte.
Step a screen address down one
line.
Step a screen address up one

line.

Encode an ink to cover all
pixels in a byte.

Decode an encoded ink.

Set the colours -in which to
display an ink.

Ask the colours an ink is
currently displayed in.

Set the colours in which to
display the border.

Ask the colours the border is
currently displayed in.

Set the flash periods.

Ask the current flash periods.

Fill a character area of the
screen with an ink.

Fill a byte area of the screen
with an ink.

Invert a character position.

Move the whole screen up or
down eight pixel lines (one
character).

Move an area of the screen up
or down eight pixel lines (one
character).

Expand a character matrix for
the current screen mode.

Compress a character matrix
to the standard form.

AMSTRAD CPC464 FIRMWARE

115 #BC59

116

LINE DRAWING

117

#BC5C

#BC5F

118 #BC62

SCR ACCESS

SCR PIXELS

SCR HORIZONTAL
SCR VERTICAL

Set the screen write mode for
the Graphics VDU.

Write a pixel to the screen
ignoring the Graphics VDU
write mode.

Plot a purely horizontal line
Plot a purely vertical line.

13.1.5 Entries to the Cassette Manager

The Cassette Manager handles reading files from tape and writing files to tape.

INITIALISATION

119 #BC65 CAS INITIALISE
120 #BCe8 CAS SET SPEED

121 #BC6B CAS NOISY

MOTOR CONTROL

122 #BC6E CAS START MOTOR
123 #BCT1 CAS STOP MOTOR
124 #BCT4 CAS RESTORE MOTOR
READING FILES

125 #BCT7 CASIN OPEN

126 #BCTA CAS IN CLOSE

127 #BCT7D CASIN ABANDON
128 #BCBO CASIN CHAR

129 #BCB3 CAS IN DIRECT

AMSTRAD CPC464 FIRMWARE

Initialise the Cassette
- tlose all streams,

set default speed and enable
messages.

Set the write speed.

Enable or disable prompt
messages.

Start the cassette motor.
Stop the cassette motor.

Restore previous state of
cassette motor.

Open a file for iﬁput.
Close the input file properly.

Close the
immediately.

Read a character from the
input file.

Read the input file into store.

input file

PAGE 13.9

130 #BCa6

131 #BCREI

WRITING FILES

132 KBC8C
133 HBC8F
134 #BC92

135 KBCO5

136 H#BCI8

CATALOGUING

137 KBC9B

RECORDS

138 #BCSE
139 #BCAl
140 #BCA4

13.1.6 Entries to the Sound Manager

CASRETURN

CASTEST EOF

CASOUT OPEN
CAS OUT CLOSE
CAS OUT ABANDON

CAS OUT CHAR

CAS OUT DIRECT

CAS CATALOG

CAS WRITE
CASREAD
CAS CHECK

The Sound Manager controls the sound chip.
INITIALISATION

141 HBCAT

SOUND RESET

_ SOUND QUEUES

142 #BCAA
143 #BCAD

PAGE 13.10

SOUND QUEUE
SOUND CHECK

Put the last character read
back.

Have we reached the end of the
input file yet?

Open a file for output.
Close the output file properly.

Close the output file
immediately.

Write a character to the output
file.

Write the output file directly
from store.

Generate a catalogue from the
tape.

Write a record to tape.
Read a record from tape.

Compare a record on tape with
the contents of store.

Reset the Sound Manager
-shut the sound chip up and
clear all sound queues.

Add a sound to a sound queue.

Ask if there is space in a sound
queue.

AMSTRAD CPC464 FIRMWARE

144 #BCBO SOUND ARM EVENT Set up an event to be run when
a sound queue becomes not

full.
SOUNDS
145 #BCB3 SOUND RELEASE Allow sounds to happen.
146 HBCBH6 SOUND HOLD Stop all sounds in mid flight.
147 #BCB9 SOUND CONTINUE Restart sounds after they have
been stopped.
ENVELOPES

148 #BCBC SOUND AMPL ENVELOPE Set up an amplitude envelope.
149 #BCBF SOUND TONE ENVELOPE Set up a tone envelope.

150 #BCC2 SOUND A ADDRESS Get the address of an
amplitude envelope.

151 #BCCS SOUND T ADDRESS Get the address of a tone
envelope.

13.1.7 Entries to the Kernel

The Kernel handles synchronous and asynchronous events. It is also in charge of
the store map and switching ROMs on and off. Apart from the entries listed below,
the Kernel has its own jumpblock and a number of routines whose addresses are
published. These extra entries are listed in sections 13.3 and 13.4 below.

INITIALISATION

152 #BCCS8 KL CHOKE OFF Reset the Kernel - clears all
event queues etc.

153 #BCCB KL ROM WALK Find and initialise all
background ROMs.

154 #BCCE KL INIT BACK Initialise a particular
background ROM.

155 #BCD1 KL LOG EXT Introduce an RSX to the
firmware.

156 #BCD4 KL FIND COMMAND Search for an RSX or
background ROM or

foreground ROM to process a
command.

AMSTRAD CPC464 FIRMWARE PAGE 13.11

FRAME FLYBACK LIST
157 #BCD7 KL NEW FRAME FLY

1568 #BCDA KL ADD FRAME FLY

159 #BCDD KL DEL FRAME FLY

FAST TICK LIST

160 #BCEO KL NEW FAST TICKER

161 #BCE3 KL ADD FAST TICKER

162 #BCE6 KL DEL FAST TICKER

TICK LIST

163 #BCE9 KL ADD TICKER
164 #BCEC KL DEL TICKER

EVENTS

165 HBCEF KL INIT EVENT
166 #BCF2 KL EVENT
167 #BCF5 KL SYNC RESET

168 #BCFB KL DEL SYNCHRONOUS

169 #BCFB KL NEXT SYNC

170 #BCFE KL DO SYNC
171 #BDO01 KL DONE SYNC
172 #BDO4 KL EVENT DISABLE

173 #BDO7 KL EVENT ENABLE

174 #BDOA KL DISARM EVENT

Initialise and put a block onto
the frame flyback list.

Put a block onto the frame
flyback list.

Remove a block from the frame
flyback list.

Initialise and put a block onto
the fast tick list.

Put a block onto the fast tick
list.

Remove a block from the fast
tick list.

Put a block onto the tick list.

Remove a block from the tick
list.

Initialise an event block.
‘Kick' an event block.

Clear synchronous event
queue.

Remove a synchronous event
from the event queue.

Get the next event from the
queue.

Perform an event routine.
Finish processing an event.

Disable normal synchronous
events.

Enable normal synchronous
events.

Prevent an event from
occurring.

PAGE 13.12 AMSTRAD CPC464 FIRMWARE

ELAPSED TIME

175 #BDOD
176 #BD10

13.1.8 Entries to the Machine Pack

KL TIME PLEASE
KL TIME SET

Asgk the elapsed time.
Set the elapsed time.

The Machine Pack provides an interface to the machine hardware. Most packs use
Machine to access any hardware they use. The major exception, is the Cassette
Manager which, for speed reasons; performs its own hardware access.

~ PROGRAMS
177 #BD13

178 #BD16
SCREEN

179 #BD19
180 #BDI1C
181 #BDIF
182 #BD22
183 #BD25

PRINTER

184 #BD28
185 #BD2B

186 #BDZ2E
187 #BD31

SOUND CHIP
188 #BD34

MC BOOT PROGRAM

MC START PROGRAM

MC WAIT FLYBACK
MC SET MODE

MC SCREEN OFFSET
MC CLEAR INKS

MC SET INKS

MC RESET FRINTER
MC PRINT CHAR

MC BUSY PRINTER

MC SEND PRINTER

MC SOUND REGISTER

AMSTRAD CPC464 FIRMWARE

Load and run a foreground
program.
Run a foreground program.

Wait for frame flyback.
Set the screen mode.

Set the screen offset.

Set all inks to one colour.
Set colours of all the inks.

Reset the printer indirection.
Try to send a character to the
Centronics port.

Test if the Centronics port is
busy.

Send a character
Centronics port.

to the

Send data to a sound chip
register.

PAGE 13.13

13.1.9 Entries to Jumper
Jumper sets up the main jumpblock.

INITIALISATION

189 #BD37 JUMP RESTORE Restore the standard
jumpblock.

13.2 Firmware Indirections.

The firmware indirections listed here are taken at key points in the firmware thus
allowing the user to provide substitute routines for many firmware actions, without
having to replace a complete firmware package. These indirections are not intended
for the user to call - there is usually a higher level routine in the main firmware

jumpblock that is more suitable.

The indirections are set up by the pack to whom they apply whenever its reset lor
initialise) routine is called and during EMS; they are not otherwise altered by the
firmware.

The indirections are all three bytes long and use standard jump instructions (#C3).
If a ROM state other than upper ROMs disabled and lower ROM enabled is required

then the appropriate restart instruction might be substituted (see section 2.3). The
indirections are to be found between #BDCD and #BDF3.

At this level of operation very little validation is carried out. If incorrect parameters
are passed or a substitute routine corrupts a register in defiance of the documented
interface then the firmware will probably cease to function as expected.

More detailed descriptions of these routines can be found in section 15.

13.2.1 Text VDU Indirections

0 #BDCD TXT DRAW CURSOR Place the cursor blob on the
screen (if enabled).

1 #BDDO TXT UNDRAW CURSOR Remove the curser blob from
the screen (if enabled),

2 HBDD3 TXT WRITE CHAR Write a character onto the
BCTEEN.

3 HBDDé6 TXT UNWRITE Read a character from the
screen.

4 #BDD9 TXT OUT ACTION QOutput a character or control
code.

PAGE 13.14 AMSTRAD CPC464 FIRMWARE

13.2.2 Graphics VDU Indirections

5 #BDDC GRAPLOT Plot a point.
6§ #BDDF GRATEST Test a point.
7 H#BDE2 GRA LINE Draw a line.

13.2.3 Screen Pack Indirections

8 #BDE5S SCRREAD Read a pixel from the screen.

9 HBDES SCR WRITE Write pixel(s) to the screen
using the current graphics
write mode.

10 #BDEB SCRMODE CLEAR Clear the sereen to ink 0.

13.2.4 Keyboard Manager Indirections
11 H#BDEE KM TEST BREAK Test for break (or reset).

13.2.5 Machine Pack Indirections
12 H#BDF1 MC WAIT PRINTER Print a character or time out.

13.3 The High Kernel Jumpblock.

The high Kernel jumpblock is provided to allow the user to turn ROMs on and off
and to access memory underneath ROMs while they are enabled. The entries in this
jumpblock are not all jump instructions, some entries are the start of routines, thus
the user should not alter any of the entries in this jumpblock. The high Kernel
jumphlock occupies store from #B900 upwards. More detailed descriptions
of the routines in it can be found in section 16.

0 - #B200 KL UROM ENABLE Turn on the current upper

ROM.

1 #B9%03 KL UROM DISAELE Turn off the upper ROM.

2 #B906 KL LROM ENABLE Turn on the lower ROM.

3 #AB09 EL L ROM DISAELE Turn off the lower ROM.

4 #B20C KL ROM RESTORE Restore the previous ROM
state.

5 H#B90F KL ROM SELECT Select a particular upper ROM.

AMSTRAD CPC464 FIRMWARE PAGE 13.15

6 #B912 KL CURRSELECTION Ask which upper ROM is
currently selected.

7 KBO15 KL PROBE ROM Ask class and version of a
ROM.

8 #B918 KL ROM DESELECT Restore the previous upper
ROM selection.

9 #B91B KL LDIR Move store (LDIR) with ROMs
disabled.

10 #B91E KL LDDR Move store (LDDR) with ROMs
disabled.

11 #B921 KL POLLSYNCHRONOUS Check if an event with
higher priority than the
current event is pending.

13.4 The Low Kernel Jumpblock.

The Kernel provides a number of useful routines in the area of memory between
#0000 and #003F. These are available, in some cases, both as a published routine
address and as a restart instruction. In general the routines are available both in
ROM and in RAM so whether the lower ROM is enabled does not matter. There are
also a couple of areas available for the user to patch to trap RST 6s and interrupts

from external hardware.

The low Kernel jumpblock is not intended for the user to alter. However, it may be
necessary to alter it under certain circumstances, In particular a program may need
to intercept the INTERRUPT ENTRY (by patching the jump at #0038) or the
RESET ENTRY (by patching the bytes from #0000..#0007). If a program does
change any locations in this jumpblock (other than those in the USER RESTART or
EXT INTERRUPT areas) then it is the program's responsibility to ensure that the
lower ROM is enabled or the original contents are restored when any other program
runs. In particular the program must sort out the state when interrupts occur
(hence the need to patch the INTERRUPT ENTRY).

More detailed descriptions of the routines in this jumpblock can be found in section

17.
#0000 RSTO RESETENTRY Completely reset the machine
as if powered up.

#0008 RST1 LOWJUMP Jump to lower ROM or RAM,
takes an inline low address’ to

jump to.

#000B KL LOW PCHL Jump to lower ROM or RAM,
HL contains the ‘low address’

to jump to.
#O00E PCBC INSTRUCTION Jump to address in BC.

PAGE 13.16 AMSTRAD CPC464 FIRMWARE

#0010

#0013

#0016
#0018

#001B

#001E
#0020

#0023

#0028

#0030

#0038

#003B

RST 2

RST 3

RST &

RST 5

RST 6

RST 7V

SIDE CALL
KL SIDE PCHL

PCDE INSTRUCTION
FAR CALL

KL FAR PCHL

PCHL INSTRUCTION
RAM LAM

KLFARICALL

FIEM JUMP

USER RESTART

INTERRUFT ENTRY

EXT INTERRUPT

AMSTRAD CPC464 FIRMWARE

Call to a sideways ROM, takes
inline ‘side address’ to call.

Call to a sideways ROM, HL
contains ‘side address’ to call.

Jump to address in DE

Call a routine in any ROM or
RAM, takes an inline address
of the far address’ to call.

Call a routine in any ROM or
RAM, C and HL contain the
‘far address’ to call.

Jump to address in HL.

LD A/(HL) with all ROMs
disabled.

Call a routine in any ROM or
RAM, HL points at the ‘far
address’ to call.-

Jump to lower ROM, takes an
inline address to jump to.

ROM wversion saves current
ROM state in #002B, turns the
lower ROM off and jumps to
the RAM wversion. RAM
version may be patched by the
user between #0030 and
#0037 inclusively.

This restart is not available as
it is used for interrupts (Z80
interrupt mode 1).

When an interrupt occurs on
the expansion port the
firmware calls location #003B
in RAM. The user may patch
between #003B and #003F
inclusive to trap this
OCCUrence,

PAGE 13.17

EoukJuey aliy E 1 L e P

14 The Main Firmware
Jumpblock.

ﬁhmﬁmﬂmﬂﬁﬂiﬂhﬁuﬂtﬂmﬁym&aﬂtmﬁﬁmmﬂt&eﬂmﬂm
the routines in the main firmware jumpblock. The main firmware jumpblock is
described in section 13.1.

The user is advised to read the sections on each pack before attempting to
understand the jumpblock entries. The relevant sections are:

Key Manager (KM} Section 3.

Text VDU (TXT) Ssction 4.

Graphics VDU (GRA) Section 5.

Screen Pack (SCR) Section 6.

Sound Manager (SOUND) Section 7.

Cassette Manager (CAS) Section 8.

Kernel (KL) Sections 2,9, 10 and 11.
Machine Pack (MC) Section 12.

The top line of each description has the following layout:
.Entry number.: Entryname: Entry address:

Entries in the jumpblock are numbered starting from zero. The entry address is the
address to call to invoke the firmware routine or the address of the three bytes lo
patch to intercept the routine. The entry address can be calculated as:

Entry address = Start of jumpblock + 3 * Entry number

Each entry is named and is refered to by name throughout this manual.

The last section of each description is a list of related routines. The user is advised
to lock at these as the list may include routines as the list may include routines
more suited for the application being considered. Conversely the routines may shed
further light on how the original routine should be used.

The descriptions of the routines are for the default routine that the entry jumps to.
The user may change the entry and this may alter the action of the routine. The
user is advised to stick to the entry/exit conditions described otherwise programs
that call the routine (BASIC for example) may cease to operate correctly.

'ii'c-u&n 44 _ A
P"LLL Ab A ey AT 24
AVPAA > APPAT.E

i F

0: KM INITIALISE #BB00

Initialise the Key Manager.

Action:

Full initialisation of the Key Manager (as used during EMS). All Key Manager
variables, buffers and indirections are initialised. The previous state of the Key
Manager is lost.

Entry conditions:
Mo conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The Key Manager indirection (KM TEST BREAK) is set to its default routine.
The key buffer is set up (to be empty).

The expansion buffer is set up and the expansions are set to their default strings.
The key translation tables are initialised to their default translations.

The repeating key map is initialised to its default state.

The repeat speeds are set to their default values.

Shift and caps lock are turned off.

The break event is disarmed.

See Appendices I1, IIl and IV for the default translation tables, repeating key table
and expansion strings.

This routine enables interrupts.

Related entries:
KM RESET

V.2

1: KM RESET : #BB03

Reset the Key Manager.

Action:
Re-in'tialises the Key Manager indirections and buffers.

Entry conditions:
No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.
Notes:

The Key Manager indirection (KM TEST BREAK) is set to its default routine.
The key buffer iz set up (to be empty).
'111-:upaminnhuﬂ'!riauetupmdtheexpusimmmtntheirdaﬁu]tmngs

{see Appendix IV,
The break event is disarmed.

All pending keys and characters are discarded.
This routine enables interrupts.
Related entries:

KM DISARM BEREAK
EM EXP BUFFER
EM INITIALISE

AMSTRAD CPC464 FIRMWARE PAGE 143

2: KM WAIT CHAR #BB06

Wait for next character from the keyboard.

Action:

Try to get a character from the key buffer or the current expansion string. This
routine waits until a character is available if no character is immediately available.

Entry conditions:

No conditions.

Exit conditions:

Carry true.

A contains the character.

Other flags corrupt.

All other registers preserved.

Notes:

The possible sources for generating the next character are, in the order that they
are tested:

The ‘put back' character.

The next character of an expansion string.
The first character of an expansion string.
A character from a key translation table.

Expansion tokens found in the key translation table are expanded to their
associated strings. Expansion tokens found in expansion strings are not expanded
but are treated as characters.

Related entries:

EM CHAR RETURN
KM READ CHAR
EM WAIT KEY

PAGE 144 AMSTRAD CPC464 FIRMWARE

3: KM READ CHAR ‘#BB09

Test if a character is available from the keyboard.

Action:

Try to get a character from the key buffer or the current expansion string. This
routine does not wait for & character to become available if there is mo character
available immediately.

Entry conditions:

No conditions.

Exit conditions:

If there was s character available:
Carry true.
A contains the character.

If there was no character available:
Carry false.
A corTupt

Alwaye:
Other flags corrupt.
All other registers preserved.

Notes:
ﬁemhlummfw;mﬂngthnmmnarm.inthnﬂﬂthﬂthq
ey .

The ‘put back' character.

The next character of an expansion string.
The first character of an expansion string.
A character from a key translation table.

Wﬁaﬂhhmw“uﬂuﬂhm&hmmm
MngLE:pnnlimhhmﬁmnﬂinupmlinnlh-inpmmtnpuddblum
treated as characters.

ﬁhmuﬁuﬁﬂdnnuhmn:huﬂni!mhnnilnbh-ltinhaufm

mﬂ:mhﬁmmmwhﬁuuhmmumcﬂm
repeatedly until it reports that no character is available.

Related entries:

EM CHAR RETURN
EM READ KEY
EM WAIT CHAR

AMSTRAD CPC464 FIRMWARE PAGE 145

4: KM CHAR RETURN #BBOC

Return a single character to the keyboard for next time.

Action:
Save a character for the next call of KM READ CHAR or EM WAIT CHAR.

Entry conditions:
A contains the character to put back.

Exit conditions:
All registers and flags preserved.

Notes:

The ‘put back' character will be returned before any other character is generated by
the keyboard. It will not be expanded (or otherwise dealt with) but will be returned
as it is. The ‘put back’ character need not have been read from the keyboard, it could
be inserted by the user for some purpose.

]tiamlypmihletuhﬂem‘puthuk'nhnmmr.ﬂtbiamuﬁmhnﬂudmim
without mdingnchmﬂerbetwmthmthenthaﬁrﬂ.‘pulhuk’wﬂlhhﬂ.
Furthermore, it is not pessible to return character 255 (because this is used as the
marker for no ‘put back’ character).

Related entries:

EM READ CHAR
KM WAIT CHAR

PAGE 146 AMSTRAD CPC464 FIRMWARE

5: KM SET EXPAND #BBOF
Set an expansion string.

Action:
Set the expansion string associated with an expansion token.

Entry conditions:

B contains the expansion token for the expansion to set.
C contains the length of the string.
HL contains the address of the string.

Exit conditions:

If the expansion is OK:
Carry true.

If the string was too long or the token was invalid:
Carry false.

Always:

A, BC, DE, HL and other flags corrupt.
A]lnt.hefragiutlrlpwvef

Notes:

The string to be set may lie anywhere in RAM. Expansion strings cannot be set
directly from ROM.

The characters in the string are not expanded (or otherwise dealt with). It is
therefore poseible to put any character into an expansion string.

If there ie insufficient room in the expansion buffer for the new string then no
change is made to the expansions.

If the string set is currently being used to generate characters (hy KM READ CHAR
or KM WAIT CHAR) then the unread portion of the string is discarded. The next
character will be read from the key buffer.

This routine enables interrupts,
Related entries:

KM GET EXPAND
KM READ CHAR
KM WAIT CHAR

AMSTRAD CPC464 FIRMWARE PAGE 149

6: KM GET EXPAND #BB12

Get a character from an expansion string.

Action:

Read & character from an expansion string . The characters in the string are
numbered starting from 0.

Entry conditions:

A contains an expansion token.

L contains the character number.

Exit conditions:

If the character was found:

Carry true.
A contains the character.

If the token was invalid or the string was not long enough:

Carry false.
A eoarrupt.

Always:
DE and other flags corrupt.
All other registers preserved.
Notes:
The characters in the expansion string are not expanded (or otherwise dealt with).
It is therefore possible to put any character into an expansion string.
Related entries:

EM READ CHAR
EM SET EXPAND

PAGE 148 AMSTRAD CPC464 FIRMWARE

7: KM EXP BUFFER #BB15

Allocate a buffer for expansion strings.

Action:

Set the address and length of the expansion buffer. Initialise the buffer with the
default expansion strings.

Entry conditions:

DE contains the address of the buffer.
HL contains the length of the buffer.

Exit conditions:
If the buffer is OK:
Carry troe.
If the buffer is too short:
Carry false.
Always:
A, BC, DE, HL and other corrupt.
All other registers
Notes:

The buffer must not be located underneath a ROM and it must be at least 49 bytes

Jong (i.e. have sufficient space for the default expansion strings). If the new buffer is
too short then the old buffer is left unchanged.

The default expansion strings are given in Appendix IV,
Any expansion string currently being read is discarded.
This routine enables interrupts.

Related entries.

EM GET EXPAND
EM SET EXPAND

AMSTRAD CPC464 FIRMWARE PAGE 149

8: KM WAIT KEY #BB18
Wait for next key from the keyboard.

Action:

Try to get a key from the key buffer. This routine waits until a key is found if no key
is immediately available.

Entry conditions:

No conditions.

Exit conditions:

Carry true.
A contains the character or expansion token.

Other flags corrupt.
All other registers preserved.
Notes:

The next key is read from the key buffer and translated using the appropriate key
translation table. Expansion tokens are not expanded but are passed out for the
user to deal with, as are normal characters. Other Key Manager tokens (shift lock,
caps lock and ignore) are obeyed but are not passed out.

Related entries:

KM READ KEY
EM WAIT CHAR

PAGE 14.10 AMSTRAD CPC484 FIRMWARE

9: KM READ KEY ~_ '#BB1B
Test if a key is available from the keyboard.

Action:
Try to get a key from the key buffer. This routine does not wait if no key is available
immediately.

Entry conditions:

No conditions.

Exit conditions:
If a key was available:
Carry true.
A contains the character or expansion token.
If no key was available:
Carry false.
A corrupt.
Always:
Other flags corrupt.
All other registers preserved.
Notes:
The pext key is read from the key buffer and translated using the appropriate key

translation table. Expansion tokens are not expanded but are passed out for the
user to deal with, as are normal characters. Other Key Manager tokens (shift lock,
caps lock and ignore) are obeyed but are not passed out.

This routine will always return a key if one is available. It is therefore possible to
flush gut the key buffer by calling KM READ KEY repeatedly until it claims no key
is available. Note, however, that the ‘put back' character or a partially read
expansion string is ignored. It is advisable to use KM READ CHAR w flush these
out when emptying the Key Manager buffers.

Related entries:

EM READ CHAR
KM WAIT KEY

AMSTRAD CPC464 FIRMWARE PAGE 14.11

10: KM TEST KEY #BB1E
Test if a key is pressed.

Action:

Test if a particular key or joystick button is pressed. This is done using the key state
map rather than by accessing the keyboard hardware.

Entry conditions:
A contains a key number.

Exit conditions:
If the key is pressed:
Zero false,
If the key is not pressed:
Zero true.
Always:
Carry false.
C eontains the current ghift and control state.
A, HL and other flags corrupt.
All other registers preserved.

Notes:

The shift and control states are automatically read when a key is scanned. If bit 7 is
set then the control key is pressed and if bit 5 is set then one of the shift keys is
pressed.

The key number is not checked. An invalid key number will generate the correct
ehift and control states but the state of the key Lested will be meaningless.

The key state map which this routine tests is updated by the keyboard scanning
routine. Normally this is run every fiftieth of a second and so the state may be out of
date by that much The key debouncing requires that a key should be released for
two scans of the keyboard before it is marked as released in the key state map; the
pressing of a key is detected immediately.

Related entries:

KM GET JOYSTICK
KM GET STATE
EM READ EEY

PAGE 14.12 AMSTRAD CPC464 FIRMWARE

11: KM GET STATE #BB21

Fetch Caps Lock and Shift Lock states.

Action:
Mkifthtka}rhni:dilmnﬂjuhiﬁln:hdurupﬂmhﬂ.

Entry conditions:
No conditions.
Exit conditions:

L contains the shift lock state.
H contains the caps lock state.

AF corrupt.
All other registers preserved.

Notes:
The lock states are:

#00 means the lock is off
#FF means the lock is an

The default lock states are off.

Related entries:
EM TEST EEY

AMSTRAD CPC464 FIRMWARE PAGE 14.13

12: KM GET JOYSTICK #BB24

Fetch current state of the joystick(s).

Action:

Ask what the current states of the joysticks are. These are read from the key state
map rather than by accessing the keyboard hardware.

Entry conditions:

No conditions.

Exit conditions:

H contains the state of joystick 0.
L containe the state of joystick 1.
A contains the state of joystick 0.

All other registers preserved.

Notes:

In normal operation the key state map is updated by the key scanning routine every
fiftieth of a second 8o the state returned may be slightly out of date.

The joystick states are bit significant as follows:

Bit0 Up.

Bit1 Down,

Bit2 Left.

Bit 3 Right.

Bit 4 Fire 2.

Bit5 Fire 1.

Bit6 Spare joystick button (usually unconnected).
Bit 7 Always zero.

If & bit is set then the appropriate button is pressed.
Joystick 1 is indistinguishable from certain keys on the keyboard (see Appendix I).

Related entries:
KM TEST EEY

PAGE 14.14 AMSTRAD CPC464 FIRMWARE

ll...--..

13: KM SET TRANSLATE #BB27

Set entry in normal key translation table

Action:

Get what character or token a key will be translated to when neither shift nor
control is pressed.

Entry conditions:

A contains a key number.
B contains the new translation.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

If the key number is invalid (greater than 79) then no action is taken.

Most values in the table are treated as characters and are passed back to the user.
However, there are certain special values:

NB0..ROF are the expansion tokens and are expanded to character
strings when KM READ CHAR or KM WAIT CHAR is
called although they are passed back like any other
character when KM READ EEY or KM WAIT KEY is

called.

AFD is the caps Jock token and causes the caps lock to toggle
{turn on if off and vice versa).

#FE is the shift lock token and csuses the shift lock to toggle
{(turn on if off and vice versa),

WFF is the ignore token and means the key should be thrown

away.

Characters ¥EO.#FC have special meanings to the BASIC to do with editing,
cursoring and breaks.

See Appendix II for a full listing of the default translation tables.

Related entries:

EM GET TRANSLATE
EM SET CONTROL
EM SET SHIFT

AMSTRAD CPC464 FIRMWARE PAGE 14.15

14: KM GET TRANSLATE #BB2A
Get entry from normal key translation table.

Action:
Ask what nhmrharm'tnien:kugwiﬂhamhmdtnwhenneithu ghift nor
control is pressed.

Entry conditions:
A contains a key number.

Exit conditions:
A contains the current translation.

HL and flags corrupt.
All other registers preserved.

Notes:

The key number is not checked. If it is invalid (greater than 79) then the translation
returned js meaningless.

Most values in the table are treated as characters and are passed back to the user.
However, there are certain special values:

#BO..HOF are the expansion tokens and are expanded to
character strings when KM READ CHAR or KM
WAIT CHAR is called although they are passed back
like any other character when KM READ KEY or KM
WAIT KEY is called.
¥FD is the eaps lock token and causes the caps lock to toggle
(turn on if off and vice versa).
¥FE is the shift lock token and causes the ghift Jock to
toggle (turn on if off and vice versa).
#FF is the ignore token and means the key should be
thrown away.
Characters #E0.#FC have special meanings to the BASIC to do with editing,
cursoring and breaks.

See Appendix II for a full listing of the default translation tables.

Related entries:

KM GET CONTROL
KM GET SHIFT
KM SET TRANSLATE

PAGE 14.18 AMSTRAD CPC484 FIRMWARE

15: KM SET SHIFT #BB2D
Set entry in shifted key translation table

Action:

Set what character or token a key will be translated to when control is not pressed
but shift is pressed or shift lock is on.

Entry conditions:
A contains s key number.
B contains the new translation.

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:
I the key number is invalid (greater than 79) then no action is taken.

Most values in the table are treated as characters and are passed back to the user.
However, there are certain special values:

#B0.#OF are the expansion tokens and are expanded to
character strings when KM READ CHAR or KM
WAIT CHAR i& called although they are passed back
like any other character when KM READ KEY or KM
WAIT KEY is called.

#FD is the caps lock token and causes the caps lock to toggle
{turn on if off and vice versa).

#FE is the shift lock token and causes the shift lock to
toggle (turn on if off and vice versa).

WFF is the ignore token and means the key should be
thrown away.

Characters #E0.#F" have special meanings to the BASIC to do with editing,
cursoring and breaks.

See Appendix II for a full listing of the default translation tables.

Related entries:

KM GET SHIFT
EM SET CONTROL
EM SET TRANSLATE

AMSTRAD CPC464 FIRMWARE PAGE 14.17

16: KM GET SHIFT #BB30
Get entry from shifted key translation table.

Action:
Ask what character or token & key will be translated to when control is not pressed
but shift is pressed or shift lock is on.

Entry conditions:

A contains a key number.

Exit conditions:

A contains the current translation.

HL and flags corrupt.
All other registers preserved.

Notes:

The key number is not checked. If it is invalid (greater than 79) then the translation
returned is meaningless.

Maost values in the table are treated as characters and are passed back to the user.
However, there are certain special values:

#B0..R9F are the expansion tokens and are expanded to
character strings when KM READ CHAR or KM
WAIT CHAR is called although they are passed back
like any other character when KM READ KEY or KM
WAIT EEY is called.

¥FD is the eaps lock token and causes the cape lock to toggle
{turn on if off and vice versa).

K¥FE is the shift lock token mnd causes the shift lock to
toggle (turn on if off and vice versa).

¥FF is the ignore token and means the key should be
thrown away.

Characters #E0._#FC have special meanings to the BASIC to do with editing.
cursoring and breaks.

See Appendix II for a full listing of the default translation tables.

Related entries: '

KM GET CONTROL
KM GET TRANSLATE
KM SET SHIFT

PAGE 14.18 AMSTRAD CPC464 FIRMWARE

17: KM SET CONTROL "#BB33

Set entry in control key translation table

Action:
Set what character or token a key will be translated to when control is pressed.

Entry conditions:

A containe a key number.

B contains the new translation.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

If the key number is invalid (greater than 79) then no action is taken.

Moet values in the table are treated as characters and are passed back to the user.
However, there are certain special values:

#80..#9F are the expansion tokens and are expanded to
character strings when KM READ CHAR or KM
WAIT CHAR is called although they are passed back
lihlnjrnth&rhm:tﬂﬂthHHEADEETufHM
WAITKEY is called

¥FD is the caps lock token and causes the caps lock to toggle
{turn on if off and vice versa).

#FE is the shift lock token and causes the shift lock to
toggle (turn on if off and vice versal.

WFF is the ignore token and means the key should be
thrown away.

Characters #¥E0.#FC have special meanings to the BASIC to do with editing,
cursoring and breaks.
Buhppenﬂhﬂfnr:fuﬂﬁlﬁngﬂﬂh!ﬂnﬁu]tMllﬁmhﬂu.

Related entries:

KM GET CONTROL
EM SET SHIFT
KM SET TRANSLATE

AMSTRAD CPC464 FIRMWARE PAGE 14.19

18: KM GET CONTROL #BB36

Get entry from control key translation table

Action:
Ask what character or token a key will be translated to when control is pressed,

Entry conditions:
A contains a key number.

Exit conditions:

A contains the current translation.

HL and flags corrupt.

All other registers preserved.

Notes:

The key number is not checked. If it is invalid (greater than 79) then the translation
returned is meaningless.

Most values in the table are treated as characters and are passed back to the user.
However, there are certain special valoes:

W80 ¥9F gre the expansion tokens and mre expanded to
character strings when KM READ CHAR or KM
WAIT CHAR is called although they are passed back
like any other character when KM READ KEY or KM
WAIT KEY is called.

¥FD is the caps lock token and causes the caps lock to toggle
{turn on if off and vice versa).

#FE is the ehift lock token and causes the shift lock to
toggle (turn on if off and vice versa).

fFF is the ignore token and means the key should be
thrown away.

Characters #ED.#FC have special meanings to the BASIC to do with editing,
cursoring and breaks.

See Appendix II for a full listing of the default translation tables.

Related entries:

EM GET SHIFT
EM GET TRANSLATE
EM SET CONTROL

PAGE 14.20 AMSTRAD CPC464 FIRMWARE

19: KM SET REPEAT #BB39

Set whether a key may repeat.

Action:
E!tu:emuyinthupuﬁnghaymthnﬁmrmimwhﬂheum is allowed to
repeat or not.

Entry conditions:

If the key it to be allowed to repeat:
B contains #FF.

If the key is not to be allowed to repeat:
B contains ¥00.

Always:
A contains the key number.

Exit conditions:

AF, BC and HL corrupt.
All other registers preserved

Notes:
If the key number is invalid (greater than 79) then no action is taken.
The default repeating keys are listed in Appendix III.

Related entries:

EM GET REPEAT
EM SET DELAY

AMSTRAD CPC464 FIRMWARE PAGE 1421

20: KM GET REPEAT #BB3C
Ask if a key is allowed to repeat.

Action:

Test the entry in the repeating key map that says whether a key is allowed to repeat
or not.

Entry conditions:

A contains a key number.

Exit conditions:
If the key is allowed to repeat:
Zero false.
If the key is not allowed to repeat:
Zero true.
Always:
Carry false.
A, HL and other flags corrupt.
All other registers preserved.
Notes:

The key number is not checked. If it is invalid (greater than 79) then the repeat
state returned is meaningless.

The default repeating keys are listad in Appendix ITL.
Related entries:
EM SET REPEAT

PAGE 14.22 AMSTRAD CPC464 FIRMWARE

21: KM SET DELAY #BB3F

Set start up delay and repeat speed.

Action:

Set the time h&fnrekmﬁntmt{mrtupdnhr}mdthaﬁmebﬂwun repeats
(repeat speed).

Entry conditions:

H contains the new start up delay.

L contains the new repeat speed.

Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

Bnthdelaysmgivminmmufthekqhud.mmmdiuumm&umrg
fiftieth of a second.

A start up delay or repeat speed of 0 is taken to mean 256.

The default start up delay is 30 scans (0.6 seconds) and the default repeat speed is 2
scans (0.04 seconds or 25 characters a second).

Nntethat:heyilpumtad&umup:aﬂﬂifhﬂhuhymnmtﬁhelqhuﬂuh
nntumpty.’lhuntheutnl]mpﬂt.:pudinthulnwernfth: lied repeat speed
and the rate at which characters are removed from Ihnhuﬂel:l%zﬁinmndnd to
prevent the user from getting too far ahead of a program that is running sluggishly.

The start up delay and repeat speed apply to all keys on the keyboard that are set to
repeat.
Related entries:

EM GET DELAY
EM SET REPEAT

AMSTRAD CPC484 FIRMWARE PAGE 14.23

22: KM GET DELAY #BB42

Get start up delay and repeat speed.

Action:

Ask the time before keys first repeat (start up delay) and the time between repeats
irepeat speed .

Entry conditions:

No conditions.

Exit conditions:

H contains the start up delay.
L eontains the repeat speed.

AF corrupt.
All other registers preserved.

Notes:

Both delays are given in scans of the keyboard. The keyboard is scanned every
fiftieth of a second.

A repeat speed or start up delay of 0 means 256.

Related entries:
EMSETDELAY

[

PAGE 14.24 AMSTRAD CPC464 FIRMWARE

23. KM ARM BREAKS ' #BB45

Allow break events to be generated.

Action:

Arm the break mechanism. The next call of KM BREAK EVENT will generate a
break event

Entry conditions:

DE contains the address of the break event routine

C contains the ROM select address for this routine.

Exit conditions:

AF,BC, DE and HL corrupt

All other registers preserved

Notes:

ka mechanism can be disarmed by calling KM DISARM BREAR tor KM
ET).

This routine enables interrupts.

Related entries:

KM BREAKEVENT
KM DISARMBREAR

AMSTRAD CPC464 FIRMWARE PAGE 1425

24: KM DISARM BREAK #BB48

Prevent break events from being generated.

Action:

Disarm the break mechanism. From now on the generation of break events by KM
BREAK EVENT will be suppressed.

Entry conditions:

No conditions.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

Break events can be rearmed by calling KM ARM BREAK.

The default state of the break mechanism is disarmed, thus calling KM RESET will
also disarm breaks.

This routine enables interrupts.

Related entries:

KM ARM BREAK
EM BREAK EVENT

PAGE 14.26 AMSTRAD CPC464 FIRMWARE

95: KM BREAK EVENT #BB4B

Generate a break event (if armed).

Action:
Try to generate a break event.

Entry conditions:
No conditions.

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

lfihahmkmn:lmnimildiumedthmnnmﬁnnhukm.mhMahruk
event is generated and a eperial marker is placed into the buffer. This marker
lbmkmtmk:n!lﬁﬂwhmmdfmmthehnfﬂ.mmk
mnnmquMWIMm so that
multiple breaks can be avoided.
Thinmnﬁnemnybemn&mthlinumptplthmdthmdmmtmﬂnhwidnnt
mwﬂm.m.mmu-wwmmﬂmmmm
tuﬁ:munjmpﬂuhhntupmﬁu]dmmhhinumpumdnmqmphhﬁ
mjmtheuu&&hﬂﬂyﬁmintmmptmﬁnu.

Related entries:

EM ARM BREAK
KM DISARM BREAK

AMSTRAD CPC464 FIRMWARE PAGE 14.27

26: TXT INITIALISE #BB4E
Initialise the Text VDU.

Action:

Full initialisation of the Text VDU (as used during EMS). All Text VDU variables
and indirections are initialised, the previous VDU state is lost.

Entry conditions:

Mo conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The Text VDU indirections (TXT DRAW CURSOR, TXT UNDRAW CURSOR, TXT
WRITE CHAR, TXT UNWRITE and TXT OUT ACTION) are set to their default
routines,

The control code table is set up to perform the default control code actions.

The user defined character table is set to be empty.
Stream 0 is selected.

All streams are set to their default states:

The text paper (background) is set to ink 0.
The text pen (foreground) is set to ink 1.

The text window is set to the entire screen.

The text cursor is enabled but turned off.

The character writing mode is set to opague.

The VDU is enabled.

The graphic character write mode is turned off.

The cursor is moved to the top left corner of the window.

The default character set and the default setting for the control code table are
described in Appendices V1 and VII

Related Entries:

SCR INITIALISE
TXT RESET

PAGE 1428 AMSTRAD CPC464 FIRMWARE

27: TXT RESET #BB51

Reset the Text VDU.

Action:

Reinitialises the Text VDU indirections and the control code table. Does not affect
any other aspect of the Text VDU.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL carrupt.

All other registers preserved.

Notes:
The Text VDU indirections TXT DRAW CURSOR, TXT UNDRAW CURSOR, TXT
MMﬂTmﬂﬁTﬂmﬁmﬂﬂmﬂtﬂmﬂrkﬁult

routines.
Themnh*n!mﬂ:tnhlnhutuptnpeﬂumtheﬂaﬁuitmmlmdemﬁmfm
Appendix VIIL.

Related Entries:

TXT INITIALISE

AMSTRAD CPC464 FIRMWARE PAGE 1429

28: TXT VDU ENABLE #BB54

Allow characters to be placed on the screen.

Action:

Permit characters to be printed when requested (by calling TXT OUTPUT or TXT
WR CHAR). Enabling applies to the currently selected stream. The cursor blob is
also enabled (by calling TXT CUR ENABLE).

Entry conditions:

No conditions.

Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

The control code buffer used by TXT OUTPUT is emptied, any incomplete control
code saquence will be lost.

Related Entries:

TXT CURENABLE
TXT OUTPUT

TXT VDU DISABLE
TXTWRCHAR

PAGE 14.30 AMSTRAD CPC464 FIRMWARE

29: TXT VDU DISABLE #BB5T7

Prevent characters being placed on the screen.

Action:

Prevents characters being printed on the screen (when TXT OUTPUT or TXT WR
CHAR is called). Applies to the currently selected stream. The cursor blob is also
disabled (by calling TXT CUR DISABLE).

Entry conditions:

Mo conditions,

Exit conditions:

AF corrupt.

All other registers preservesd.

Notes:

The control code buffer used by TXT OUTPUT is emptied, any incomplete control
sequence will be lost.

Control codes are still obeyed by TXT OUTPUT.

Related Entries:

TXTCUR DISABLE
TXT OUTPUT

TXT VDU ENABLE
TXTWRCHAR

AMSTRAD CPC464 FIRMWARE PAGE 1431

30: TXT OUTPUT #BB5A
Output a character or control code to the Text VDU.

Action:
Output characters to the screen and obey control codes {characters #00.#1F).
Works on the currently selected stream.

Entry conditions:
A contains the character to send.

Exit conditions:
All registers and flags preserved.

Notes:

This routine calls the TXT OUT ACTION indirection to do the work of printing the
character or obeying the control code described below.

Control codes may take up to 9 parameters. These are the characters sent following
the initial control code. The characters sent are stored in the control code buffer
until sufficient have been received to make up all the required parameters. The
control code buffer is only long enough to accept § parameter characters.

There is only one control code buffer for all streams. It is therefore possible to get
unpredictable results if the output stream is changed midway through sending a
control code pequence.

If the VDU is disabled then no characters will be printed on the screen. Control
codes will still be obeyed, however, the user should avoid using this ‘facility’ where
possible.

If the graphic character write mode is enabled then all characters and control codes
are printed using the Graphics VDU routine, GRA WR CHAR, and are not obeyed.

Characters are written in the same way that TXT WR CHAR writes characters.

Related Entries:

GRA WR CHAR
TXT OUT ACTION
TXT SET GRAPHIC
TXT VDU DISABLE
TXT VDU ENABLE
TXT WR CHAR

PAGE 1432 AMSTRAD CPC464 FIRMWARE

31: TXT WR CHAR #BB5D

Write a character to the screen.

Action:

Print a character on the screen at the cursor position of the currently selected
stream. Control codes (characters #00..#1F) are printed and not obeyed.

Entry conditions:

A contains the character to print.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

If the VDU is disabled then no character will be printed.

Hefnﬂpﬁnﬁngﬂm:hmdﬂthamrpuiﬁmhfmudhhewhhinthetﬂt
winduw[uuTIT?ALID}LTE}.Aﬂarprinﬁn:tha:hm:tﬂuumismn“d
right one character.

Tnpﬂthbth:uﬂermthﬂmrhhmﬁmu]lﬁtheTITWEEHﬁR
indivaction.

Related Entries:

GRA WR CHAR
TXT OUTPUT
TXTRD CHAR
TXT WRITE CHAR

AMSTRAD CPC484 FIRMWARE PAGE 1433

32: TXT RD CHAR #BB60

Read a character from the screen.

Action:
Readneh:mﬂﬂ*&nmthemnltth:umpmiﬁmnfthemnﬂr selected
Btream,.

Entry conditions:

No conditions.

Exit conditions:

If a recognisable character was found:

Carry true.
A contains the character read.

If no recognisable character was found:

Carry false.
A contains zero.

Always:

Other flags corrupt.
All other registers preserved.

Notes:
The cursor position is not forced legal (inside the window) before the character is

read. mﬂmﬂhﬂmh;ﬂdmﬁngm&ummﬁtﬁewm
{or even off the screen)!

The read is performed by comparing the matrix found on the screen with the
matrices used to generate characters. As a result changing a character matrix,
changing the pen or paper inks, or changing the screen (e.g. drawing a line through
a character) may make the character unreadable.
Tulzituﬂlymadthenhnrumﬁ'mﬂumntheTﬂmmdhmﬁmh
called.

Special precautions are taken against space being generated. Initially the character
is read assuming that the character was written in the current pen ink and treating
any other ink as background. If this fails to generate a recognisable character or it
generates space then another try is made by assuming that the background to the
charm:f.:;dwna written in the current paper ink and treating any other ink as
foreground.

The characters are scanned starting with #00 and finishing with #FF.
Related Entries:

TXT UNWRITE

TXT WR CHAR

PAGE 14.34 AMSTRAD CPC464 FIRMWARE

o

33: TXT SET GRAPHIC “#BB63
Turn on or off the Graphics VDU write character option.

Action:
Enable or disable graphic character writing on the currently selected stream.

Entry conditions:

If graphic writing is to be turned on:
A must be non-zero.

If graphic writing is to be turned off:
A must contain zero.

Exit conditions:

AF corrupt.

All other registers preserved.
Notes:

When gr:phitnhlm:ter'ﬁﬁngismh&adthmaﬂnhln:teﬁunihm
GLH‘FUTmpﬁmudnlingthEEuphim?DU{mGM‘ﬂmﬂHhR}mtherthm
the Text VDU (see TXT WR CHAR). Also all control codes are printed rather than
Mﬂhﬂﬂﬂmtmmﬂﬂﬂﬂwﬂhpﬂnhdunmﬂ.
ﬁuncterpﬁnﬁnghmtmtadhjdiuhﬁnﬂth!h:ﬂ'ﬂU{nithTﬂ?ﬂU
DISABLE) if graphic character writing is enabled.

Related Entries:

GRA WR CHAR
TXT OUTPUT

AMSTRAD CPC464 FIRMWARE PAGE 14.35

34: TXT WIN ENABLE #BB66

Set the size of the current text window.

Action:

Set the boundaries of the window on the currently selected stream. The edges are
the first and last character columns inside the window and the first and last
character rows inside the window.

Entry conditions:

H contains the physical column of one edge.

D contains the physical column of the other edge.

L contains the physical row of one edge.

E contains the physical row of the other edge.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

The edge positions are given in physical screen coordinates. i.e. Row 0, column 0 is
the top left corner of the screen and the coordinates are signed numbers.

The window is truncated, if necessary, so that it fits on the screen.

The left column of the window is taken to be the smaller of H and D. The top row of
the window is taken to be the smaller of L and E.

The cursor is moved to the top left corner of the window.
The window is not cleared.

Etheﬁndnwmﬂuﬂuwhuhmthmmntheﬁnﬂnkmﬂdthhuﬂnu
mﬂmuﬂm{mﬁﬂRHWRDLLIﬁllhauud.lfthewindn'mvmh:thau'rha
whole screen the software roll routine (see SCR SW ROLL) will be used.

The default text window covers the whole screen and is set up when TXT
INTTIALISE or SCR SET MODE is called.
Related Entries:

TXT GET WINDOW
TXT VALIDATE

PAGE 1436 AMSTRAD CPC464 FIRMWARE

35: TXT GET WINDOW #BB69

Get the size of the current window.

Action:

Get the boundaries of the window on the currently selected stream and whether it
covers the whole screen.

Entry conditions:

No conditions.

Exit conditions:

If the window covers the whole screen:
Carry false.

1f the window covers less than the whole screen:
Carry true.

Always:

H contains the leftmost column in the window.
D contains the rightmost column in the window.
L contains the topmost row in the window.

F contains the bottommost row in the window.

A corTupt.
All other registers preserved.
Notes:

The boundaries of the window are given in physical coordinates. i.e. Row 0, column
0 is the top left corner of the screen.

mhundaﬂuretmmdbrthiumﬁn:mmththEMEummmtwhﬂn
TITWENABLEmmﬂ:dhmﬂmwindnwilmuhdmﬁtthem.

Related Entries:

TXT VALIDATE
TXT WIN ENABLE

AMSTRAD CPC464 FIRMWARE PAGE 1437

36: TXT CLEAR WINDOW #BB6C

Clear current window.

Action:

Clear the text window of the currently selected stream to the paper ink of the
currently selected stream.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

The cursor is moved to the top left corner of the window.

Related Entries:

GRA CLEAR WINDOW
SCR CLEAR

TXT SET PAPER

TXT WIN ENABLE

PAGE 1438 AMSTRAD CPC464 FIRMWARE

37: TXT SET COLUMN : #BB6F

Set cursor horizontal position.

Action:

Move the current position of the currently selected stream fo a new column. The
cursor blob will be removed from the current position and redrawn at the new
position (if the cursor is enabled and turned on).

Entry conditions:

A contains the required logical column for the cursor.

Exit conditions:
AF and HL corrupt.
All other registers
Notes:

The required column is given in logical coordinates. i.e. Column 1 is the leftmost
column of the window.

The cursor may be moved outside the window. However, it will be forced to lie inside
the window before any character is written by the Text VDU (see TXT VALIDATE)
or the cursor blob is drawn.

Related Entries:

TXTGET CURSOR
TXTSET CURSOR
TXTSET ROW

AMSTRAD CPC464 FIRMWARE PAGE 14.39

38: TXT SET ROW #BB72

Set cursor vertical position.

Action:

Move the current position of the currently selected stream to a new row. The cursor
blob will be removed from the current position and redrawn at the new position (if
the cursor is enabled and turned on).

Entry conditions:

A contains the required logical row for the cursor.

Exit conditions:

Notes:

The required row is given in logical coordinates. i.e. Row 1 is the topmost row of the
window.

The cursor may be moved outside the window. However, it will be forced to lie inside
the window before any character is written by the Text VDU (see TXT VALIDATE)
or the cursor blob is drawn.

Related Entries:

TXTGET CURSOR
TXTSET COLUMN
TXTSET CURSOR

PAGE 14.40 AMSTRAD CPC464 FIRMWARE

39: TXT SET CURSOR #BB75

Set cursor position.

Action:
Move the current position of the currently selected stream to a new row and column.

The cursor blob will be remeved from the current position and redrawn at the new
position (if the cursor isenabled and turned on).

Entry conditions:

H contains the required logical column.
L contains the required logical row.
Exit conditions:

AF and HL corrupt.

All other registers

Notes:

The required position is given in logical coordinates. i.e. Row 1, column 1 is the top
left corner of the window.

The cursor position may be moved cutside the window. However, it will be foreed to
lie inside the window before any character is written by the Text VDU (see TXT
VALIDATE) or the cursor blob is drawn.

Rﬂated Entries:

TXTGET CURSOR
TXTSET COLUMN
TXTSETROW

AMSTRAD CPC464 FIRMWARE PAGE 1441

40: TXT GET CURSOR #BB78

Ask current cursor position.

Action:

Get the current location of the cursor and a count of the number of times the window
of the currently selected stream has rolled.

Entry conditions:

Noconditions.

Exit conditions:

H contains the logical cursor column.

L contains the logical cursor row.

A contains the current roll count.
corrupt.

All other registers are preserved.

Notes:

The cursor position is given in logical coordinates. i.e. Row 1, column 1 i the top left
corner of the window.

T‘nemﬂmuntpudwthumnhnluumuﬁu.Ithdmmtedwhmthe
window is rolled up and is incremented when the window is rolled down. It may be
fh&eﬂminewhﬂhﬂthewindnwhnmudh}rmmmﬁngitwithlprﬂim

ue.
Thepnﬂﬁnnmpmtadmyuntbeinddﬁm-inﬂnnmdh,maﬂfm.m
necessarily theguuiﬁnn:twhiththemﬂthm:terwiﬂhprintad. Use TXT
VALIDATE to check this.

Related Entries:

TXTSET COLUMN
TXTSET CURSOR
TXTSETROW
TXT VALIDATE

PAGE 14.42 AMSTRAD CPC464 FIRMWARE

41: TXT CUR ENABLE #BB7B

Allow cursor display - user.

Action:

Allow the cursor blob for the currently selected stream to be placed on the screen.
The cursor blob will be placed on the screen immediately unless the cursor is turned
off (see TXT CUR OFF).

Entry conditions:

No conditions.

Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

Cursor enabling and disabling is intended for use by the user. It is also used when
the VDU is dizabled isee TXT VDU ENABLE and TXT VDU DISABLE).
Related Entries:

TXT CUR DISABLE
TXT CUR ON

TXT DRAW CURSOR
TXT UNDRAW CURSOR

AMSTRAD CPC484 FIRMWARE PAGE 14.43

42: TXT CUR DISABLE #BBTE

Disallow cursor display - user.

Action:

Prevent the cursor blob for the currently selected stream from being placed on the
mn.ﬁmmrhlnhwiuhamﬂdhmthmhnmﬂinmlrifhil

currently there.
Entry conditions:
No conditions.

Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

Cursor enabling and disabling is intended for use by the user, It is also used when
the VDU is disabled (see TXT VDU ENABLE and TXT VDU DISABLE).
Related Entries:

TXT CUR ENABLE

TXT CUR OFF

TXT DRAW CURSOR
TXT UNDRAW CURSOR

PAGE 14.44 AMSTRAD CPC464 FIRMWARE

¥

43: TXT CUR ON #BB81

Allow cursor display - system.

Action:

Allow the cursor blob for the currently selected stream to be placed on the screen.
The eursor blob will be placed on the screen immediately unless the cursor is
disabled (see TXT CUR DISABLE).

Entry conditions:

No conditions.

Exit conditions:

All registers and flags preserved.

Notes:
Turningthuururmmdnﬂ‘ininundedh-unhrqﬂmnﬂm

Related Entries:

TXTCUR ENABLE

TXT CUR OFF
TXTDRAW CURSOR
TXTUNDRAW CURSOR

AMSTRAD CPC464 FIRMWARE PAGE 1445

44: TXT CUR OFF #BB84

Disallow cursor display - system.

Action:
Prevent the cursor blob for the currently selected stream from being placed on the
screen. The cursor blob will be removed from the screen immediately if it is

currently there.

Entry conditions:

No conditions.

Exit conditions:

All registers and flags preserved.

Notes:
Turning the cursor on and off is intended for use by systam ROMs.

Related Entries:

TXTCUR DISABLE
TXTCURON

TXT DRAW CURSOR
TXTUNDRAW CURSOR

PAGE 14.46 AMSTRAD CPC484 FIRMWARE

45: TXT VALIDATE '#BB87
Check if a cursor position is within the window.

Action:

Check & screen position to see if it lies within the current window. If it does not then
mmmwpdﬁmﬂm:muﬂerwu]dhepﬁmdaﬂﬂlpplmme rules
for forcing the screen pogition inside the window.

Entry conditions:

H contains the logical column of the position to check.
L contains the logical row of the position to check.

Exit conditions:
If printing at the position would not cause the window to roll:

Carry true.
B corrupt.

If printing at the position would cause the window to roll up:
Carry false.

B contains ¥FF.
If printing at the position would cause the window to roll down:

Carry false.
B contains #00.

Always:

H contains the logical column at which a character would be printed.
L contains the logical row at which a character would be printed.

A and other flags corrupt.
All other registers preserved.

Notes:

The positions on the screen are given in logical coordinates. i.e. Row 1, column 1 is
the top left corner of the window.

Before writing a character or putting the cursor blob on the screen the Text VDU
validates the current position, performs any required roll then writes at the

appropriate position.

AMSTRAD CPC464 FIRMWARE PAGE 1447

He algorithm to work out the position to print at, from the position to check, is as
lows:

lnflft.h:pniﬁmhﬁghtnfthuﬁ;hldpuftheﬁnﬂuwﬂhmﬂhthﬂdtdﬂ
of the window on the pext line.

2/ If the position is left of the left edge of the window it is moved to the right edge of
the window on the previous line.

afﬁthepuiﬁnni-mnhuththpdpu{thawinﬂuﬂhmitimmdmm-hp
udpenftheﬁndnwmdtharinMannmﬂingmm

4/ I the position is now below the bottom edge of the window it is muoved to the
hnttumudpenfthewimh‘mdthrﬂndnwmdnnlli:n[mﬂﬁ.
Related Entries:

S8CR HW ROLL
SCR SW ROLL
TXT GET CURSOR

PAGE 1448 AMSTRAD CPC464 FIRMWARE

46: TXT PLACE CURSOR #BBSA

Put a cursor blob on the screen.

Action:

Put & cursor blob on the screen at the cursor position for the currently selected
Flream.

Entry conditions:

No conditions

Exit conditions:
AFeorrupt.

All other registers preserved.
Notes:

TXT PLACE CURSOR is provided to allow the user to run multiple cursors in a
window. The indirection TXT DRAW CURSOR should be called for merely placing
the normal cursor blob on the screen. Higher level routines, such as TXT OUTPUT
and TXT SET CURSOR, automatically remove and place the normal cursor when
lppmpt‘hte,thluiﬂmultdulwﬂhmﬂhlrm

It i not safe to call TXT PLACE CURSOR twice at a particular screen position
without calling TXT REMOVE CURSOR in between because this may leave &
mmmummhlnhnnthrmnwhmthumpﬁﬁmi:mwd.

The cursor position is forced to be inside the window before the cursor blob is drawn.
mmmrblnbhminmpltdafwmadhruduﬁmsthemnununfm
screen at the cursor position with the exclusive-or of the current pen and paper inks.
Related Entries:

TXT DRAW CURSOR
TXT REMOVE CURSOR

AMSTRAD CPC464 FIRMWARE PAGE 1449

47: TXT REMOVE CURSOR #BB8D

Take a cursor blob off the screen.

Action:

Take & cursor blob off the screen at the cursor position of the currently selected
gtream.

Entry conditions:
No conditions.
Exit conditions:

AF eorrupt.
All other registers preserved.

Notes:

TXT REMOVE CURSOR is provided to allow the user to run multiple cursors in a
window. The indirection TXT UNDRAW CURSOR should be called for merely
%h@mﬁmhm.ﬂigﬁﬂkﬂdmuﬁmnﬂum
0 and T¥T SET CURSOR, automatically remove and place the normal
cursor when appropriate, the user must deal with any other cursors.

TXT REMOVE CURSOR should only be used to remove a cursor placed on the
screen by calling TXT PLACE CURSOR. The cursor should be removed when the
cursor position is to be changed (rolling the window implicitly changes the cursor
position) or the screen is to be read or written. Incorrect use of this routine may
result in a spurious cursor blob being generated.

The cursor position is forced to be inside the window before the cursor blob is
removed (this should not matter as TXT PLACE CURSOR has already done this).

The cursor blob is an inverse patch formed by exclusive-oring the contents of the
mnlthanmrpuiﬁmwithth:tnluﬁmithewtpanmdpaperinh.

Related Entries:

TXT PLACE CURSOR
TXT UNDRAW CURSOR

PAGE 14.50 AMSTRAD CPC464 FIRMWARE

48: TXT SET PEN #BB90

Set ink for writing characters.

Action:
Hﬂtthnhﬂpmhlﬁ:ﬂh&mnﬂyuluhdmﬂm-ﬁinhthainkthﬂi!undfw
writing characters (the foreground ink).

Entry conditions:

A containe ink touse.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

The ink is masked to bring it within the range of legal inks for the current screen
mode. That is with #0F in mode 0, #03 in mode 1 and ¥01 inmode 2.

The cursor blob will be redrawn using the new ink (if enabled).

Related Entries:

GRA SETPEN
SBCRSET INK
TXTGETPEN
TXTSETPAFPER

AMSTRAD CPC464 FIRMWARE PAGE 14.51

49: TXT GET PEN #BB93

Get ink for writing characters.

Action:

Ask what the pen ink is set to for the currently selected stream. This is the ink used
for writing characters (foreground ink).

Entry conditions:
Mo conditions.

Exit conditions:
A contains the ink.

Flags corrupt.

All other registers preserved.
Notes:

This routine has no other effects.

Related Entries:

GRAGETPEN
BCRGETINK
TXT GET PAPER
TXTSETPEN

PAGE 14.52 AMSTRAD CPC464 FIRMWARE

50: TXT SET PAPER #BB96
Set ink for writing text background.

Action:
Eettheu:tpapuinkfwthmﬂrulmdmm.ﬁiaiulheiﬂumﬂfw
wﬁtingthehmkgm‘m&hchlnﬂemandfurdwin;thatutﬂindnw-

Entry conditions:

A contains the ink touse.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

The ink is masked to bring it within the range of legal inks for the current screen
mode. That is with #0F in mode 0, #03 in mode 1 and #01 in mode 2.

The cursor blob will be redrawn using the new ink (if enabled).

This ink will be used when clearing areas of the text window (by TXT CLEAR
WINDOW and certain control codes),

Related Entries:

GRASETPAPER
BCRSETINK
TXTGETFPAPER
TXTSETPEN

AMSTRAD CPC464 FIRMWARE PAGE 14.53

51: TXT GET PAPER #BB99

Get ink for writing background.

Action:
Ask what the paper ink is set to for the currently selected stream. This is the ink
mrmmmmemmmmmmrmmngmmnm.

Entry conditions:

Mo conditions.

Exit conditions:

A contains the ink.

Flags corrupt.

All other registers preserved.
Notes:

This routine has no other effects.

Related Entries:

GRA GETPAPER
SCRGETINK
TXT GET PEN
TXTSETPAFPER

PAGE 14.54 AMSTRAD CPC464 FIRMWARE

52: TXT INVERSE #BBIC
Swap current pen and paper inks over.

Action:
th:uﬂminﬂmtr{fmunﬂmdhnkm:nd}inhﬁurthe

currently selected stream.

Entry conditions:

No conditions.

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

'l‘imnmb]uhiunntradummdmitdwuldmtheﬂnthamnwhmthia
routine iscalled.

Related Entries:

TXTSETPAPER
TXTSETPEN

AMSTRAD CPC464 FIRMWARE PAGE 14.55

53: TXT SET BACK #BBIF

Allow or disallow background being written.

Action:
Set character write mode to epaque or transparent for the currently selected
stream. Opague mode writes background with the character. Transparent mode
writes the character on top of the current contents of the screen.
Entry conditions:
If background is to be written (opaque mode):
A must be zero.
If background is not to be written (transparent mode):
A must be non-zero.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

Writing in transparent mode is intended for annotating diagrams and similar
applications. It can have unfortunate effects if it is used generally because

overwriting a character will not remove the character underneath thus creating an
incomprehensible jumble on the screen.

Setting transparent mode does not affect the Graphics VDU because GRA WR
CHAR always prints opague.
Related Entries:

TXT GET BACK
TXT WR CHAR
TXT WRITE CHAR

PAGE 14.58 AMSTRAD CPC464 FIRMWARE

54: TXT GET BACK #BBA2

Ask if background is being written.

Action:
Get the character write mode for the currently selected stream.

Entry conditions:
No conditions.
Exit conditions:
If background is to be written (opague mode):
A contains zero.
If background is not to be written (transparent mode:
A contalng DON-ZET0.
Always:
DE, HL and flags corrupt.
All other registers preserved.

Notes:
This only applies to the Text VDU, the Graphics VDU always writes opaque.

Related Entries:
TXTSET BACK

AMSTRAD CPC484 FIRMWARE . ; PAGE 14.57

55: TXT GET MATRIX #BBAS

Get the address of a character matrix.

Action:

Calculate a pointer to the matrix for a character and determine if it is 8 user defined
matrix.

Entry conditions:

A contains the character whose matrix is to be found.

Exit conditions:

If the matrix in the user defined matrix table:
Carry true.

If the matrix is in the lower ROM:
Carry false.

Always:
HL contains the address of the matrix.
A and other flags corrupt.
All other registers preserved.

Notes:

The matrix may be in RAM or in ROM. The Text VDU assumes that the
1ppmmi-teﬂﬂﬂsmmhladuﬂiuﬂdwhmuulhthilmnﬁnemﬂtth:
matrix for a character. (The lower ROM is on, the upper ROM is normally off).

The matrix is stored as an B byte bit significant vector. The first byte describes the
top line of the character and the last byte the bottom line. Bit 7 of a byte refers to
the leftmost pixel of a line and bit 0 to the rightmost pixel. If a bit is set in the
matrix then the pixel should be written in the pen ink. If a bit is not set then the
pi:ehhmﬂduitherhemiﬂaninﬂ:ep-winkurhﬁﬂm{dupmﬁn:mm
opague/transparent write mode).

Related Entries:
TXT SET MATRIX

PAGE 14.58 AMSTRAD CPC464 FIRMWARE

56: TXT SET MATRIX #BBAS

Set a character matrix.

Action:
En't.ﬂ:l.aMMITMIdeﬁn!dchm:m.[fthtthmmiﬂmtmrdeﬁmdthen
no action is taken.

Entry conditions:

A contains the character whose matrix is to be set.
HL contains the address of the matrix to set.

Exit conditions:

If the character is user definable:
Carry true.

If the character is not user definable:

Carry false.
Always:

A, BC, DE, HL and other flags carrupt.
All other registers preserved.

Notes:

The matrix is stored as an 8 byte bit significant vector. The first byte describes the
top line of the character and the last byte the bottom line. Bit 7 of a byte refers to
thalafhnm;inlnfllineaﬂdhitﬂtnﬂmrightmnutpiul-lfnhitilutintht
matrix then the pixel should be written in the pen ink. If a bit is not set then the
pi:alnhnu]deitherha-ﬁtbminthupnparinkwkﬂnhm{depmﬂngwhethﬂthe
character write mode is opaque or transparent currentlyl.

The matrix is copied from the area given into the character matrix table without
using RAM LAMs thus the matrices can be set from ROM providing it is enabled.
{(Note however that the jumpblock disables the upper ROM.)

Altering a character matrix changes the matrix for all streams. It does not alter any
character on the screen; it changes what will be placed on the screen the next time
the character is written.
Related Entries:

TXT GET MATRIX
TXTSET M TABLE

AMSTRAD CPC464 FIRMWARE PAGE 14.59

57: TXT SET M TABLE #BBAB
Set the user defined matrix table address.

Action:
Eettheumrdeﬁmdmahi:ublemdthznumhﬂufnhanmintheuhle.ﬂm
table is initialised with the current matrix settings.

Entry conditions:

DE contains the first character in the table.
HL contains the address of the start of the new table.

Exit conditions:
If there was no user defined matrix table before:

Carry false.
A and HL corrupt.
If there was & user defined matrix table before:
Carry true.
A contains the first character in the old table.
HL contains the address of the old table.
Always:

BC, DE and other flags corrupt.
All other registers preserved.

Notes:

lft.haﬁntchauntﬂrlpaciﬁndilluthnramﬂjﬁﬁthmrhnmhimIHﬂ
?.EmnhtwmthdmmmmnﬂerﬂﬁﬁmmhmMinthmr
ned table.

If the first character specified is not in the range 0..255 then the user defined matrix
table is deemed to contain no matrices (and the table address passed is ignored).

The table must be (256 — first char) * 8 bytes long. The matrices are stored in the
table in ascending order. The table is initialised with the current matrix settings,
whether they were previously in RAM or in the ROM.

T'heuhlenhmﬂdnﬂthelnﬂtﬂdinRAHundumathRDH.

It is permissible for the new and old matrix tables to overlap (thus allowing the
tahle to be extended or contracted) providing that matrices in the new table occupy
mmlianrathdﬂrmthmﬂmrm:piadfnumuﬂmhla.

PAGE 14.60 AMSTRAD CPC464 FIRMWARE

All streams share the matrix table so any changes to it will be reflected on all
pireams.

Related Entries:

TXTGETMTABLE
TXTSETMATRIX

AMSTRAD CPC464 FIRMWARE PAGE 14.61

58: TXT GET M TABLE #BBAE

Get user defined matrix table address.

Action:

Get the address of the current user defined matrix table and the first character in
the table.

Entry conditions:

Mo conditions.

Exit conditions:

If there is no user defined matrix table:

Carry false.
A and HL corrapt.

If there is a user defined matrix table:

Carry true.
A contains the first character in the table.
HL contains the address of the start of the table.

Always:

Other flags corrupt.
All other registers preserved.

Notes:

The matrices for characters between the first character and 255 are stored in the
table in ascending order. Each matrix is 8 bytes long.

Related Entries:

TXT GET MATRIX
TXT SET M TABLE

PAGE 14.82 AMSTRAD CPC464 FIRMWARE

59: TXT GET CONTROLS #BBB1

Fetch address of control code table.

Action:
Get the address of the control code table.

Entry conditions:
No conditions.

Exit conditions:

HL contains the address of the control code table.
All other registers and flags preserved.

Notes:

All streams share one control code table g0 that any changes made to the table will
affect all streams.
The control code table has & 3 byte entry for each control code. The entries are
stored in ascending order, so the entry for #00 is first and that for #1F is last. The
first byte of each entry is the number of parameters the control code requires, the
uthut!nhﬂumth!nkhﬂﬁufthmnﬁMMElﬂhmﬂumtmlm&e
wh:naﬂiupmmﬂmhaubammuiwd.mmmuthalmtadhthe
central 32K of RAM. It must obey the following interface:
Entry:

A contains the last character added to the buffer.

B contains the length of the buffer (including the control code).

C contains the same as A.

HL contains the address of the control code buffer (points at the
control code).

Exit:
AF,BC, DE, HL corrupt.
All other registers preserved.

As the control code buffer only has space to store § parameter characters the
number of parameters required should be limited to 8 or fewer.

mmnWInﬂeuhhhmiﬂHaMhﬂ:ﬂdhuhmuﬂmwmmﬂEﬂﬂTh

Related Entries:
TXT OUTPUT

AMSTRAD CPC464 FIRMWARE . PAGE 14.63

60: TXT STR SELECT #BBB4

Select a Text VDU stream.

Action:
Make a given stream the currently selected stream (if it ian't already).

Entry conditions:
A contains the required stream.

Exit conditions:
A contains the previously selected stream.

HL and flags corrupt.
All other registers preserved.

Notes:

The requested stream number is masked (with #07) to make it into a legal stream
number.

Many attributes of the Text VDU may be set independently on different streams. It
iuimpmtmttnmmthatﬂmmrrﬂmumiuﬂeﬂd!hmmnfm“
altered. These atiributes are:

Pen ink.

Paper ink.

Window limits.

Cursor enable/disable.

Cursor on/off.

VDU enable/disable.

Character write mode.

Graphic character write mode.

If the stream is already selected then this routine returns quickly. It is not
wumhl:mmhdlyula:tlm{hﬂmmnhuutwmt,fnr
example).

Related Entries:

TXT OUTPUT

PAGE 14.84 AMSTRAD CPC464 FIRMWARE

61: TXT SWAP STREAMS #BBB7

Swap the states of two streams.

Action:

The stream descriptors for two streams are exchanged. The currently selected
mnmhrmnmhm{ﬂmughihdmimrmrhwhqﬂmﬁl

B contains a stream number,
C contains another stream number.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The stream numbers passed are masked (with #07) to ensure that they are legal
stream numbers.

The attributes that are exchanged are:

Pen ink_

Paper ink.

Cursor position.

Window limita.
Window roll count.

Cursor enable/dizable.

Cursor on/off.

VDU enable/disable.
Character write mode.
Graphic character write mode.

Related Entries:
TXT STR SELECT

AMSTRAD CPC4684 FIRMWARE PAGE 14.85

62: GRA INITIALISE #BBBA
Initialise the Graphics VDU.

Action:

The Graphics VDU is fully initialised [nsdwin:EHB!-A]lﬂnphi:‘u"DU variables
and indirections are set to their default values.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.

Notes:

The full operation is:

Set the Graphics VDU indirections (GRA PLOT, GRA TEST and GRA LINE)
to their default routines.

Set the graphic paper to ink 0,

Set the graphic pen to ink 1.

Set the user origin to the bottom left corner of the screen.

Mave the current position to the user origin.

Set the graphics window to cover the whole screen.

The graphics window is not cleared.

Related entries:

GRA RESET
SCR INITIALISE

PAGE 14.86 AMSTRAD CPC484 FIRMWARE

63: GRA RESET #BBBD

Reset the Graphics VDU.

Action:

Re-initialise the Graphics VDU indirections to their default routines.
Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

Sets the Graphics VDU indirections {GRA PLOT, GRA TEST and GRA LINE) to
their default routines. No other action is taken.

Related entries:
GRA INITIALISE

AMSTRAD CPC464 FIRMWARE PAGE 14.67

64: GRA MOVE ABSOLUTE #BBCO

Move to an absolute position.

Action:
Move the current pogition to an absolute position.

Entry conditions:

DE contains the required user X coordinate.

HL contains the required user Y coordinate.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

The new position is given in user coordinates. i.e. Relative to the user origin.
The new position can be outside the graphics window.

The Graphic VDU plotting, testing and line drawing routines all move the current
graphics position to the point (or endpoint) specified automatically.
Related entries:

GRA ASKE CURSOR
GRA MOVE RELATIVE

PAGE 14.68 AMSTRAD CPC464 FIRMWARE

65: GRA MOVE RELATIVE #BBC3

Move relative to current position.

Action:

Move the current position to relative to its current position.
Entry conditions:

DE contains a signed X offset.

HL contains 8 signed Y offset.

Exit conditions:

AF BC, DE and HL corrupt.

All other registers pressrved.

Notes:

The Graphic VDU plotting, testing and line drawing routines all move the current
graphics position to the point (or endpoint) specified automatically.
Related entries:

GRA ASKE CURSOR
GRAMOVE ABSOLUTE

AMSTRAD CPC484 FIRMWARE il PAGE 14.89

66: GRA ASK CURSOR #BBC6

Get the current position.

Action:
Ask where the current graphics position is.

Entry conditions:
Mo conditions.
Exit conditions:

DE contains the user X coordinate.
HL econtains the user Y coordinate.

AF corrupt.
All other registers preserved.

Notes:

The current position is given in user coordinates. i.e. Relative to the user origin.

The Graphic VDU plotting, testing and line drawing routines all move the current
graphics position to the hi‘,tcs:'.u’t {or endpoint) specified automatically. Thus, the
position returned is y where the last point was plotted or tested.

Related entries:

GRAMOVE ABSOLUTE
GRAMOVE RELATIVE

PAGE 14.70 AMSTRAD CPC464 FIRMWARE

67: GRA SET ORIGIN #BBC9
Set the origin of the user coordinates.

Action:

Set the location of the user origin and move the current position there.
Entry conditions:

DE contains the standard X coordinate of the origin.

HL contains the standard Y coordinate of the origin.

Exit conditions:

AF,BC, DE and HL corrupt.

All other registers preserved.

Notes:

The origin position is given in standard coordinates in which (0,0} is the bottom left
corner of the screen.

The default origin position is at (0,0). Whenever the screen mode is changed, by
ealling SCR SET MODE, the origin is restored to its default position.

Related entries:
GRA GET ORIGIN

AMSTRAD CPC464 FIRMWARE PAGE 14.71

68: GRA GET ORIGIN #BBCC

Get the origin of the user coordinates.

Action:
Ask where the user coordinate origin is located.

Entry conditions:
Mo conditions.

Exit conditions:

DE contains the standard X coordinate of the origin.
HL contains the standard Y coordinate of the origin.

All other registers preserved.

Notes:

The origin position is given in standard coordinates in which (0,0) is the bottom left
corner of the screen.

Related entries:
GRA SET ORIGIN

PAGE 14.72 AMSTRAD CPC484 FIRMWARE

69: GRA WIN WIDTH #BBCF
Set the right and left edges of the graphics window.

Action:

Set the horizontal position of the graphics window. The left and right edges are
respectively the first and last points that lie inside the window horizontally.
Entry conditions:

DE contains the standard X coordinate of one edge.
HL contains the standard X coordinate of the other edge.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.
Notes:

The window edges are given in standard coordinates - in which (0,0) is the bottom
left corner of the sereen and coordinates are signed 16 bit numbers.

The left edge of the window is deemed to be the emaller of the two edges supplied.

The window will be truncated, if necessary, to make it fit the screen. The edges are
moved to screen byte boundaries so that the window only contains whole bytes (the
left edge is moved left, the right edge is moved right). This moves the coordinates of
the edges as follows in the various modes:

Mode Left Edge Right Edge
0 Multiple of 2 Multiple of 2 minus 1
1 Multiple of 4 Multiple of 4 minus 1
2 Multiple of 8 Multiple of 8 minus 1

The default window covers th= whole screen. Whenever the screen mode is changed
the window is restored to its defanlt size.

All Graphics VDU point plotting and line drawing routines test whether the points
they are about to plot lie inside the window; if they are not then the points are not
plotied.

Related entries:

GRA GET W WIDTH
GRA WIN HEIGHT

AMSTRAD CPC464 FIRMWARE PAGE 14.73

70: GRA WIN HEIGHT #BBD2
Set the top and bottom edges of the graphics window.

Action:

Set the vertical position of the graphics window. The top and bottom edges are
respectively the last and first points that lie inside the window vertically.

Entry conditions:

DE contains the standard Y coordinate of one edge.
HL contains the standard Y eoordinate of the other edge.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.
Notes:

The window edges are given in standard coordinates - in which (0,0) is the bottom
left corner of the screen and coordinates are signed 16 bit numbers.

The top edge will be deemed to be the higher of the two edges supplied.

The window will be truncated, if necessary, to make it fit the screen. The edges will
be moved to lie on screen line boundaries so that only whole screen lines are
included in the window (the top edge will be moved up, the bottom edge will be
moved down). This moves the bottom edge to an even coordinate and the top edge to
an odd coordinate.

The default window covers the whole screen. Whenever the screen mode is changed
the window ie restored to its default size.

All Graphics VDU point plotting and line drawing routines test whether the pointa
they are about to plot lie inside the window; if they do not then the points are not
plotted.

Related entries:

GRA GET W HEIGHT
GRA WIN WIDTH

PAGE 14.74 AMSTRAD CPC484 FIRMWARE

71: GRA GET W WIDTH #BBD5

Get the left and right edges of the graphics window.

Action:

Ask the horizontal position of the graphics window. The left and right edges are
respectively the first and last points that lie inside the window horizontally.
Entry conditions:

No conditions.

Exit conditions:

DE econtains the standard X coordinate of the left edge of the window.
HL contains the standard X coordinate of the right edge of the window.

AF corrupt.
All other registers preserved.
Notes:

The window edges are given in standard coordinates in which (0,0) is the bottom Jeft
eorner of the screen.

The may not be exactly the same as those that were set using GRA WIN
as the window is truncated to fit the screen and the edges are moved to
screen byte boundaries so that the window only contains whole bytes .

Related entries

GRA GET W HEIGHT
GRA WIN WIDTH

AMSTRAD CPC464 FIRMWARE e PAGE 14.75

72: GRA GET W HEIGHT #BBDS8
Get the top and bottom edges of the graphics window.

Action:

Ask the vertical position of the graphics window. The top and bottom edges are
respectively the last and first points that lie inside the window vertically.

Entry conditions:

No conditions.

Exit conditions:

DE contains the standard Y coordinate of the top edge of the window.
HL contains the standard Y coordinate of the bottom edge of the window.

AF eorrupt.
All other registers preserved.
Notes:

The window edges are given in standard coordinates. i.e. With (0,0) being the
bottom left corner of the screen.

The edges may not be exactly the same as those passed to GRA WIN HEIGHT as the
window is truncated to fit the screen and the edges are moved to lie on screen line
boundaries so that only whole screen lines are included in the window.

Related entries:

GRA GET W WIDTH
GRA WIN HEIGHT

PAGE 14.76 AMSTRAD CPC484 FIRMWARE

73: GRA CLEAR WINDOW

Clear the graphic window.

Action:

Clear the graphics window to the graphics paper ink.
Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

#BBDB

The current graphics position is moved to the origin of the user coordinates.

Related entries:

GRA BET PAPER
GRA WIN HEIGHT
GRA WIN WIDTH
BCR CLEAR

TXT CLEAR WINDOW

AMSTRAD CPC464 FIRMWARE

PAGE 14.77

74: GRA SET PEN #BBDE
Set the graphics plotting ink.

Action:
Betthegrnphicspeuink.ﬁi:inth&inkmﬂhrtbeﬂmphiu?ﬂﬂfurplming
points, drawing lines and writing characters.

Entry conditions:

A contains the required ink.

Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

Theinhismuhdt.nhringitinth:n.ﬂg'tnfinhfnrthemmlmmndn.ln
mode 0 the mask is #0F, in mode 1 it is #03 and in mode 2 it is #01.

Related entries:

GRA GETPEN
GRA SETPAPER
BCRSETINK
TXTSET PEN

PAGE 14.78 AMSTRAD CPC464 FIRMWARE

75: GRA GET PEN #BBE1

Get the current graphics plotting ink.

Action:

Ask what the current graphics pen ink is set to. This is the ink used by the
Graphics VDU for plotting points, drawing lines and writing characters.

Entry conditions:

No conditions.

Exit conditions:

A contains the ink.

ﬂ?ﬁ‘ﬁﬂr&ﬁﬁmm
Notes:
This routine has no other effects.

Related entries:

GRA GET PAPER
GRA BET PEN
SCR GETINK
TXT GET PEN

AMSTRAD CPC464 FIRMWARE PAGE 14.79

76: GRA SET PAPER #BBE4

Set the graphics background ink.

Action:

Set the graphics paper ink.
Entry conditions:

A contains the required ink.
Exit conditions:

AF corrupt.

All other registers preserved.

Notes:

Thein.'liuma:kedtnhﬁngitintharmgznfinhfnrﬂutumntmnmﬂa.h
mode 0 the mask is #0F, in mode 1 it is #03 and in mode 2 it is #01.

The paper ink is the ink that is used for clearing the graphics window, and writing
theba:hpmndhchunﬂm[lhmmadtﬂmurnmhmmﬁdem!
graphics window when testing points.

Related entries:

GRA GET PAPER
GRA SETPEN
SCR GET INE
TXT SET PAPER

PAGE 1480 AMSTRAD CPC484 FIRMWARE

77: GRA GET PAPER #BBET7
Get the current graphics background ink.

Action:

Ask what the current graphics paper ink is set to.
Entry conditions:

No conditions.

Exit conditions:

A contains the ink.

mer mg:u#ﬂpruend
Notes:

The paper ink is the ink that is used for clearing the graphics window and writing
the background to characters. It is mssumed to cover everywhere outside the
graphics window when testing points.

Related entries:

GRA GET PEN
GRA SET PAPER
SCR GET INK
TXT GET PAPER

AMSTRAD CPC464 FIRMWARE : PAGE 1481

78: GRA PLOT ABSOLUTE #BBEA

Plot a point at an absolute position.

Action:

The current graphic position is moved to the position supplied. If this lies inside the
graphics window then the point is plotted in the current graphics pen ink using the
current graphics write mode. If the point lies outside the graphics window then no
action istaken.

Entry conditions:

DE contains the user X coordinate to plot at.

HL contains the user Y coordinate to plot at.

Exit conditions:

AF,BC, DE and HL corrupt.

All other registers preserved.

Notes:

The position to plot at is given in user coordinates. i.e. Relative to the user origin.
This routine calls the GRA PLOT indirection to plot the point. In its turn GRA
PLOT calls the SCR WRITE indirection to set the pixel (if it is in the window).
Related entries:

GRA PLOT
GRAPLOTRELATIVE
GRA TEST ABSOLUTE

PAGE 14.82 AMSTRAD CPC464 FIRMWARE

79: GRA PLOT RELATIVE #BBED

Plot a point relative to the current position.

Action:
ﬁemﬁmﬁﬁﬁmhmﬂhhpﬁﬁwwﬂﬂmﬁumﬂerm
wﬁﬁﬂw&mhpﬂhﬂﬂdhﬁmﬁmﬁmmmmﬂu
current graphics write mode. lfth:pnintﬁumuﬂdtthpmphiﬂswindnthannn
action is taken, /

Entry conditions:

DE contains a gigned X offset.

HL contains a signed Y offset.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

The position to plot at is given in relative coordinates. i.e. Relative to the current
graphics position.

This routine ealls the GRA PLOT indirection to plot the point. In its turn GRA
mmﬁmﬂmiﬂmwmhﬁ:ﬂﬁfﬂhhhﬁﬂw}.
Related entries:

GRA PLOT
GRA PLOT ABSOLUTE
GRA TEST RELATIVE

AMSTRAD CPC464 FIRMWARE PAGE 1483

80: GRA TEST ABSOLUTE #BBF0

Test a point at an absolute position.

Action:
ThunmtwﬁcpndﬁmhmvthhIpnﬁMHmpplid.Iﬂhjshuhﬂdam
gmphim'indn#thmﬂuphr]iuuﬂﬁ'mthmmﬂththkithmhh
dumﬂudmdmtumuilfthnpuiﬁwliumhiﬂathamphiuwin&uwthmthn
current paper ink is

Entry conditions:

DE contains the user X coordinate to test at.

HL contains the user Y coordinate to test at.

Exit conditions:

A contains the ink of the specified point (or the graphica paper ink).

BC, DE, HL and flags corrupt.

All other registers preserved.

Notes:
T‘hepﬂiﬂnnhuhutisgimtnwmdimﬁuu.hl-ﬁmmthaummigin.
Thhmuﬁnnulhtheﬂﬂiﬁ?inﬂirmﬁmhﬂtthapnhhhiumﬁﬂ
TF-?Tﬂﬂlth!ERHEADhﬂin:ﬁwtntutﬂupd:tlﬁfﬂhinﬂnwﬂﬂnﬂ.
Related entries:

GRA PLOT ABSOLUTE
GRA TEST
GRA TEST RELATIVE

PAGE 1484 AMSTRAD CPC464 FIRMWARE

81: GRA TEST RELATIVE #BBF3
Test a point relative to the current position.

Action:

The current graphic position is moved to the position supplied. If this lies inside the
graphics window then the pi] is read from the screen and the ink it is set to is
decoded and returned. If the position lies outside the graphics window then the
current paper ink is returned.

Entry conditions:

DE contains a signed X offset.

HL contains a signed Y offset.

Exit conditions:

A contains the ink of the specified point (or the graphics paper ink).

BC, DE, HL and flags corrupt.

All other registers preserved.

Notes:

The position to test is given in relative coordinates. ie. Relative to the current

Thiz routine calls the GRA TEST indirection to test the point. In its turn GRA
TEST calls the SCR READ indirection to test the pixel (ifit is in the window).

Related entries:

GRA PLOT RELATIVE
GRATEST
GRATEST ABSOLUTE

AMSTRAD CPC464 FIRMWARE PAGE 14.85

82: GRA LINE ABSOLUTE #BBF6

Draw a line to an absolute position.

Action:

Move the current graphics position to the endpoint supplied. All points between this
position and the previous graphics position that lie inside the graphics window will
be plotted in the current graphics pen ink using the current graphics write mode.
Points that lie outside the graphics window are ignored.

Entry conditions:

DE contains the user X eoordinate of the endpoint.

HL contains the user Y coordinate of the endpoint.

Exit conditions:

AF, BC, DE and HL eorrupt.

All other registers preserved.

Notes:

The position of the end of the line is given in user coordinates. i.e. Relative to the
user origin.

This routine calls the GRA LINE indirection to draw the line. In its turn GRA LINE
calls the SCR WRITE indirection to write the pixels (for pixels in the graphics
window).

Related entries:

GRA LINE
GRA LINE RELATIVE

PAGE 14.86 AMSTRAD CPC464 FIRMWARE

83: GRA LINE RELATIVE #BBF9

Draw a line relative to the current position.

Action:

Move the current graphics position to the endpoint supplied. All points between this
position and the previous graphics position that lie inside the graphics window will
be plotted in the current graphics pen ink using the current graphics write mode.
Points that lie outside the graphics window are ignored.

Entry conditions:

DE contains the signed X offset of the endpoint.

HL contains the signed Y offset of the endpoint.

Exit conditions:

AF,BC, DE and HL corrupt.

All other registers preserved.

Notes:

The position of the end of the line is given in relative coordinates. i.e. Relative to the
current graphics position.

This routine calls the GRA LINE indirection to draw the line. In its turn GRA LINE
calls the SCR WRITE indirection to write the pixels (for pixels in the graphics
window).

Related entries:

GRALINE
GRA LINE ABSOLUTE

AMSTRAD CPC464 FIRMWARE PAGE 14.87

84: GRA WR CHAR #BBFC

Put a character on the screen at the current graphics position.

Action:
Write a character on the screen at the current graphics position.

Entry conditions:
A contains the character towrite.

Exit conditions:

AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:
Themm:berilmittznndthihtuplaﬂ.mmerhdngthﬁmtmphimpuﬁﬁm.
All characters are printed, even control codes (characters #00..#1F).
Themntpwiﬁnnhmwedﬂghthﬂhewiﬂthnfmmmdﬂfmdﬁurmnthﬂ
nhmr:m'lnhewril:unj.Iumudaﬂthinmnveilﬂpninhﬁght,inmnda 1 the move
i& 16 points and in mode 0t is B points.
nuhmmﬁnhemmmmmmmpmcmmmmwm
will be written in the current gmphinpaperink."rhaha:k;rmﬂwill always be
written even if the Text VDU is writing characters in transparent mode. Pixels in

the;huuurthatli!nutaidethamplﬁuwimh-willmthepdnttnﬂ.ﬁepinlnm
phtﬂﬂqhﬂﬂﬂﬁﬂﬁhﬁrﬂnnnmﬂmﬁmmwmt

graphics write mode.

Related entries:

TXTSET GRAPHIC
TXTWRCHAR

PAGE 14.88 AMSTRAD CPC464 FIRMWARE

85: SCR INITIALISE 4BBFF

Initialise the Screen Pack.

Action:

Full initialisation of the Screen Pack (as used during EMS). All Screen Pack
variables and indirections are initialised, also the screen mode and the inks are
initialised to their default settings.

Entry conditions:
Mo conditions.

Exit conditions:

AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:

The screen indirections (SCR READ, SCR WRITE and SCR MODE CLEAR) are set
to their default routines .

The inks are set to their default colours (see V.

The ink flashing periods are set to their default values.

The screen is put into mode 1.

The screen base is set to put the screen memory at #C000..#FFFF (under the
upper ROM).

The screen offset is et to 0.

The screen is cleared to ink 0.

The Graphice VDU write mode is set to FORCE mode.

The ink flashing frame fiyback event is set up.

The initialisation is performed in an order that attempts to avoid the previous
contents of the screen becoming visible (at EMS the contents will be random).

Related entries:

GRA INITIALISE
SCR RESET
TXT INITIALISE

AMSTRAD CPC464 FIRMWARE PAGE 14.89

86: SCR RESET #BC02

Reset the Screen Pack.

Action:

Re-initialises the Screen Pack indirections and the ink colours. Also re-initialises
the flash rate and Graphics VDU write mode.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.

All other registers preserved.

Notes:

The screen indirections (SCR READ, SCR WRITE and SCR MODE CLEAR) are set

to their default routines.

The inks are set to their default colours (see Appendix V.
The ink flashing periods are set to their default values.
The Graphics VDU write mode is set to FORCE mode.

The inks are not passed to the hardware. This will be done when the inks flash next.

Related entries:

SCR INITIALISE
SCR SET ACCESS
SCR SET FLASHING
SCR SET INK

PAGE 14.90 AMSTRAD CPC464 FIRMWARE

87: SCR SET OFFSET #BCO5

Set the offset of the start of the screen.

Action:

Set the offset of the first character on the screen. By changing this offset the screen
can be rolled.

Entry conditions:
HL contains the required offset.
Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

The offset passed is masked with #07TFE to make sure it is not too big and to make
sure that the offset is even. (The screen is only capable of rolling in two byte
increments).

The screen base and screen offset are combined into a single value and sent to the
hardware together,

The screen offset is used by SCR CHAR POSITION and SCR DOT POSITION to
calculate screen addresses. If the screen offset is changed merely by calling the
Machine Pack routine MC SCREEN OFFSET then the Text and Graphics VDUs
will use incorrect screen addresses.

The offset is set to zero when the screen mode is set or the screen is cleared by
calling SCRCLEAR.

Related entries:

MC SCREEN OFFSET
SCR GETLOCATION
SCRHW ROLL
SCRSETBASE

AMSTRAD CPC464 FIRMWARE PAGE 14391

88: SCR SET BASE #BCO08

Set the area of RAM to use for the screen memory.

Action:

Sets the base address of the screen memory. This can be used to move the screen out
from underneath the upper ROM or to display a prepared screen instantly.

Entry conditions:

A contains the mare gignificant byte of the base address.

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

The screen memory can only be located on a 16K boundary so the value passed is
masked with #C0. The default screen base, set at EMS, is #CO0.

The screen offset is combined with the screen base into a single value which is sent
to the hardware.

The screen base address is used by SCR CHAR POSITION and SCR DOT
POSITION to calculate screen addresses. If the screen base is changed merely by
ealling the Machine pack routine MC SCREEN OFFSET then the text and graphics
VDUs will use incorrect screen addresses.

The screen memory is not cleared when the screen base is set, use SCR CLEAR todo
this.
Related entries:

MC SCREEN OFFSET
SCR GET LOCATION
SCR SET OFFSET

PAGE 14.82 AMSTRAD CPC464 FIRMWARE

89: SCR GET LOCATION #BCOB

Fetch current base and offset settings.

Action:
Ask where the screen memory is located and where the start of the screen is.

Entry conditions:
No conditions.
Exit conditions:

A contains the more significant byte of the base address.
HL contains the current offset.

Flags corrupt.
All other registers preserved.
Notes:

The base and offsets returned by this routine may not be the same as those set using
SCR SET BASE or SCR SET OFFSET, This is because the values are masked to
make them legal and the screen offset is also changed when the hardware screen
rolling routine, SCR HW ROLL, is used.

Related entries:

SCR SET BASE
SCR SET OFFSET

AMSTRAD CPC464 FIRMWARE PAGE 1493

90: SCR SET MODE #BCOE

Set screen into a new mode.

Action:

Put the screen into a new mode and make sure that the Text and Graphics VDUs
are sel up correctly.

Entry conditions:

A contains the required mode.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.
Notes:

The mode requested is masked with #03. If the resulting value is 3 then no action is
taken. Otherwise one of the following screen modes is set up:

Mode O 160 x 200 pixels, 20 x 25 characters.
Mode 1: 320 x 200 pixels, 40 x 25 characters.
Mode 2: 640 x 200 pixels, 80 x 25 characters.

At an early stage the screen is cleared to avoid the old contents of the screen being
difg!ﬁbdinth:mmude. The screen is cleared by calling the SCR MODE
C indiracti

All text and graphics windows are set to cover to whole screen and the graphics user
origin is set to the bottom left corner of the screen. The cursor blobe for all text

gtreams are turned off.
Thmuthﬂlﬂpawm”rhhmmhdulmmmm
new mode (see TXT SET et al). When changing mode to a mode that allows
fewer inks on the screen this may cause the pen or paper inks to change.

Related entries:

MCSETMODE
SCRGETMODE

PAGE 1454 AMSTRAD CPC464 FIRMWARE

91: SCR GET MODE

Ask the current screen mode.

Action:

Fetch and test the current screen mode.

Entry conditions:
Mo conditions.

Exit conditions:
If current mode is mode 0:

Carry true.
Zero falsa,
A contains 0.

If current mode is mode 1:

Carry false.
Zero true.
A contains 1.

If current mode is mode 2:

Carry false.
Zero false.
A contains 2.
Always:
Other flags corrupt.
All other registers preserved.
Notes:
The modes are:
Mode 0: 160 x 200 pixels,
Mode 1: 320 x 200 pixels,
Mode 2: 640 x 200 pixels,
Related entries:
SCR SET MODE

AMSTRAD CPC464 FIRMWARE

20 x 25 characters.
40 x 25 characters.
B0 x 25 characters.

"#BC11

PAGE 14.95

92: SCR CLEAR #BC14

Clear the screen (to ink zero).

Action:
Clear the whole of screen memory to zero.

Entry conditions:
No conditions.

Exit conditions:
AF,BC, DE and HL corrupt.
All other registers preserved.
Notes:

At an early stage the ink flashing is turned off and the inks are all set to the same
colour as ink 0. This makes the screen clearing appear instantaneous. When all the
screen memory has been set to 0 the ink flashing is turned back on (an ink flashing
event is added to the frame flyback queue) and all inks are set to their proper
colours.

If the text paper ink and the graphics paper ink are not set to ink 0 then this will
become apparent on the screen when characters are written or windows are cleared.

The screen offset is set tozero,

Related entries:

GRA CLEAR WINDOW
SCRMODE CLEAR
TXT CLEAR WINDOW

PAGE 14.86 AMSTRAD CPC464 FIRMWARE

93: SCR CHAR LIMITS "#BC17

Ask the size of the screen in characters.

Action:
Get the last character row and eolumn on the screen in the current mode.

Entry conditions:
No conditions.
Exit conditions:

B contains the physical last column on the screen.
C contains the physical last row on the screen.

AF eorrupt.
All other registers preserved.
Notes:

The screen edges are given in physical coordinates. i.e. Row 0, column 0 is the top
left corner of the screen. This means that the last column on the screen is 19 in mode
0, 39 in mode 1 and 79 in mode 2. The last row on the screen is 24 in all modes.

Related entries:
SCRGETMODE

AMSTRAD CPC464 FIRMWARE PAGE 1497

94: SCR CHAR POSITION #BC1A

Convert physical coordinates to a screen position.

Action:
Calculate the screen address of the top left corner of a character position on the
screen. Also return the width of a character in the current mode.

Entry conditions:

H contains the physical character column.
L contains the physical character row.

Exit conditions:
HL contains the screen address of the top left corner of the character.
B contains the width in bytes of a character in screen memory.
AF corrupt.
All other registers preserved.
Notes:
The character position is given in physical coordinates. i.e. Row 0, column 0 is the
top left corner of the screen.
The character position given is not checked for being legal. An illegal position (one
putside the limits of the screen) will generate a meaningless screen address.
The conversion to screen address uses the following formula:
Sereen address = Sereen base + (Block offset MOD #0800)
where:
Block offset = (Row * 80) + (Column * Width) + Screen offset
and:
Screen base is the address of the start of screen memary.

Width is the width of a character in bytes in the current mode (4 in
mode 0, 2 in mode 1, 1 in mode 2).

Screen offset is offset of the first byte to be displayed on the screen.

Related entries:

SCR DOT POSITION
SCR NEXT BYTE
SCR NEXT LINE
SCR PREV BYTE
SCR PREV LINE

PAGE 14.98 AMSTRAD CPC464 FIRMWARE

95: SCR DOT POSITION ¥BC1D
Convert base coordinates to a screen position.

Action:

Calculate the screen address and mask for a pixel, Also return an indication of the
nmnherd‘pinlllnlmh:ﬂeinthemmtmnde.

Entry conditions:

DE contains the base X coordinate of & pixel.
HL contains the base Y coordinate of a pixel.
Exit conditions:

HL contains the screen address of the pixel.
C contains the mask for the pixel.
B contains one less than the number of pixels in a byte.

AF and DE corrupt.

All other registers

Notes:

The pixel position is given in base coordinates, i.e. (0,0) is the pixel in the bottom
laft corner of the screen and each coordinate position refers to a single pixel.

The pixel position is not checked for being legal (within the limits of the screen). If
it is not then the screen address calculated is meaningless.

Manwﬂnntnnunlﬂd:wmhfhllmiufurmnh:
Sereen address = Screen base + (Line in row * #0800) + (Row offset MOD #0800)

where:

Screen base is the start address of screen memory.

Lineinrow = (199 — Y coordinate) MOD 8

Row offset = (Row namber * 80) + Byte in row + Screen offset
and:

Row number = (199 — Y coordinate) /8

Byte in row = X coordinate / Byte width

Screen offset is offset of the first byte to be displayed on the screen.

AMSTRAD CPC464 FIRMWARE PAGE 14.99

Bytewidth is the number of pixels in a byte in the current mode (2 in mode
0,4 inmode 1, 8 in mode 2).

X coordinate MOD Byte width is used to calculate the mask for the appropriate
pixel.
Related entries:

SCR CHAR POSITION
SCRNEXTBYTE
BCRNEXT LINE
SCRPREVBYTE

SCR PREV LINE

PAGE 14.100 AMSTRAD CPC464 FIRMWARE

96: SCR NEXT BYTE ‘#BC20

Step a screen address right one byte.

Action:
Caleulate the screen address of the byte right of the supplied screen address.

Entry conditions:
HL contains a screen address.

Exit conditions:
HL contains the updated screen address.

AF corrupt.
All other registers preserved.

Notes:

Hwingnifﬂ:unddﬁemﬁnuhnﬂwmﬂhﬁﬂﬁmﬂrpiﬂt&m
ﬂdmnthmﬂbﬁammmbh:hHMrﬁ:ﬁﬂhﬂmﬂrnhﬂam
a screen line B screen lines down from the old line (i.e. down one character row).
However, moving right off the end of the last screen line in & block will point the
m-ﬂd:ﬂntthemd'thnﬂhﬂuinthuhh&mltmnﬂduphjﬂunthe
acreen.

m:mﬁmihunhdhhuundfwmﬁnsthmdﬂrmwhmputﬁn:
characters or drawing lines on the screen.

Related entries:

SCR CHAR POSITION
SCR DOT POSITION
SCR NEXT LINE

SCR PREV BYTE
SCR PREV LINE

AMSTRAD CPC464 FIRMWARE ' PAGE 14101

97: SCR PREV BYTE #BC23

Step a screen address left one byte.

Action:
Calculate the screen address of the byte left of the supplied screen address.

Entry conditions:

HL contains a screen address.

Exit conditions:

HL contains the updated screen address.

AF corrupt.
All other registers preserved.

Notes:

Moving off the start of the screen line is not prevented. It will simply point the
mnnﬂﬂrmlt&!mhrhhhmhhnhﬂmﬂlythi!ﬁﬂheﬂm
last byte on a screen line 8 screen lines up from the old line (i.e. up one character
row). However, moving left off the start of the top screen line in a block will point
the screen address at the last of the 48 bytes in the block that are not displayed on
the screen.

This routine is intended to be used for moving the screen address when putting
characters or drawing lines on the screen.

Related entries:

SCR CHAR POSITION
SCR DOT POSITION
SCRNEXTBYTE
SCRNEXT LINE
SCERPREYV LINE

PAGE 14.102 AMSTRAD CPC464 FIRMWARE

98: SCR NEXT LINE ‘#BC26

Step a screen address down one line.

Action:
Calculate the screen address of the byte below the supplied screen address.

Entry conditions:
HL contains a screen address.

Exit conditions:
HL contains the updated screen address.

AF corrupt.
All other registers preserved.

Notes:

Moving off the bottom of the screen is not prevented (and not recommended). After
moving off the bottom the screen address is not useful.

This routine is intended to be used for moving the screen address when putting
characters or drawing lines on the screen.

Related entries:

SCR CHAR POSITION
SCR DOT POSITION
SCRNEXTBYTE
SCRPREVBYTE
SCRPREV LINE

AMSTRAD CPC484 FIRMWARE PAGE 14.103

99: SCR PREV LINE #BC29

Step a screen address up one line.

Action:
Calculate the screen address of the byte above the supplied screen address.

Entry conditions:
HL containe a screen address.

Exit conditions:

HL contains the updated screen address.
AF corrupt.

All other registers preserved.

Notes:

Hwin,:uﬁ'uutupufthamilmlpnmtad[mﬂmtmmddh After
moving off the top the screen address is not useful.

This routine is intended to be used for moving the screen address when putting
characters or drawing lines on the screen.

Related entries:

SCR CHAR POSITION
SCR DOT POSITION
SCRNEXTBYTE
SCRNEXT LINE
SCRPREVEBYTE

PAGE 14.104 AMSTRAD CPC464 FIRMWARE

100: SCR INK ENCODE #BC2C
Encode an ink to cover all pixels in a byte.

Action:

Convert an ink to the encoded form that will set all pixels in a byte to the ink. This
encoded ink can then be masked to generate the appropriate value to set & single
pixel to the ink.

Entry conditions:
A contains an ink number.

Exit conditions:

A contains the encoded ink.
All other registers preserved.
Notes:

ﬁemnndingilmthiﬁlluthephﬂninahﬂeminmhudmd also the bits
in a pixel are not in the obvious order. The pixel bits are (most significant to least

Eignificant):

Mode 0 Mode 1 Mode 2

Leftmost pixel: Bits153,7 Bits3d,7 Bit 7

Bit6

Bits 2.6 Bit5

Bit4

Bits 0,4,2,6 Bitz 1,5 Bit3

Bit2

Bits 0,4 Bit 1

Rightmost pixel: Bit0

IheTutnndﬂanEWUsmthai:pmmdpapﬂinkainthummdaﬂfwmﬁr
sase of use internally. This saves time converting the ink for each pixel plotted.

The encoding is different in different modes and so all inks have to be re-encoded
when the screen mode is changed. SCR SET MODE does this automatically for the
Text VDU and Graphics VDU pen and paper inks.

Related entries:
SCR INE DECODE

AMSTRAD CPC464 FIRMWARE PAGE 14.105

101: SCR INK DECODE #BC2F

Decode an encoded ink.

Action:
Convert an encoded ink to the appropriate ink number.
Entry conditions:
A contains an encoded ink.
Exit conditions:
A contains the ink number.
Flags corrupt.
All other registers preserved.
Notes:
The decoding is performed by decoding the ink of the leftmost pixel in the encoded
ink. The ink for this pixel is encoded in the following bits (most significant to least
significant) in the various screen modes:
Mode 0 Bits1,53,7

Mode 1: Bits3.7
Mode 2: Bit7

Related entries:
SCR INE ENCODE

PAGE 14.108 AMSTRAD CPC464 FIRMWARE

102: SCR SET INK #BC32
Set the colours in which to display an ink.

Action:

Eetwhitht-nmlwﬂwi]lhuadmdimhrmhhﬂth:tmmlnunmth!m
f.heuthrinkuﬁﬂnmainumd:mluur.ﬂthemhunmdiﬂ'mntthanﬂuml
will alternate between these two colours.

Entry conditions:

A contains an ink number,
B contains the first colour.
C contains the second colour.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The ink number is masked with #0F to make sure it is legal, and the colours are
masked with #1F. Colours 27.31 are not intended for use; they are merely
duplicates of other colours available.

The new colours for an ink are not sent to the hardware immediately. They are
stored and will appear on the screen when the next frame flyback occurs.

The Jength of time for which each colour is displayed on the screen can be set by
calling SCR SET FLASHING.

The inks are set to their default colours at EMS and when SCR RESET ie called.

Theﬂﬁuulmlmlnlwihblemdtheddmltinkmhmutmdu:ibadin
Appendix V. :

Related entries:

GRA SET PAPER
GRA BET PEN

SCR GET INKE

SCR SET BORDER
SCR SET FLASHING
TXTSET PAPER
TXTSET PEN

AMSTRAD CPC464 FIRMWARE PAGE 14.107

103: SCR GET INK #BC35

Ask the colours an ink is currently displayed in.

Action:
Get the two colours that are used to display an ink on the screen.

Entry conditions:

A contains an ink number.
Exit conditions:

B contains the first colour.

C contains the second colour.

AF, DE and HL corrupt.
All other registers preserved.

Notes:

The ink number is masked with #OF to make sure it is legal. The colours returned
may not be the same as those supplied to the Screen Pack as the colours are masked
when they are set

The new colours for an ink are not sent to the hardware immediately when they are
get, They are stored and appear on the screen when the next frame flyback occurs.
This means that the colours returned may not actually be visible to the user yet.

The default settings for the inks and the various colours available are described in
Appendix V.

Related entries:

GRA GET PAPER
GRA GET PEN
SCR GET BORDER
SCR SET INK

TXT GET PAPER
TXT GET PEN

PAGE 14.108 AMSTRAD CPC464 FIRMWARE

104: SCR SET BORDER ‘#BC38

Set the colours in which to display the border.

Action:

Set which two colours will be used to display the border. If the two colours are the
same then the border will remain a steady colour. If the colours are different then
the border will alternate between these two colours.

Entry conditions:

B contains the first eolour.
 contains the second colour.

Exit conditions:

AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:

The colours are masked with #1F to ensure that they are legal. Colours 27..31 are
not intended for use; they are merely duplicates of other colours available.

The new colours for the border are not sent to the hardware immediately. They are
stored and will appear on the screen when the next frame flyback occurs.

Th!hngthnfﬁmlfnrwhinhu:hmluurildi!phyuimﬂummbauthy
calling SCR SET FLASHING.

The border is set to its default colour at EMS and when SCR RESET is called. The
default colour and the colours available are described in Appendix V.
Related entries:

SCR GETBORDER
SCR SET FLASHING
SCRSETINK

AMSTRAD CPC464 FIRMWARE PAGE 14.108

106: SCR SET FLASHING ‘#BC3E

Set the flash periods.

Action:
Eatﬁrhnwbnsﬂ:hdth!twnm}uunfmtheinhm&ﬂubnrdﬂrmtﬂb!
dilplaj!dnnthem.nmnﬂinplpplytnnﬂinhmdthehmdﬂ.

Entry conditions:

H contains the period for the first colour

L contains the period for the second colour.

Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

The flash periods are given in frame flybacks (1/50 or 1/60 of a second). A period of
0 is taken to mean a period of 256.

The default setting for the flash periods is 10 frame flybacks (15 or 1/6 of & second).
This is set at EMS and when SCR RESET is called.

The new flash periods are not used immediately but when the inks next flash.

Related entries:

SCR GET FLASHING
BCR SET BORDER
SCR BET INK

AMSTRAD CPC464 FIRMWARE PAGE 14.111

107: SCR GET FLASHING #BC41

Ask the current flash periods.

Action:

(et the time for which each of the two colours associated with an ink or the border
is displayed.

Entry conditions:

No conditions.

Exit conditions:

H contains the period for the first colour.
L contains the period for the second colour.

AF corrupt.
All other registers preserved.

Notes:
The flash periods are given in frame flybacks (1/50 or 1/60 of a second).
A period of 0 means 256.

Related entries:
SCR SET FLASHING

PAGE 14.112 Am CPC464 FIRMWARE

108: SCR FILL BOX #BC44
Fil]anharacterareanfthemnwithanink.

Action:
F&llamunguhrmufthumwﬂhminhﬁehmdmuﬂthhmam
given in character positions.

Entry conditions:

A contains the encoded ink to fill the area with.

H contains the physical left column of the area to fill.
Dmnuinnﬂnphjﬁm]ﬁ.[htmiumnuﬂhlmmﬁll.
L contains the physical top row of the area to fill.
Emnuiuthuphjﬁmlhnthmmufﬂuuutnﬁl].

Exit conditions:
AF, BC, DE and HL corrupt.
All other registers

Notes:

The area boundaries are given in o] coordinates. i.e. Row 0, column 0 is the
top Ieﬂmmerd‘tham!‘hqrmmt:hukdihﬂqﬂity.lﬁll:gﬂ boundaries
mpumd{adnﬂﬁﬁth!mn}thmunpmdicuhledﬁﬂlmqm.

Thlmhwﬁﬁmﬁm}yﬁthuﬂuﬂn:mﬂhﬂwﬁumﬁn!-m:umm
[iraphin\'ﬁﬂwrt‘hmudehthmfnntpumd.
Related entries:

SCRCLEAR
SCR FLOOD BOX
TXT CLEAR WINDOW

AMSTRAD CPC464 FIRMWARE - PAGE 14.113

109: SCR FLOOD BOX #BC47

Fill a byte area of the screen.

Action:

Fill a rectangular area of the screen with an ink. The boundaries of the area must
lie on byte boundaries. This routine will not fill an arbitrary area of the screen to
a pixel boundary.

Entry conditions:

C contains the encoded ink to fill the area with.

HL contains the screen address of the top left corner of the area to fill.
D contains the (unsigned) width of the area to fill in bytes.

E contains the (unsigned) height of the area to fill in screen lines.

Exit conditions:
AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The whole of the rectangle being cleared must lie on the screen. If any of it lies off
the screen then unpredictable effects may occur.

A height or width of 0 is taken to mean 256 (which is too large to fit on the screen).
The screen is written directly without using any other write routine. The current
Graphics VDU write mode is therefore ignored.

Related entries:

GRA CLEAR WINDOW
SCR CLEAR
SCR FILL BOX

PAGE 14.114 AMSTRAD CPC464 FIRMWARE

110: SCR CHAR INVERT #BC4A

Invert a character position.

Action:

All pixels at a character position that are written in one ink are rewritten in a
second ink, and vice versa. This gives an inverse effect to the character position.
Inverting the character a second time will restore the original inks. This effect is
used to draw the Text VDU cursors.

Entry conditions:

B contains an encoded ink.

C contains another encoded ink.

H contains a physical character column.
L contains a physical character row.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The character position is given in physical coordinates. i.e. Row 0, column 0 is the
top left corner of the screen.

The character position given is not checked for being legal. An illegal position (one
gutside the limits of the screen) will have unpredictable effects.

All pixele at the character position are exclusive-ored with the exclusive-or of the
two inks supplied. Pixels at the character position that are set to one of the two inks
supplied will therefore be set to the other supplied ink. Pixels set to other inks will
also be altered.

Related entries:

TXT PLACE CURSOR
TXT REMOVE CURSOR

AMSTRAD CPC464 FIRMWARE 2= PAGE 14.115

111: SCR HW ROLL #BC4D

Move the whole screen up or down eight pixel lines (ome
character).

Action:
Rol] the screen using the hardware. The new line appearing on the screen is cleared.
Entry conditions:
If the screen is to roll down:
B must be zero.
If the screen is to roll up:
B must be non-zero.
Always:
A contains the encoded ink to clear the new line to.

Exit conditions:

AF, BC,DE and HL corrupt.
All other registers preserved.

Notes:
The screen is rolled by changing the screen offset (see SCRSET OFFSET).

Rolling the screen upwards moves the screen contents up and clears the new bottom
line. The screen offset is therefore increased by 80 (MOD #0B00).

Rolling the screen downwards moves the screen contents down and clears the new
top line. The screen offset is therefore decreased by 80 (MOD #0800).

The new line is cleared by writing to it directly thus the Graphics VDU write mode
is ignored.

The Text VDU roll count is not changed by this routine (see TXT GET WINDOW).

Special precautions are taken to make sure that the screen is kept looking
presentable during the rolling and in particular during the clearing of the new line.
Principally this consists of clearing the new line in two parts. First the part that is
not visible on the screen (by virtue of the screen addressing) is cleared. Then, after
waiting for frame flyback and changing the screen offset, the second half of the the
line that was part of the line that just rolled off the screen is cleared.

Related entries:

SCR SET OFFSET
SCR SW ROLL

PAGE 14.116 AMSTRAD CPC4684 FIRMWARE

112: SCR SW ROLL - #BC50

Move an area of the screen up or down eight pixel lines (one
character).

Action:
Roll an area of the screen by copying. The area to be rolled is specified in character
positions
Entry conditions:
If the screen is to roll down:
B must be zero.
If the screen is to roll up:
B must be non-zéro.
Always:
A contains the encoded ink to clear the new line to.
H contains the physical left column of the area to roll
D contains the physical right column of the area to roll.

L contains the physical top row of the area to roll
E contains the physical bottom row of the area to roll.

Exit conditions:

AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:

The area boundaries are given in physical coordinates. i.e. Row 0, column 0 is the
top left corner of the screen. The boundaries are not checked for legality. If illegal
boundaries are passed (edges off the screen) then unpredictable effects may occur.

Rolling the area upwards moves the area contents up and clears the new bottom
linehE:Hing the area downwards moves the area contents down and clears the new
top line.

The line is cleared by writing to it directly; the Graphics VDU write mode is
ignored.

The Text VDU roll count is not changed by this routine (see TXT GET WINDOW).

Special utions are taken to make sure that the screen is kept looking
presentable during the rolling. Principally this consists of waiting for frame flyback
before performing the copy. ;

Related entries:
SCR HW ROLL

AMSTRAD CPC464 FIRMWARE PAGE 14.117

113: SCR UNPACK #BC53

Expand a character matrix for the current screen mode.

Action:

Convert 8 matrix from its standard form to a set of pixel masks as appropriate for
the current screen mode.

Entry conditions:

HL contains the address of a matrix.
DE contains the address of an area to unpack into.

Exit conditions:
AF,BC, DE and HL corrupt.
All other registers preserved,
Notes:

The matrix is converted into a series of masks which cover all the screen bytes in
the character, This means that each byte of the matrix is converted to 4 bytes in
mode 0, 2 bytes in mode 1 and 1 byte in mode 2. Thus the unpacking area must be

42, 16 or 8 bytes long.

If & bit in the matrix is set then the appropriate pixel mask is included in the
unpacked version (the bits are set to one). Otherwise the pixel mask is not included
in the unpacked version (the bits are set to zero).

Related entries:
SCRREPACK

PAGE 14.118 AMSTRAD CPC464 FIRMWARE

114: SCR REPACK #BC56

Compress a character matrix to the standard form.

Action:

A character on the screen is converted to a matrix by comparing each pixel with an
ink. If the pixel is set to that ink then the appropriate bit in the character matrix 15
set, otherwise the bit is cleared.

Entry conditions:

A contains the encoded ink to match against.

H contains the physical character column to read from.

L contains the physical character row to read from.

DE contains the address of the area to construct the matrix in.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:
The character position is given in physical coordinates in which row 0, column 0 is
the top left corner of the screen.

The character position given is not checked for legality. An illegal poeition (one
outside the limits of the screen) will have unpredictable effects.

The matrix produced has the normal layout. It is 8 bytes long, stored top line first
and bottom line last, the moet significant bit of a byte refers to the leftmost pixe] of
a line and the least significant bit to the rightmost pizel.

Because the pixels are tested for being set to only one ink the matrix produced is not
an exact representation of what is on the screen. It may be necessary, when trying
to read characters from the screen, to repack using various different inks.

Related entries:

SCR UNPACK
TXT RD CHAR

AMSTRAD CPC484 FIRMWARE. PAGE 14.119

115: SCR ACCESS #BC59

Set the screen write mode for the Graphics VDU.

Action:

Set the Graphies VDU write mode so that the Graphics VDU plote pixels by writing,
anding, oring or exclusive-oring.

Entry conditions:
A contains the required write mode.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:
The write mode is masked with #03 to make it legal. The write modes are:

0: FORCE mode: NEW = INK

1: XORmode: NEW = INK exclusive-or OLD
2. AND mode: NEW = INK and OLD

3: OR mode: NEW = INK or OLD

NEW is the final setting of the pixel.

OLD is the current setting of the pizel,

INK is the ink being plotted.
The default mode is FORCE mode (mode 0) and this is set at EMS and when SCR
RESET is called.
Setting the write mode affects how the indirection routine SCR WRITE sets pixels.
Graphics VDU plotting routines call this indirection to set pixels and so the write
mode affects the Graphics VDU. No Text VDU routines call this indirection (they
set pixels on the screen directly) and so the write mode does not affect the Text
VDU, The routines that clear areas of the screen (e.g. GRA CLEAR WINDOW) act
like the Text VDU and are unaffected by the write mode.

Related entries:
SCR WRITE

PAGE 14.120 AHETHAD CPC464 FIRMWARE

116: SCR PIXELS #BC5C

Write a pixel to the screen ignoring the Graphics VDU write
mode.

Action:

Write a pixel or pixels to the screen. The position to write at 1s given by & screen
address and pixel mask. The pixel is always set to the ink supplied whatever mode
of writing the Graphics VDU is using.

Entry conditions:

B contains the encoded ink to write.
C contains the mask for the pixelis).
HL contains the screen address of the pixel(s).

Exit conditions:

AF corrupt.

All other registers preserved.
Notes:

The screen address is not checked and so passing an invalid screen address will
have unpredictable results.

The pixel mask may be a combined mask for more than one pixel (thus speeding up
plotting in certain cases).

To plot a pixel using the Graphics VDU write mode SCR WRITE should be called.

SCR PIXELS is equivalent to calling SCR WRITE when the default mode (FORCE
mode! it selected. The Text VDU sets the pixels in characters using FORCE mode.

Related entries:
SCHR WRITE

AMSTRAD CPC464 FIRMWARE a PAGE 14.121

117: SCR HORIZONTAL #BC5F

Plot a purely horizontal line. :

Action:

Draw a line on the screen that runs horizontally. The pixels on the line are plotted
using the SCR WRITE indirection and thus use the current Graphics VDU write
miode.

Entry conditions:

A contains the encoded ink to draw in.

DE contains the base X coordinate of the start of the line.
BC contains the base X coordinate of the end of the line.
HL contains the base Y coordinate of the line.

Exit conditions:

AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:

The endpoints of the line are given in base coordinates. i.e. (0,0] is the pixel in the
bottom left corner of the sereen and each coordinate position refers to a single pixel.

The endpoints are not checked for being legal (within the limits of the screen). If
they are not legal then unpredictable effects may occur.
The start X coordinate must be less than or equal to the end X coordinate.

This routine may be used to duplicate the method that the Graphics VDU uses for
plotting lines - it splits a line that is more horizontal than vertical into a number of
segments that are purely horizontal and plots these separately.

Related entries:

GRA LINE ABSOLUTE
GRA LINE RELATIVE
SCR VERTICAL

PAGE 14.122 AMSTRAD CPC4#64 FIRMWARE

118: SCR VERTICAL #BCE2

Plot a purely vertical line.

Action:

Draw a line on the screen that runs vertically. The SCR WRITE indirection is nsed
to plot pixels in the line thus the current Graphics VDU write mode is used.

Entry conditions:

A contains the encoded ink to draw in.

DE containg the base X coordinate of the line.

HL contains the base Y coordinate of the start of the line.
BC contains the base Y eoordinate of the end of the line.

Exit conditions:

AF BC, DE and HL corrupt.
All other registers preserved.

Notes:

The endpoints of the line are given in base coordinates. i.e. (0,0) is the pizel in the
baottam left corner of the screen and each coordinate position refers to a single pixel.

The endpoints are not checked for being legal (within the limits of the screen). If
they are not legal then unpredictable effects may occur.

The start Y coordinate must be less than or equal to the end Y coordinate.

Thie routine may be used to duplicate the method that the Graphics VDU uses for
plotting lines - it splits a line that is more vertical than horizontal into 8 number of
aegmanuthﬂmpuuiyveﬂ.iul and plots these separately.

Related entries:

GRA LINE ABSOLUTE
GRA LINE RELATIVE
SCR HORIZONTAL

AMSTRAD CPC484 FIRMWARE . PAGE 14.123

119: CAS INITIALISE

Initialise the Cassette Manager.

Action:

Full initialisation of the Cassette Manager (as used during EMS).

Entry conditions:
No conditions.

Exit conditions:

AF BC, DE and HL corrupt.
All other registers preserved.

Notes:
Operations carried out are:
All streams are marked closed.

The default write speed is set up.
The prompt messages are turned on.

Related entries:

CAS IN ABANDON
CAS NOISY

CAS OUT ABANDON
CAS SET SPEED

#BC65

PAGE 14.124 AMSTRAD CPC464 FIRMWARE

120: CAS SET SPEED ‘#BC68

Set the write speed.

Action:
Set the length to write bits and the amount of write precompensation to apply.

Entry conditions:

HL contains the length of half a zero bit.
A contains the precompensation to apply

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

The speed supplied is the length of half a zero bit in microseconds. A one bit is
written as twice the length of a zero bit. The speed supplied can be related to the
average baud rate (assuming equal numbers of ones and zeros) by the following

equation:

Average baud rate

= 1 000 000 / (3 * Halfl zero length)

= 333 333/ Half zero length
The half zero length must lie between 130 and 480 microseconds. Values outside
this range will cause read and write errors.
The precompensation supplied is the extra length, in microseconds, to add to halfa
one bit and to subtract from half a zero bit under certain conditions. The amount of
precompensation required varies with the speed (more is required at higher baud
rates).
The precompensation may lie between 0 and 255 microseconds although the higher
settings are not useful as they will cause read and write errors.
The default half zero length and precompensation settings are 333 microseconds
{1000 baud) and 25 microseconds respectively. The commonly used faster setting is
167 microseconds (2000 baud) with 50 microseconds of precompensation. These
values have been determined after extensive testing and the user is advised to stick
to them.

Related entries:
CAS INITIALISE
AMSTRAD CPC464 FIRMWARE PAGE 14.125

121: CAS NOISY #BC6B

Enable or disable prompt messages.

Action:

Disabling messages will prevent the prompt and information messages from being
printed. It will not prevent error messages from being printed. Enabling messages
allows all messages to be printed.

Entry conditions:
If messages are to be enabled:
A must be zero,

If messages are to be disabled:
A must be non-zero,

Exit conditions:

AF corrupt.

All other registers preserved

Notes:

The prompt and information messages which are turned off are:

Press PLAY then any key:

Press REC and PLAY then any key:
Found .FILENAME. block :N:
Loading -FILENAME. block <N-
Saving -FILENAME: block ‘N

The error messages which are not turned off are:
Read error «x-
Write error a
Rewind tape

Related entries:

CAS INITIALISE

PAGE 14.128 AMSTRAD CPC464 FIRMWARE

122: CAS START MOTOR " #BC6E

Start the cassette motor.

Action:
Turn the cassette motor on and wait for it to pick up speed if it was previously off.

Entry conditions:

No conditions,

Exit conditions:
If the motor turned on OK:
Carry true.
If the user hit escape:
Carry false.
Always:
A contains the previous motor state.
Other flags corrupt.
All other registers preserved.
Notes:

If the motor is not already on then the routine waits for approximately two seconds
to allow the tape to reach full speed.

The motor is always turned on by this routine. If the user hits the escape key then
the time spent waiting for the motor to pick up speed is truncated.

The previous motor state may be passed to CAS RESTORE MOTOR.

Related entries:

CAS RESTORE MOTOR
CAS STOP MOTOR

AMSTRAD CPC464 FIRMWARE : PAGE 14.127

123: CAS STOP MOTOR #BCT71

Stop the cassette motor.

Action:
Turn the cassette motor off and return its previous state.

Entry conditions:

Mo conditions.

Exit conditions:
If the motor was turned off OK:
Carry true,
If the user hit escape:
Carry false.
Always:
A contains the previous motor state.
Other flags corrupt.
All other registers
Notes:

The motor is always turned off by this routine. There is no delay to allow the motor
to slow down.

The previous motor state may be passed to CAS RESTORE MOTOR.

Related entries:

CAS RESTORE MOTOR
CAS START MOTOR

PAGE 14.128 AMSTRAD CPC464 FIRMWARE

124: CAS RESTORE MOTOR #BC74

Restore previous state of cassette motor.

Action:

Turn the cassette motor on or off again, Wait for motor to pick up speed when
turning the motor on if it is currently off.

Entry conditions:

A contains the previous motor state.

Exit conditions:
If the motor was turned on or off OK:
Carry true.
If the user hit escape:
Carry false.
Always:
A and other flage corrupt.
All other registers preserved.
Notes:

This routine uses the previous motor state as returned by CAS START MOTOR or
CAS STOP MOTOR.

If calling this routine results in the motor being turned on when it is currently off
then the routine waits for approximately two seconds to allow the tape to reach full

mpeed.
The motor is always turned on or off (as appropriate) by this routine. If the user hits
the escape key then this merely truncates the time spent waiting for the motor to

pick up speed.

Related entries:

CAS START MOTOR
CAS STOP MOTOR

AMSTRAD CPC464 FIRMWARE PAGE 14.129

125: CAS IN OPEN

Open a file for input.

Action:
Set up the read stream for reading a file and read the first block.

Entry conditions:

B contains the length of the filename.
HL contains the address of the filename.
DE contains the address of a 2K buffer to use.

Exit conditions:
If the file was opened OK:
Carry true,
Zero false
HL contains the address of a buffer containing the file header.
DE contains the data location (from the header!,

BC containe the logical file length (from the header!
A contains the file type (from the header).

If the stream is in use:

Carry false
Zero false.
A, BC, DE and HL corrupt

If the user hit escape:

Carry false.
Zero true,
A, BC, DE and HL corrupt.

Always:
IX and other flags corrupt
All other registers preserved.

Notes:

#BCT7

The 2K buffer (2048 bytes! supplied is used to store the contents of a block of the file
when it is read from tape. It will remain in use until the file is closed by calling
gither CAS IN CLOSE or CAS IN ABANDON. The buffer may lie anywhere in

memory, even underneath a ROM.

PAGE 14.130 _ AMSTRAD CPC464 FIRMWARE

The filename passed is copied into the read stream descriptor. If it is longer than 16
characters then it is truncated to 16 characters. If it is shorter than 16 characters
then it is padded with nulls (#00) to 16 characters. While the filename may contain
any character, it is best to avoid nulls. Lower case ASCII letters (characters
¥61.#7A) are converted to their upper case equivalents (characters B41. H5A).
The filename may lie anywhere in RAM, even underneath a ROM.

The filename is normally the name of the file that is to be read. However, a zero
length filename (or one starting with a null) is treated specially. It is taken to mean
read the next file on the tape.

When the file is opened for reading the first block of the file is read immediately.
The address of the area where the header from this block is stored is passed back to
the user so that information can be extracted from it. This area will lie in the
central 32K of RAM. The user is not allowed to write to the header, only to read
from it. The Cassette Manager uses some fields in the header for it own purposes
and so these may differ from those read from the tape. The file type, logical length,
entry point and all user fields will remain unchanged. (See section B for a
description of the header.)

Related entries:

CASIN ABANDON
CASINCHAR
CASIN CLOSE
CAS IN DIRECT
CASOUTOFPEN

AMSTRAD CPC464 FIRMWARE PAGE 14.131

126: CAS IN CLOSE

Close the input file properly.

Action:
Mark the read stream as closed.

Entry conditions:
Moeonditions,

Exit conditions:

If the stream was closed OK:
Carry true,

Ifthe stream was not open:
Carry false.

Always:

A, BC, DE, HL and other flags corrupt.

All other registers preserved

Notes:

#BCT7A

This routine should be called to close a file after reading from it using either CAS

IN CHAR or CASIN DIRECT

The user may reclaim the buffer passed to CAS IN OPEN after calling this routine.

Related entries:

CASIN ABANDON
CASIN OPEN
CASOUT CLOSE

PAGE 14.132

AMSTRAD CPC484 FIRMWARE

127: CAS IN ABANDON #BC7D

Close the input file immediately.

Action:
Abandon reading from the read stream and close it.

Entry conditions:

No conditions.

Exit conditions:
AF,BC, DE and HL corrupt.
All other registers preserved.

Notes:
This routine is intended for use after an error of in similar circumstances.
The user may reclaim the buffer passed to CASIN OPEN after calling this routine.

Related entries:

CASIN CLOSE
CASIN OPEN
CAS OUT ABANDON

AMSTRAD CPC4684 FIRMWARE . PAGE 14.133

128: CAS IN CHAR #BC80
Read a character from the input file.

Action:
Read a character from the input stream. Fetches blocks from tape as required.

Entry conditions:
No conditions.

Exit conditions:
If the character was read OK-

Carry true.

Zero false.

A eontains the character read from the file.
If the end of the file was found;

Carry false.

Zero falae.

A corrupt.
If the user hit escape:

Carry false.
Zero true,

A corrupt
Always:

IX and other flags corrupt.
All other registers preserved.

Notes:

If the user has previously pressed escape or the stream is not open as expected then
this ig reported as the end of the file.

Once the first character has been read from a file it can only be used for character by
character access. [t is not possible to switch to direct reading (by CAS IN DIRECT),

Related entries:

CASIN CLOSE
CASIN DIRECT
CAS IN OPEN
CASOUT CHAR
CAS RETURN
CASTEST EOF

PAGE 14.134 AMSTRAD CPC464 FIRMWARE

134: CAS OUT ABANDON #BC92

Close the output file immediately.

Action:

Abandon the output file and mark the write stream closed. Any unwritten data is
discarded and not written to tape.

Entry conditions:

Noconditions.

Exit conditions:
AF,BC, DE and HL corrupt.
All other regsters preserved.

Notes:

This routine is intended for use after an error or in similar circumstances.

Related entries:

CASIN ABANDON
CASOUT CLOSE
CASOUTOPEN

AMSTRAD CPC464 FIRMWARE PAGE 14.141

135: CAS OUT CHAR #BC95

Write a character to the output file.

Action:

Add a character to the buffer for the write stream. If the buffer is already full then it
is written to tape before the new character is inserted.

Entry conditions:
A contains the character to write.

Exit conditions:
If the character was written OK:

Carry true.
Zero false.

If the file was not open as expected:

Carry false.
Zero false.

If the user hit escape:
Carry false.
Zero true.
Always:

A, IX and other flags corrupt.
All other registers preserved,

Notes:

If this routine returns the file not open as expected condition then either the user
has hit escape previously or the file has been written using CAS OUT DIRECT. In
either case. or if escape is pressed, the character sent will be discarded.

It is necessary to call CAS OUT CLOSE after sending all the characters to the file to
ensure that the last block of the file is written to the tape.

Once this routine has been called it iz not possible to switch to directly writing the
file.

Related entries:

CAS IN CHAR
CAS OUT CLOSE
CAS OUT DIRECT
CAS OUT OPEN

PAGE 14.142 AMSTRAD CPC464 FIRMWARE

136: CAS OUT DIRECT #BC98

Write the output file directly from store.

Action:
Write the contents of store directly out to the output file.

Entry conditions:

HL contains the address of the data to write.

DE contains the length of the data to write.

BC contains the entry address (to go into the header),
A contains the file type (to go into the header).

Exit conditions:
Ifthe file was written OK:

Carry true.
Zero false.

If the file was not open as expected:

Carry false.
Zero false.

Ifthe user hit escape:

Carry false.
Zero true.
Always:

A, BC, DE, HL, IX and other flags corrupt.
All other registers preserved.

Notes:

After writing the file it must be closed using CAS OUT CLOSE to ensure that the
last block of the file is written to tape.

It is not possible to change the method for writing files from character output (using
CAS OUT CHAR) to direct output (using CAS OUT DIRECT) or vice versa once the
method has been chosen. Nor is it possible to directly write a file in two or more
parts by calling CAS OUT DIRECT more than once - this will write corrupt data.
Attempting to break these rules will result in a file not open as expected error.

Related entries:

CASINDIRECT
CASOUTOPEN
CASOUT CLOSE

AMSTRAD CPC464 FIRMWARE PAGE 14.143

137: CAS CATALOG #BCI9B

Generate a catalogue from the tape.

Action:

Read file blocks to check their validity and print information about them on the
SCreen.

Entry conditions:
DE contains the address of a 2K buffer to use.

Exit conditions:
If the cataloguing went OK:

Carry true.
Zero false,

If the read stream was in use:

Carry false.
Zero false.

If an error occurred:

Carry false.
Zero true.

Always:

A, BC,DE, HL, IX and other flags corrupt.
All other registers preserved.

Notes:

This routine uses the read stream and so the stream must be closed when it is
called. The read stream remains closed when this routine exits. The write stream is

unaffected by this routine.
The prompt messages are turned on (see CAS NOISY) by this routine.

When cataloguing the Cassette Manager reads a header record, prints information
from it and then reads the data record. This cycle repeats until the user hits the
escape key. The information printed is as follows:

FILENAME block N T Ok

FILENAME is the name of the file on the tape, or Unnamed file’ if the filename
starts with a null (character #00).

N is the number of the block. Block 1 is normally the first block in a file.

PAGE 14.144 AMSTRAD CPC464 FIRMWARE

T is a representation of the file type of the file. It is formed by adding #24 (the
character ‘$’) to the file type byte masked with #0F (to remove the version number
field). The standard file types are thus:

$ aBASIC program file

% a protected BASIC program file

* an ASCII text file (default file type)
& abinaryfile

' aprotected binary file

Other file types are possible but will not have been written by the BASIC in the
on-board ROM. See section 8.4 for a description of the file type byte.

Ok is printed after the end of the data record. This shows that the data was read
without errors and also serves to indicate the end of the data on tape (to help avoid
over-recording a tape file).

Related entries:
CASNOISY

AMSTRAD CPC464 FIRMWARE PAGE 14.145

138: CAS WRITE #BCOE

Write a record to tape.

Action:

Write a record to the cassette. This routine is used by the higher level routines (CAS
OUT CHAR, CAS OUT DIRECT and CAS OUT CLOSE) to write the header and

data records that make up a tape file.

Entry conditions:

HL eontains the address of the data to write.
DE contains the length of the data to write.
A contains the syne character to write at the end of the leader,

Exit conditions:
If the record was written OK:

Carry true.
A corrupt.

If an error occured or the user hit escape:

Carry false.
A contains an error code.

Always:

BC, DE, HL, IX corrupt.
All other registers preserved.

Notes:

A data length of 0 passed to this routine is taken to mean 65536 bytes and all of
memory will be written to tape. (Thisis unlikely to be useful).

The data to be written may lie anywhere in RAM, even underneath a ROM.

The sync character is used to distinguish header records (sync 1s #2C) from data
records (sync is #16). Other sync characters could be used but the resulting record
would require special action to be ta ken to read it.

The error codes returned by this routine are:

0 Break The user hit the escape key,
1 Overrun The Cassette Manager was unable to get back to writing a bt

fast enough.

PAGE 14.146 AMSTRAD CPC464 FIRMWARE

Because reading and writing the tape requires stringent timing considerations
interrupts are disabled whilst the tape is being written (potentially a period of over
5 minutes). It would be unpleasant to have the sound chip making a nois for all
this time so the Sound Manager is shut down (SOUND RESET). When writing to
the tape has finished interrupts are re-enabled.

The cassette motor is started by this routine (in case it is not already on) and
restored to its previous state when writing is completed.

Related entries:

CASCHECE
CASREAD

AMSTRAD CPC464 FIRMWARE PAGE 14.147

139: CAS READ #BCA1l

Read a record from tape.

Action:

Read a whole or part record from the cassette. This routine is used by the higher
level routines (CAS IN CHAR, CAS IN DIRECT and CAS CATALOG amongst
others) to read the header and data records that make up a file.

Entry conditions:

HL contains the address to put the data read.
DE contains the length of the data to read.
A contains the sync character expected at the end of the leader.

Exit conditions:
If record was read OK:

Carry true.
A corrupt.

If an error occured or the user hit escape:

Carry false.
A contains an error code.

Always:

BC,DE, HL, IX and other flags corrupt.
All other registers preserved.

Notes:

A data length of 0 passed to this routine is taken to mean 65536 bytes. (This 1s not
useful).

It is not necessary to read the whole of a record from tape. [f the length passed is less
than the actual length of the record then only that number of bytes will be read.

Trying to read more bytes from a record than were written will produce an error,
usually an overflow error (see below).

The sync character is used to distinguish header records (sync is #2C) from data
records (sync is #16). Other sync characters could be used if the record was written

that way.

PAGE 14.148 AMSTRAD CPC464 FIRMWARE

The error codes returned by this routine are:
0 Break The user hit the escape key.
1 Overflow The Cassette Manager found a bit that was too long to read.
2 CRC A CRC failure was detected.

The cassette motor is started by this routine (in case it is not already on) and
restored to its previous state when reading is completed.

Because reading the tape requires stringent timing considerations, interrupts are
dizabled whilst the tape is being read (potentially a period of over 5 minutes). It
would be unpleasant to have the sound chip making a noise for all this time so the
Sound Manager is shut down (SOUND RESET). When reading from the tape has
finished interrupts are reenabled.

Related entries:

CAS CHECK
CAS WRITE

AMSTRAD CPC464 FIRMWARE PAGE 14.149

140: CAS CHECK #BCA4

Compare a record on tape with the contents of store.

Action:

Check that a tape record contains a correct version of the data supplied. This
munti:;:] is intended to be used after writing records to check that they were written
co y.

Entry conditions:

HL contains the address of the data to check.
DE contains the length of the data to check.
A contains the sync character expected at the end of the leader.

Exit conditions:
Ifthe record checked OK:

Carry true.
A corrupt.

If an error occured or the user hit escape:

Carry false.
A contains an error code.
Always:

BC, DE, HL, IX and other flags corrupt.
All other registers preserved.

Notes:

A data length of 0 passed to this routine is taken to mean 65536 bytes. (This is
bound to produce a check failure).

It is not necessary to check the whole of a record on tape. If the length passed is less
than the actual length of the record then only that number of bytes will be checked.
Trying to check more bytes in a record than were written will produce an error of

some sort (see below),
The data to be checked may lie anywhere in RAM, even underneath a ROM.

The sync character is used to distinguish header records (synec is #2C) from data
records (syncis # 16). Other sync characters could be used.

PAGE 14.150 AMSTRAD CPC464 FIRMWARE

The error codes returned by this routine are:
0 Break The user hit the escape key.
1 Overrun The Cassette Manager found a bit that was too long to read.
2 CRC A CRC failure was detected.
3 Different The data read from tape did not agree with that in memory.

The cassette motor is started by this routine (in case it is not already on) and
restored to its previous state when checking is completed.

Because reading from the tape requires stringent timing considerations, interrupts
are disabled whilst the tape is being checked (potentially a period of over 5
minutes). It would be unpleasant to have the sound chip making a noise for all this
time so the Sound Manager is shut down (SOUND RESET). When checking has

finished interrupts are reenabled.

Related entries:

CAS READ
CAS WRITE

AMSTRAD CPC464 FIRMWARE PAGE 14.151

141: SOUND RESET #BCAT

Reset the Sound Manager.

Action:
Re-initialise the Sound Manager - shut the sound chip up and clear all queues.
Entry conditions:

No conditions.

Exit conditions:
AF,BC, DE and HL corrupt.
All other registers preserved.
Notes:

The sound queues are cleared.
Any current sound is stopped.
The sound generator chip issilenced.

This routine enables interrupts.

Related entries:
SOUNDHOLD

PAGE 14.152 AMSTRAD CPC464 FIRMWARE

142: SOUND QUEUE #BCAA

Add a sound to a sound queue.

Action:

Try to add a sound to the sound queue of one or more channels. If the sound queue
of any of the channels is full then no sound will be issued to any channel.

Entry conditions:
HL contains the address of a sound program which must lie in the central 32K of
RAM.

Exit conditions:
If the sound was added to the queue(s):
Carry true.
HL corrupt.
If at least one queue was full:
Carry false.
HL preserved.
Always:
A,BC,DE,IX and other flags corrupt.
All other registers preserved.
Notes:
The sound program is laid out as follows:
Byte 0: Channels to use and rendezvous requirements.
Byte 1: Amplitude envelope to use.
Byte 2: Tone envelope to use.
Bytes 3..4: Tone period.
Byte 5. Noise period.
Byte 6: Initial amplitude.

Bytes 7..8: Duration or envelope repeat count.

All values in the sound program are masked into the appropriate range before being
used.

The channels to issue the sound on are encoded into byte 0 as follows:

Bit 0: Issue on channel A.
Bit 1: Issue on channel B.
Bit 2: Issue on channel C.

AMSTRAD CPC464 FIRMWARE PAGE 14.153

Bit 3: Rendezvous with channel A,
Bit 4: Rendezvous with channel B.
Bit 5: Rendezvous with channel C.
Bit 6: Hold until released.

Bit 7: Flush queue

A channel will ignore an order to rendezvous with itself. Sounds issued on multiple
channels implicitly rendezvous with each other. Sounds that are ordered to
rendezvous will be issued to the sound generator starting at the same time.

Setting the hold bit prevents the sound from running until it is released by calling
SOUND RELEASE (or a routine having a similar effect). Setting the flush bit will
empty the queue and abandon any currently active sound thus allowing the new
sound to start immediately.

The amplitude envelope is in the range 0..15. Envelopes 1..15 are the amplitude
envelopes that can be set using SOUND AMPL ENVELOPE. Envelope 0 means use
no amplitude envelope, simply hold the initial amplitude for 2 seconds or the
duration specified.

The tone envelope is in the range 0..15. Envelopes 1..15 are the tone envelopes that
can be set using SOUND TONE ENVELOPE. Envelope 0 means use no tone
envelope, simply hold the initial tone.

A tone period of 0 means do not generate any tone. Tone periods in the range 1..4095
specify the period of the tone in 8 microsecond units.

The noise period is in the range 0..31. Noise periods 1..31 specify the period of the
noise component of a sound. A noise period of 0 means use no noise.

The initial amplitude is in the range 0..15. Amplitude 0 being no initial sound,
amplitude 15 being maximum volume.

Bytes 7 and 8 store the sound time. If this is zero then the amplitude envelope is
obeyed once. If the sound time is negative then the amplitude envelope is obeyed
minus the sound time number of times (i.e, 1..32768 times). If the sound time is
positive but not zero then it is taken to be the duration of the sound in 1/100s of a
second.

If a duration is specified when an amplitude envelope is in use then the duration
given sets the length of the sound. If the duration is shorter than the envelope then
the envelope is truncated. If the duration is longer than the envelope then the final
amplitude of the envelope is sustained until the duration expires. Tone envelopes
are treated in much the same way as amplitude envelopes except that they never
specify the length of the sound.

The sound event that is run when a sound queue has a free slot is disarmed on the
channels specified in this command. -

All sounds currently held by SOUND HOLD are automatically released when this
routine is called. Also, the sound gueue event is disarmed (see SOUND ARM
EVENT).

SOUND QUEUE may enable interrupts.

Related entries:

SOUND ARM EVENT
SOUND CHECK
SOUND RELEASE

PAGE 14.154 AMSTRAD CPC464 FIRMWARE

143: SOUND CHECK #BCAD

Ask if there is space in a sound queue.

Action:

Ask the status of a sound channel. The status includes the number of free spaces in
the sound queue and whether the channel is held.

Entry conditions:
A contains the bit for the channel to test.

Exit conditions:
A contains the channel status.

BC, DE, HL and flags corrupt.
All other registers preserved.

Notes:
The channel to ask the status of is encoded as follows:

Bit 0: Ask about channel A.
Bit 1: Ask about channel B.
Bit 2: Ask about channel C.

If more than one bit is set then the status of only one channel is returned. The
channels are tested in the order given above.
The status returned is encoded as follows:

Bits 0..2: Contain the number of free slots in the channel’s sound queue.

Bit3: The channel is awaiting a rendezvous with channel A.

Bit4: The channel is awaiting a rendezvous with channel B.

Bit5: The channel is awaiting a rendezvous with channel C.

Bit 6: The channel is held.

Bit T: The channel is active (producing a sound).
Calling this routine disarms the sound queue event that occurs when the queue has
a free slot for the channel returned (see SOUND ARM EVENT).

This routine may enable interrupts.

Related entries:

SOUND ARM EVENT
SOUND QUEUE

AMSTRAD CPC464 FIRMWARE PAGE 14.155

144: SOUND ARM EVENT #BCBO

Set up an event to be run when a sound queue becomes empty.

Action:
Arm the sound event to be run when a free slot occursin a channel's sound queue.

Entry conditions:

A contains the bit for the channel to arm.
HL contains the address of an event block.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:
The channel for which to arm the event is encoded as follows:

Bit 0: Arm channel A,
Bit 1; Arm channel B.
Bit 2: Arm channel C.

If more than one bit is set then only one channel is armed. The channels are armed
in the order given above.

The event block passed must be initialised (by KL INIT EVENT).

The event will be ‘kicked' when a free slot occurs in the queue. If there is a free slot
in the queue when this routine 1s called then the event will be ‘kicked' immediately.

The sound event is disarmed automatically when SOUND QUEUE or SOUND
CHECK is called. It is also disarmed when the event is run. Thus, the event routine
will need to rearm the sound event to keep it running continuously.

This routine may enable interrupts.

Related entries:

KL INIT EVENT
SOUND CHECK
SOUND QUEUE

PAGE 14.156 AMSTRAD CPC464 FIRMWARE

145: SOUND RELEASE #BCB3

Allow sounds which are individually held to start.

Action:

Release held sounds on a number of channels. This allows sounds that were marked
with a hold bit when they were set up by SOUND QUEUE to start (other factors

willing).
Entry conditions:

A contains bits for the channels to release.

Exit conditions:
AF,BC,DE, HL and IX corrupt.
All other registers preserved.

Notes:

The channels to release are encoded as follows:

Bit0: Release channel A.
Bit1: Release channel B.
Bit 2: Release channel C.

All channels that are specified are released.
All sounds currently held by SOUND HOLD are automatically released.

This routine may enable interrupts.

Related entries:
SOUND QUEUE

AMSTRAD CPC464 FIRMWARE PAGE 14.157

146: SOUND HOLD #BCB6

Stop all sounds in midflight.

Action:

This stops all sounds immediately. The sounds can be started again by calling
SOUND CONTINUE.

Entry conditions:
No conditions.

Exit conditions:

If a sound was active:
Carry true.

If no sound was active:
Carry false.

Always:

A, BC, HL and other flags corrupt.
All other registers preserved.

Notes:

Sounds that are held by this routine are automatically restarted when SOUND
QUEUE or SOUND RELEASE are called as well as when SOUND CONTINUE

itselfis called.

The sound is stopped by halting the execution of sound and tone envelopes and
setting the sound chip volume to zero for all channels. When the sound is restarted
it will continue from as near where it was stopped as is possible.

This routine enables interrupts.

Related entries:

SOUND CONTINUE
SOUND RESET

PAGE 14.158 AMSTRAD CPC464 FIRMWARE

147: SOUND CONTINUE #BCB9

Restart sounds after they have all been held.

Action:
Allow sounds that have been held by calling SOUND HOLD to continue.

Entry conditions:

No conditions.

Exit conditions:
AF,BC, DE and IX corrupt.
All other registers preserved.

Notes:
If no sounds are held then no action is taken.

This routine may enable interrupts.

Related entries:

SOUND HOLD
SOUND RELEASE

AMSTRAD CPC464 FIRMWARE PAGE 14.159

148: SOUND AMPL ENVELOPE #BCBC

Set up an amplitude envelope.

Action:
Set up one of the 15 user programmable amplitude (volume) envelopes.

Entry conditions:

A contains an envelope number.
HL contains the address of an amplitude data block.

Exit conditions:
If envelope has been set up OK:

Carry true.
HL contains the address of the data block + 16.

A and BC corrupt.
If envelope number is invalid:

Carry false.
A, B, and HL preserved.

Always:

DE and other flags corrupt.
All other registers preserved.

Notes:

The envelope to set up is specified by a number in the range 1..15. No envelope is
set up if a number outside this range is passed.

The amplitude data block is copied into the amplitude envelope. The data block may
lie in ROM or in RAM. It may not lie in RAM hidden underneath a ROM.

The amplitude data block has the following layout:

Byte 0: Count of sections in the envelope.
Bytes 1..3: First section of the envelope.
Bytes4..6: Second section of the envelope.
Bytes 7..9: Third section of the envelope.
Bytes 10..12: Fourth section of the envelope.
Bytes 13..15: Fifth section of the envelope.

The first byte of the amplitude data block specifies the number of sections used in
the envelope. Sections not used need not be set up. An envelope using no sections
has a special meaning - hold a constant volume lasting for 2 seconds.

PAGE 14.160 AMSTRAD CPC464 FIRMWARE

The number of sections to use is not checked, if a number outside the range 0..5 is
supplied then this will have unpredictable effects. This should be avoided.

Each section of the amplitude data block can specify either a hardware or a software
envelope. This is indicated by the first byte of the section.

A software envelope section is laid out as follows:

Byte(: Stepcount.
Bytel: Stepsize.
Byte2: Pausetime.

The fact that this is a software envelope section rather than a hardware envelope
section is indicated by byte 0 not having bit 7 set.

If the step count is in the range 1..127 then the step size is added to the volume that
number of times with a wait equal to the pause time in 1/100s of a second after each
addition.

If the step count is 0 the the step size is taken to be an absolute volume setting. A
single wait of the pause time in 1/100s of a second is made.

After calculating the new volume this is masked with #0F to make sure it is legal.
Thus, all arithmetic on the volume is carried out modulo 16.

A pause time of 0 is taken to mean 256 1/100s of a second.

A hardware envelope section is laid out as follows:

Byte 0: Envelope shape.
Bytel..2: Envelope period.

The fact that this is a hardware envelope section rather than a software envelope
section is indicated by byte 0 having bit 7 set.

The envelope shape (masked with #7F) is sent to register 13 of the sound generator.
This sets the shape of the hardware envelope and whether it repeats (see Appendix

IX for details).

The envelope period is sent to registers 11 and 12 of the sound generator. These set
the the length of the hardware envelope (see Appendix IX for details).

The section after a hardware section should be a pause long enough to allow the
hardware envelope to operate. A pause can be constructed using a software enve-
lope with a step size of 0 and with the repeat count and pause time juggled to give
the right total time.

There is no protection against changing an envelope whilst it is in use. This could
have unpredictable effects and should be avoided.

AMSTRAD CPC464 FIRMWARE PAGE 14.161

The length of the sound can either be determined by the duration supplied when the
sound is queued or by the envelope terminating (see SOUND QUEUE). If a
duration is set that is shorter than the envelope then the envelope is truncated. If
the duration is longer than the envelope then the final volume is sustained until the

duration expires.

Related entries:

SOUND A ADDRESS
SOUND TONE ENVELOPE

PAGE 14.162 AMSTRAD CPC464 FIRMWARE

149: SOUND TONE ENVELOPE

Set up a tone envelope.

Action:
Set up one of the 15 user programmable tone envelopes.

Entry conditions:

A contains an envelope number.
HL contains the address of a tone data block.

Exit conditions:
If the envelope has been set up OK:

Carry true.
HL contains the address of the data block + 16.

A and BC corrupt.
If the envelope number is invalid:

Carry false.
A, BC and HL preserved.

Always:

DE and other flags corrupt.
All other registers preserved.

Notes:

#BCBF

The envelope to set up is specified by a number in the range 1..15. No envelope is

set up if a number outside this range is passed.

The tone data block is copied into the tone envelope. The data block may lie in ROM

or in RAM. It may not lie in RAM hidden underneath a ROM.

The tone data block has the following layout:

Byte 0: Count of sections in the envelope.
Bytes 1..3: First section of the envelope.
Bytes 4..6: Second section of the envelope.
Bytes 7..9: Third section of the envelope.
Bytes 10..12: Fourth section of the envelope.
Bytes 13..15: Fifth section of the envelope.

AMSTRAD CPC464 FIRMWARE

PAGE 14.163

The first byte of the tone data block (masked with #7F) specifies the number of
sections used in the envelope. Sections not used need not be set up. An envelope
using no sections will not alter the tone (i.e. no enveloping). The number of sections
to use is not checked, if a number outside the range 0..5 is supplied then this will
have unpredictable effects. This should be avoided.

The top bit, bit 7, of the count is used to indicate a repeating envelope. If this bit is
set then when the last section of the envelope finishes the first will be used again.

Each section of the tone data block is laid out as follows:

Byte0: Step count.

Byte1: Stepsize.

Byte2: Pausetime.
If the step count lies in the range #00..#EF then the section is a relative section.
The step size is sign extended (bit 7 is copied to bits 8..15) and is added to the
current tone period the number of times specified by the step count. After each
addition a wait of the pause time in 1/100s of a second is made. The sound chip only
uses the lower 12 bits of the tone period so all arithmetic is carried out modulo
#1000.

A step count of 0 is taken to mean 1 step whilst a pause time of 0 is taken to mean
256 1/100s of a second.

If the step count lies in the range #F0. #FF then the section is an absolute section.
The least significant four bits of the step count are taken to be the most significant
byte of the tone period and the step size is taken to be the least significant byte. This
tone period is set immediately and is followed by a pause whose length is set by the
pause time in 1/100s of a second.

There is no protection against changing an envelope whilst it is in use. This could
have unpredictable effects and should be avoided.

If the tone envelope finishes before the end of the sound (as set when the sound was
queued) then the final tone is held. i.e. The tone envelope does not affect the length
of the sound.

Related entries:

SOUND AMPL ENVELOPE
SOUND T ADDRESS

PAGE 15.164 AMSTRAD CPC464 FIRMWARE

150: SOUND A ADDRESS #BCC2

Get the address of an amplitude envelope.

Action:
Ask where the data area for an amplitude envelope is stored.

Entry conditions:

A contains an envelope number.

Exit conditions:
If the envelope was found OK:

Carry true.
HL contains the address of the amplitude envelope.

BC contains the length of an envelope (16 bytes).
If the envelope number was invalid:

Carry false.
HL corrupt.
BC preserved.

Always:
A and other flags corrupt.
All other registers preserved.
Notes:

The envelope number must lie in the range 1..15.
The amplitude envelope is laid out as described in SOUND AMFL ENVELOPE.

Related entries:

SOUND AMPL ENVELOPE
SOUND T ADDRESS

AMSTRAD CPC464 FIRMWARE PAGE 14.165

151: SOUND T ADDRESS #BCC5

Get the address of a tone envelope.

Action:
Ask where the data area for a tone envelope is stored.

Entry conditions:

A contains an envelope number.

Exit conditions:
Ifthe envelope was found OK:

Carry true.
HL contains the address of the tone envelope.
BC contains the length of an envelope (16 bytes).

If the envelope number was invalid:

Carry false.
HL corrupt.
BC preserved.

Always:

A and other flags corrupt.
All other registers preserved,

Notes:

The envelope number must lie in the range 1..15.
The tone envelope is laid out as described in SOUND TONE ENVELOPE.

Related entries:

SOUND A ADDRESS
SOUND TONE ENVELOPE

PAGE 14.166 AMSTRAD CPC464 FIRMWARE

152: KL CHOKE OFF #BCCS8

Reset the Kernel - clears all event queues ete.

Action:

This entry completely clears all event queues, the various timer and frame flyback
lists and so0 on. The effect is to dispose of any pending synchronous events and to
halt all timer related functions other than sound generation and keyboard

scanning.

Entry conditions:

Noconditions.

Exit conditions:

B contains the ROM select address of the current foreground ROM (if any).
DE contains the address at which the current foreground ROM was entered.
C contains the ROM select address for a RAM foreground program.

AF and HL corrupt.
All other registers preserved.

Notes:
If the current foreground program is in RAM then the ROM select address and
entry point returned are both zero. i.e. The default ROM (ROM 0} at its entry
address.

KL CHOKE OFF forms part of the close down required before a new RAM
foreground program is loaded, as is required by MC BOOT PROGRAM.

The close down must ensure that there are no interrupt or other events active and
using memory which might be damaged by loading a new program into memory. In
the complete close down MC BOOT PROGRAM does:

SOUND RESET to kill off sound generation

an OUT to /O port #F8FF toreset any external interrupt sources.

KL CHOKE OFF to kill off events etc.

KM RESET toreset any keyboard indirections and the break event.
TXTRESET toreset any Text VDU indirections.

SCRRESET to reset any screen indirections.

AMSTRAD CPC484 FIRMWARE PAGE 14.167

The values returned by KL CHOKE OFF are used by MC BOOT PROGRAM if the
program load fails.

This information is included for the reader’s interest. MC BOOT PROGRAM is the
recommended means of loading and entering a RAM foreground program. MC
START PROGRAM is the recommended means of entering a ROM foreground
program, or a RAM foreground program which has already been loaded.

KL CHOKE OFF disables interrupts.

Related entries:

MC BOOT PROGRAM
MC START PROGRAM

PAGE 14.168 AMSTRAD CPC464 FIRMWARE

153: KL ROM WALK #BCCB

Find and initialise all background ROMs.

Action:

Background ROMs provide support for expansion hardware or augment the
software facilities of the machine. If the facilities provided by the background
ROMs are to be available, the foreground program must initialise them. This
routine finds and initialises all background ROMs.

Entry conditions:

DE contains address of the first usable byte of memory (lowest address).
HL contains address of the last usable byte of memory (highest address).

Exit conditions:

DE contains the address of the new first usable byte of memory.
HL contains the address of the new last usable byte of memory.

AF and BC corrupt.
All other registers preserved.

Notes:

When a foreground program is entered it is passed the addresses of the first and last
bytes in memory which it may use. The area of memory outside this is used to store
firmware variables, the stack, the jumpblocks and the screen memory. From the
area available for a foreground program to use, the areas for background programs
to use must be allocated.

The foreground program should initialise background ROMs at an early stage,
before it uses the memory it is given. It may choose whether to enable background
ROMs or not. KL INIT BACK may be used to initialise a particular background
ROM or this routine may be used to initialise all available background ROMs.

KL ROM WALK inspects the ROMs at ROM select addresses in the range 1..7. The
power-up initialisation entry of each background ROM found is called. This entry
may allocate some memory for the background ROM's use by adjusting the values
in DE and HL before returning. Once the ROM has been initialised the Kernel adds
it to the list of external command servers, and notes the base of the area which the
ROM has allocated to itself at the top of memory (if any). Subsequent FAR CALLs
to entries in the ROM will automatically set the IY index register to point at the
ROM's upper memory area.

See section 9.4 for a full description ufbal_r:kgruund ROMs.

Related entries:

KL FIND COMMAND
KL INITBACK
KLLOGEXT

AMSTRAD CPC464 FIRMWARE PAGE 14.169

154: KL INIT BACK #BCCE

Initialise a particular background ROM.

Action:

Background ROMs provide support for expansion hardware or augment the
software facilities of the machine. If the facilities provided by the background
ROMs are to be available the foreground program must initialise them. This
routine selects and initialises a particular background ROM.

Entry conditions:

C contains the ROM select address of the ROM to initialise.
DE contains address of the first usable byte of memory (lowest address).
HL contains address of the last usable byte of memory (highest address).

Exit conditions:

DE contains the address of the new first usable byte of memory.
HL contains the address of the new last usable byte of memory.

AF and B corrupt.
All other registers preserved.

Notes:

The ROM select address must be in the range 1..7 or the request will be ignored.
The ROM at this address must be a background ROM or the request will be ignored.

When a foreground program is entered it is passed the addresses of the first and last
bytes in memory which it may use. The area of memory outside this is used to store
firmware variables, the stack, the jumpblocks and the screen memory. From the
area available for a foreground program to use, the areas for background programs
to use must be allocated.

The foreground program should initialise background ROMs at an early stage,
before it uses the memaory it is given. It may choose whether to enable background
ROMs or not. KL ROM WALK may be used to initialise all available ROMs or this

routine may be used to initialise particular ROMs.

This routine causes the background ROM's power-up initialisation entry to be
called. This entry may allocate some memory for the background ROM's use by
adjusting the values in DE and HL before returning. Once the ROM has been
initialised the Kernel adds it to the list of external command servers, and notes the
base of the area which the ROM has allocated to itself at the top of memory (if any).
Subsequent FAR CALLs to entries in the ROM will automatically set the I'Y index

register to point at the ROM's upper memory area.
PAGE 14.170 AMSTRAD CPC464 FIRMWARE

155: KL LOG EXT #BCD1

Introduce an RSX to the Firmware.

Action:

RSXs (Resident System Extensions) are similar to background ROMs, but are
loaded into RAM. This routine must be called to include the RSX on the Kernel's
list of external command servers.

Entry conditions:

BC contains the address of the RSX's command table.

HL contains the address of a 4 byte area of RAM for the Kernel's use.

Exit conditions:

DE corrupt.

All other registers preserved.

Notes:

Both the RSX's command table and the Kernel's storage area must lie in the central
32K of memaory, i.e. not under a ROM.

The format of a command table is described in section 9.2 and RS5Xs are discussed
in section 9.5.

Related entries:

KL FIND COMMAND
KL INIT BACK

PAGE 14.172 AMSTRAD CPC464 FIRMWARE

156: KL FIND COMMAND #BCD4

Qearch for an RSX, background ROM or foreground ROM to

process a command.

Action:

All expansion ROMs and RSXs have command tables of the same form. This routine
searches all RSXs and background ROMs on the Kernel's list of external command
servers looking for a match for the given command name. If the name is found, then
the ‘far address’ of the associated routine is returned. If the command is not a
background or RSX command then all the foreground ROMs that can be found are
searched for a foreground program with the given name. If a foreground program is
found then the system immediately enters it.

Entry conditions:

HL contains the address of the command name to gearch for.

Exit conditions:
If an RSX or background ROM command was found:

Carry true.
C contains the ROM select address.
HL contains the address of the routine.

If the command was not found:

Carry false.
C and HL corrupt.

Always

A, B and DE corrupt.
All other registers preserved.

Notes:

The command name passed must be in RAM but may lie underneath a ROM. The
name may be any number of characters long but only the first 16 characters are
significant, All alphabetic characters in the name should be in upper case and the
last character of the name should have bit 7 set.

The ROM select and routine addresses are suitable for calling KL FAR PCHL.

AMSTRAD CPC464 FIRMWARE PAGE 14.173

The list of external command servers is generated as background ROMs and RSXs
are initialised (see KL ROM WALK, KL INIT BACK and KL LOG EXT). The
command tables are scanned in the oppesite order to that in which the command
servers were introduced. Thus, RSXs will tend to take precedence over background
ROMs, since RSX's are, in general, initialised after background ROMs. Background
ROMs are normally initialised in reverse order of ROM select address, so lower
numbered ROMS will take precedence over higher.

See section 9.2 for a full description of the format of expansion ROM command
tables.

The first entry in a background ROM’s command name table (the one associated
with the power-up entry) may be used as the ROM's name. KL FIND COMMAND
may be used, therefore, to find out whether a particular background ROM has been
initialised.

When searching for a foreground program, ROMs are inspected starting with ROM
0 and working up until an unused ROM address is found.

The on-board BASIC may be entered by searching for and invoking the command
BASIC.

If a foreground ROM command is found the ROM is entered unconditionally and
this routine never returns.

Related entries:

KL INIT BACK

KL LOG EXT

KL ROM WALK

MC START PROGRAM

PAGE 14.174 AMSTRAD CPC464 FIRMWARE

157: KL NEW FRAME FLY #BCD7

Initialise and put a block onto the frame flyback list.

Action:

The Kernel maintains a list of events to be kicked each time frame flyback occurs.
This routine initialises a block and adds it to the list.

Entry conditions:

HL contains the address of the frame flyback block.

B contains the event class.
C contains the ROM select address of the event routine.

DE contains the address of the event routine.

Exit conditions:

AF, DE and HL corrupt.
All other registers preserved.

Notes:

The frame flyback block is 9 bytes long and must lie in the central 32K of RAM. The
last 7 bytes of the frame flyback block are an event block which is initialised to
reflect the parameters passed in B, C and DE (see KL INIT EVENT). The exact

layout of a frame flyback block is described in Appendix X.

The frame flyback block is appended to the frame flyback list if it is not already on
it.

This routine enables interrupts.

Related entries:

KL ADD FRAME FLY
KL DEL FRAME FLY
KL INIT EVENT

AMSTRAD CPC464 FIRMWARE PAGE 14.175

158: KL ADD FRAME FLY #BCDA

Put a block onto the frame flyback list.

Action:

The Kernel maintains a list of events to be kicked each time frame flyback occurs.
This routine adds a block to the list.

Entry conditions:
HL contains the address of the frame flyback block.

Exit conditions:

AF, DE and HL corrupt.
All other registers preserved.

Notes:

The frame flyback block is 9 bytes long and it must lie in the central 32K of RAM.
The last 7 bytes of the frame flyback block are an event block which must be
initialised separately before calling this routine. The exact layout of a frame

flyback block is described in Appendix X.
The block is appended to the frame flyback list if it is not already on it.
This routine enables interrupts.

Related entries:

KL DEL FRAME FLY
KL INIT EVENT
KL NEW FRAME FLY

PAGE 14.176 AMSTRAD CPC464 FIRMWARE

159: KL DEL FRAME FLY #BCDD

Remove a block from the frame flyback list.

Action:

The Kernel maintains a list of events to be kicked each time frame flyback occurs.
This routine removes a block from the list,

Entry conditions:

HL contains the address of the frame flyback block.

Exit conditions:

AF, DE and HL corrupt.

All other registers preserved.
Notes:

This routine does nothing if the block is not on the list.

Removing a block from the list only prevents the event being kicked again. It does
not affect any outstanding frame flyback events.

This routine enables interrupts.

Related entries:
KLADDFRAME FLY
KLNEWFRAME FLY

AMSTRAD CPC464 FIRMWARE PAGE 14177

160: KL NEW FAST TICKER #BCEO

Initialise and put a block onto the fast ticker list.

Action:

The Kernel maintains a list of events to be kicked each time the 1/300th of a second
timer interrupt occurs, This is known as the fast ticker list. This routine initialises

a block and adds it to the list.

Entry conditions:

HL contains the address of the fast ticker block.

B contains the event class.
C contains the ROM select address of the event routine,
DE contains the address of the event routine.

Exit conditions:

AF, DE and HL corrupt.
All other registers preserved.

Notes:

The fast ticker block iz 9 bytes long and must lie in the central 32K of RAM. The
last 7 bytes of the fast ticker block are an event block which is initialised to reflect
the parameters passed in B, C and DE (see KL INIT EVENT). The exact layout of

a fast ticker block is described in Appendix X.
The fast ticker block is appended to the fast ticker list if it is not already on it.

The fast ticker facility is not intended for general use. However, it does allow
relatively short times to be measured giving greater resolution than the general
ticker facilities.

This routine enables interrupts.

Related entries:

KL ADD FAST TICKER
KL ADD TICKER

KL DEL FAST TICKER
KL INIT EVENT

KL TIME PLEASE

PAGE 14.178 AMSTRAD CPC464 FIRMWARE

161: KL ADD FAST TICKER #BCE3

Put a block onto the fast ticker list.

Action:

The Kernel maintains a list of events to be kicked each time the 1/300th of a second
timer interrupt occurs. This is known as the fast ticker list. This routine adds a
block to the list.

Entry conditions:
HL contains the address of the fast ticker block.

Exit conditions:

AF, DE and HL corrupt.
All other registers preserved.

Notes:

The fast ticker block 1s 9 bytes long and must lie in the central 32K of RAM. The
last 7 bytes of the fast ticker block are an event block which must be initialised
before calling this routine. The exact layout of a fast ticker block is described in
Appendix X.

The fast ticker block is appended to the fast ticker list if it is not already on it.

The fast ticker facility is not intended for general use. However, it does allow
relatively short times to be measured giving greater resolution than the general
ticker facilities.

This routine enables interrupts.

Related entries:

KL ADDTICKER

KL DELFASTTICKER
KL INIT EVENT

KL NEW FASTTICKER
KL TIME PLEASE

AMSTRAD CPC464 FIRMWARE PAGE 14.179

162: KL DEL FAST TICKER #BCE6

Remove a block from the fast ticker list.

Action:

The Kernel maintains a list of events to be kicked each time the 1/300th of a second
timer interrupt occurs, This is known as the fast ticker list. This routine removes a
block from the list.

Entry conditions:

HL contains the address of the fast ticker block.

Exit conditions:

AF,DE and HL corrupt.
All other registers preserved.

Notes:
This routine does nothing if the block is not on the list.

Removing a block from the list only prevents the event from being kicked again. It
does not affect any outstanding fast ticker events.

This routine enables interrupts,

Related entries:

KL ADD FASTTICKER
KLDELTICKER
KLNEWFASTTICKER

PAGE 14.180 AMSTRAD CPC464 FIRMWARE

163: KL ADD TICKER #BCE9
Put a block onto the tick list.

Action:

The general purpose timing facility measures time in 1/50th of a second units. The
Kernel maintains a list of tick blocks each of which contains a count and a recharge
value. Every 1/50th of a second the Kernel processes all the tick blocks,
decrementing the count entry of each. If the count entry of a block becomes zero the
event contained in the block is ‘kicked’, and the count is set to the recharge value,

Entry conditions:
HL contains the address of the tick block.

DE contains the initial value for the count entry.
BC contains the value for the recharge entry.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The tick block is 13 bytes long and must lie in the central 32K of memory. The last
7 bytes of the tick block are an event block which must be initialised before this
routine is called. The exact layout of a tick block is described in Appendix X.

The count and recharge entries in the block are set. The block is then appended to
the tick list if it is not already on the list. This routine may be used, therefore, to
change the count and recharge entries of an existing block.

Blocks with a count entry of zero are ignored when the list is processed. Setting a
recharge value of zero, therefore, sets up the block as a ‘one shot timer’. Since it
takes the Kernel time to ignore a tick block, any redundant blocks should be
removed from the list as soon as possible.

It is not possible to predict, particularly with synchronous events, how long it will
be after the ‘kick’ before the event routine is actually called. Notwithstanding these
delays, the ticker may be used to obtain an exact number of ‘kicks’ in a given period
since the recharge mechanism immediately resets the count. The event counting
mechanism will ensure that kicks' are not missed, provided that there are never
more than 127 outstanding at once.

This routine enables interrupts.

Related entries:

KL ADD FAST TICKER
KL DEL TICKER
KL INIT EVENT

AMSTRAD CPC464 FIRMWARE PAGE 14.181

164: KL DEL TICKER #BCEC

Remove block from the tick list.

Action:

If the given block is on the tick list it 18 removed. The contents of the block are not
affected.

Entry conditions:
HL contains the address of the tick block.

Exit conditions:
Ifthe tick block was found on the tick list:

Carry true.
DE contains the count remaining before the next event.

Ifthe tick block was not found on the tick list:

Carry false.
DE corrupt.

Always:
A. HL and other flags corrupt.
All other registers preserved,
Notes:

The contents of the block are not affected by removing it from the list. In particular
the continued processing of outstanding events is not affected. The block could be
put back on the list at a later date and it could continue counting where it left off.

This routine enables interrupts.

Related entries:

KLADDTICKER
KL DELFASTTICKER

PAGE 14.182 AMSTRAD CPC464 FIRMWARE

165: KL INIT EVENT #BCEF

Initialise an event block.

Action:
Initialise all entries in an event block.

Entry conditions:

HL contains the address of the event block.

B contains the event class.

C contains the ROM select address of the event routine.
DE contains the address of the event routine

Exit conditions:
HL contains the address of the event block +7.
All other registers preserved.

Notes:

The event block is 7 bytes long and must lie in the central 32K of RAM. The layout
of an event block is described in Appendix X. See section 11 for a general discussion

of events.

The ROM select and address of the routine are the ‘far address’ of the event routine
(see section 2).

The event class is bit significant as follows:

Bit 0: Near address.

Bits1.4: Synchronous event priority.
Bit 5: Must be zero.

Bit &: Express event.

Bit T: Asynchronous event.

If the asynchronous bit is set then the event is an asynchronous event, otherwise it
is a synchronous event. Asynchronous events do not have priorities and so the
priority field is ignored.

If the express event bit is set then the event is an express event. The meaning of this
depends on whether the event is synchronous or asynchronous.

All express synchronous events have higher priorities than any normal
synchronous event. The priority of a synchronous event is encoded in bits 1..4 of the
class, the higher the number the greater the priority. No event may have priority
0. The processing of normal synchronous events may be disabled (by calling KL
EVENT DISABLE), while that of express synchronous events may not.

AMSTRAD CPC464 FIRMWARE PAGE 14.183

An express asynchronous event will have its event routine called directly from the
interrupt path. A normal asynchronous event is processed just before returning
from the interrupt (with interrupts are enabled).

If the near address bit is set then the event routine is located either in the lower
ROM or in the central 32K of RAM. The ROM select address is ignored and the
routine is called directly, rather than through the FAR CALL mechanism, thus
reducing the event processing overhead, Where possible asynchronous events
should be at ‘near addresses’. Express asynchronous events must always be at ‘near

addresses’.

Event blocks appear in various other blocks handled by the Kernel, including frame
flyback, fast ticker and tick blocks. This routine is used to initialise the event block
parts of these.

The bytes after the last byte of the event block, even where the block forms part of
another block, are not used by the Kernel. When the event routine is called the
address of the block is passed to it, so the user may append further information
about the event to the block. This allows several similar events to share the same
event routine, each event having its ‘own’ variables appended to its event block.

The event routine has the following entry and exit conditions:

Entry:
[fthe event routine is at a ‘far address".

HL contains the address of byte 5 of the event block
(so any appended data can start at address HL +2).

Ifthe event routine is at a ‘near address”:

HL contains the address of byte 6 of the event block
(so any appended data can start at address HL+1).

Exit:
AF, BC, DE and HL. corrupt.
All other registers preserved.
The event routine may use the IX and IY registers but must preserve them. It may

not use the second register set. Express asynchronous events may not enable
interrupts.

KLINIT EVENT enables interrupts.

Related entries:

KL DELSYNCHRONOUS
KLDISARM EVENT

KL EVENT

KL NEW FASTTICEER
KLNEW FRAME FLY

KL NEW TICKER

KL SYNC RESET

PAGE 14.184 AMSTRAD CPC464 FIRMWARE

166: KL EVENT #BCF2

‘Kick’ an event block.

Action:

The event mechanism arranges that an event routine be called in response to each
*kick’ of an event block. KL EVENT performs the ‘kick’.

Entry conditions:
HL contains the address of the event block.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

Unlike the vast majority of Kernel routines this routine may be called from the
interrupt path. Because the LOW JUMPF instruction in the main firmware
jumpblock enables interrupts the user must pick the address part of the low
address’ out of the jumpblock and mask off the top two bits to extract the address in
the lower ROM of KL EVENT. The following code does this:

LD DE,#BCF2+1) - extract address part of LOW JUMP
RES 7D - remove upper ROM state from ‘low address’
RES 6,D - remove lower ROM state from ‘low address’

CALL PCDE_INSTRUCTION ;CALL KL EVENT

(If the user is going to perform this operation repeatedly it is recommended that the
address should be extracted once and should be stored somewhere).

The effect of the ‘kick’ depends on the event count in the event block:
Count € 0: The event is disarmed, and kicking it has no effect.

Count > 0: There are other kicks outstanding and the event is being
processed. This kick simply increments the count (unless it has

already reached the maximum of 127). Once event processing has
begun it continues until the count becomes zero or the event is

disarmed.

Count =0: The event is armed but event processing is not active.
The count is incremented and event processing initiated.

ANMAFOTIDATY i"d4d0d TTDRIFMAT A DG DA MY 174 1@

How event processing is initiated depends on the event class.
Synchronous Events.

Synchronous events are added to the synchronous event queue in priority
order. It is the responsibility of the foreground program to process the
synchronous event queue regularly.

Synchronous event routines are called when the foreground program calls KL
DO SYNC, the event count is then dealt with when KL DONE SYNC iscalled.

Asynchronous Events.
a, Notinthe Interrupt Path

The event routine is called immediately. When the routine returns, if the
event count greater than zero it is decremented. If the count is still greater
than zero then the procedure is repeated.

b. IntheInterrupt Path - Normal Asynchronous Event

The event is placed on the interrupt event pending queue. Un exit from the
interrupt path the Kernel processes all events on the interrupt pending queue
as described in (a) above. This means that normal asynchronous event
routines are called in an extension of normal (non-interrupt) processing
between interrupt return and the main program. The routine is, therefore, not
subject to the restrictions imposed on interrupt path routines.

¢. IntheInterrupt Path - Express Asynchronous Event

The event routine is called immediately, in the interrupt path. The routine
must be at a ‘near address’ (see KL INIT EVENT). Under no circumstances

may the routine enable interrupts.
KL EVENT enables interrupts unless it is called from the interrupt path.

Related entries:

KL INIT EVENT
KLNEXTSYNC

KL POLLSYNCHRONOUS
KLSYNCRESET

PAGE 14.186 AMSTRAD CPC464 FIRMWARE

167: KL SYNC RESET #BCF5

Clear synchronous event queue.

Action:

The synchronous event queue is set empty - any outstanding events are simply
discarded. The current event priority, used by KL POLL SYNCHRONOUS and KL

NEXT SYNC to mask out lower priority events, 15 reset.
Entry conditions:

No conditions.

Exit conditions:

AF and HL corrupt.
All other registers preserved.

Notes:

It is the user's responsibility to ensure that the discarded events and any currently
active events are reset. The event count of discarded events will be greater than
zero, so any further kicks' will simply increment the count, but not add the event to
the synchronous event queue - the events are, therefore, effectively disarmed.

Related entries:

KL DELSYNCHRONOUS
KL NEXTSYNC
KL POLLSYNCHRONOUS

AMSTRAD CPC464 FIRMWARE PAGE 14.187

168: KL DEL SYNCHRONOUS #BCF8

Remove a synchronous event from the event queue.

Action:
The event is disarmed. If it is on the synchronous event queue then it is removed.

Entry conditions:
HL contains the address of the event block.

Exit conditions:

AF BC, DE and HL corrupt.
All other registers preserved.

Notes:

Deleting an event from the queue prevents the outstanding ‘kicks’ from being
processed.

Before a synchronous event block is reset or reinitialised this routine should be used
to ensure that it is not currently pending.

This routine enables interrupts.

Related entries:

KL DISARM EVENT
KL INIT EVENT
KL SYNC RESET

PAGE 14.188 AMSTRAD CPC464 FIRMWARE

169: KL NEXT SYNC #BCFB

Get next event from the queue.

Action:

If there is an event on the synchronous event gqueue whose priority is greater than
the current event priority (if any), then remove the event from the queue, set the
current event priority to that of the event removed and return the previous event

priority.
Entry conditions:

No conditions.

Exit conditions:
If there is an event to be processed:

Carry true.
HL contains the address of the event block.
A contains the previous event priority (if any).

If there is no event to be processed:

Carry false.
A and HL corrupt.

Always:

DE corrupt.
All other registers preserved.

Notes:

KL NEXT SYNC returns the address of the next event to be processed, if any, which
it has taken off the synchronous event queue and whose priority has now been set as
the event priority mask.

AMSTRAD CPC464 FIRMWARE PAGE 14.189

The procedure for processing synchronous events is as follows:

TRY_AGAIN:
CALL KL_NEXT_SYNC ;return nextevent,ifany
JR NC, ™7 - jump if no event to process
PUSH HL - save address nf event
PUSH AF - save previous event priority
CALL KL DO_SYNC : call the event routine
POP AF
POP HL

CALL KL DONE_SYNC ;resettheevent priority mask, deal with

- the event count and put the event back on
: the queue if the count is still greater
: than zero
JR TRY_AGAIN - see if any invents are still awaiting processing

The foreground program should call KL POLL SYNCHRONOUS regularly to check
for outstanding events. KL POLL SYNCHRONOUS is a short routine in RAM, so
calling it imposes little overhead. If there is an event outstanding then the above
procedure should be invoked, and should be repeated until the event queue is

empty.

The current event priority mechanism allows event routines to poll for, and process,
events of higher priority. The priority returned by this routine must be preserved
until it is passed to KL DONE SYNC.

KL NEXT SYNC enables interrupts.

Related entries:

KL DONE SYNC

KL DO SYNC

EL EVENT

KL INIT EVENT

KL POLL SYNCHRONOUS

PAGE 14.190 AMSTRAD CPC464 FIRMWARE

170: KL DO SYNC #BCFE

Perform an event routine.

Action:

Call the event routine for a given event.

Entry conditions:
HL contains the address of the event block.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

This routine is intended to be called to process an event after KL NEXT SYNC has
found it to be pending. Use of this entry at any other time is not recommended.

See KL NEXT SYNC above for the general scheme for processing synchronous
events.

KL DO SYNC does not itself affect the event count.

Related entries:

KL DONE SYNC
KL NEXT SYNC

AMSTRAD CPC464 FIRMWARE PAGE 14.191

171: KL DONE SYNC #BD01

Finish processing an event.

Action:

Once a synchronous event has been processed, by invoking its event routine via KL
DO SYNC, this entry must be called to restore the current event priority and to deal
with the event count. If the count remains greater than zero the event block is

placed back on the synchronous event queue.

Entry conditions:

A contains the previous event priority.
HL contains the address of the event block.

Exit conditions:

AF BC, DE and HL corrupt
All other registers preserved.

Notes:

This routine is intended to be called after calling KL NEXT SYNC, to find a
pending event, and KL DO SYNC, to run the event routine. It uses the previous
event priority and the event block address returned by KL NEXT SYNC. Other

uses of this entry are not recommended.
See KL NEXT SYNC above for the general scheme for processing synchronous
events.

Restoring the current event priority is an essential step In maintaining the
synchronous event priority scheme.

If the event count is greater than zero then it is decremented. If the count 15 still
greater than zero then there are further events outstanding and the event is placed
back on the synchronous event queue. The event may be disarmed between KL
NEXT SYNC and KL DONE SYNC. Setting the event count to one before calling
KL DONE SYNC forces multiple events to be treated as a single event.

KL DONE SYNC may enable interrupts.

Related entries:

KL DO SYNC
KL NEXT SYNC

PAGE 14.192 AMSTRAD CPC464 FIRMWARE

172: KL EVENT DISABLE #BD04

Disable normal synchronous events.

Action:

Prevent normal synchronous events from being processed but allow express
synchronous events to be processed. This is achieved by setting the current event
priority higher than any possible normal synchronous event priority.

Entry conditions:

No conditions.

Exit conditions:

HL corrupt.
All other registers preserved.

Notes:

KL EVENT DISABLE does not prevent events from being kicked. The effect is to
‘mask off all pending normal synchronous events so that they are hidden from the
foreground program (when KL POLL SYNCHRONOUS or KL NEXT SYNC are

called) and hence are not processed.
KL EVENT ENABLE reverses the effect of KL EVENT DISABLE,

It is mot possible to disable synchronous events permanently from inside a
synchronous event routine as the previous current event priority is restored when
the event routine returns,

Related entries:

KL DISARMEVENT
KLEVENTENABLE
KLNEXTSYNC
KLPOLLSYNCHRONOUS

AMSTRAD CPC464 FIRMWARE PAGE 14.193

172: KL EVENT ENABLE #BDO07

Enable normal synchronous events.

Action:
Allows normal and express synchronous events to be processed.

Entry conditions:

No conditions.

Exit conditions:

HL corrupt.
All other registers preserved.

Notes:

Events are enabled by default. KL EVENT ENABLE reverses the effect of KL
EVENT DISABLE.

It is mot possible to enable synchromous events permanently from inside a
synchronous event routine as the current event priority which is used to disable
svents is restored when the event routine returns.

Related entries:

KLEVENT DISABLE
KLNEXTSYNC
KL POLLSYNCHRONOUS

PAGE 14.194 AMSTRAD CPC464 FIRMWARE

174: KL DISARM EVENT #BDOA

Prevent an event from occurring.

Action:

Disarms the event by setting the event count to a negative value. Any further
“kicks' (calls of KL EVENT) for the event will be ignored, any outstanding events
are discarded.

Entry conditions:

HL contains the address of the event block.

Exit conditions:
AF corrupt.
All other registers preserved.

Notes:

KL DISARM EVENT should only be used with asynchronous events. Synchronous
events may be disarmed by calling KL DEL SYNCHRONOUS, which also ensures

that the event is not on the synchronous event queue.

The event may be re-armed by re-initialising it (KL INIT EVENT) or by setting the
event count (byte 2 of the event block) to zero.

Related entries:

KL DEL SYNCHRONOUS
KL INIT EVENT

AMSTRAD CPC464 FIRMWARE PAGE 14.195

175: KL TIME PLEASE #BDO0OD

Ask the elapsed time.

Action:

The Kernel maintains a count which it increments on each time interrupt. The
count, therefore, measures time in 1/300th of a second units. This routine returns
the current count.

Entry conditions:

No conditions.

Exit conditions:

DEHL contains the four byte count (D contains the most significant byte and L the
least significant byte).

All other registers preserved.

Notes:

The count is zeroised when the machine is turned on or reset, The count may be set
to another starting value by KL TIME SET.

The count is not kept up to date if interrupts are disabled for long periods, such as
while reading and writing the cassette.

The four byte count overflows after approximately:

14,316,558 Seconds
238,609 Minutes
3.977 Hours
166 Days

This routine enables interrupts.

Related entries:
KL TIME SET

PAGE 14.196 AMSTRAD CPC464 FIRMWARE

176: KL TIME SET #BD10

Set the elapsed time.

Action:

The Kernel maintains a count which it increments on each time interrupt. The
count, therefore, measures time in 1/300th of a second units. This routine sets the
count to a given value.

Entry conditions:

DEHL contains the four byte count to set (D contains the most significant byte and
L the least significant byte).

Exit conditions:

AF corrupt.
All other registers preserved,

Notes:

The four byte count overflows after approximately:

14,316,558 Seconds
238,609 Minutes
3,977 Hours

166 Days

KL TIME SET may be used to set the count to the actual time of day, so that the
Kernel then maintains a real clock rather than a simple measure of the time
elapsed since the last reset.

The count is not kept up to date if interrupts are disabled for long periods, such as
while reading and writing the cassette.

This routine enables interrupts.

mn n

Related entries:
KL TIME PLEASE

AMSTRAD CPC464 FIRMWARE PAGE 14.197

177: MC BOOT PROGRAM #BD13

Load and run a program.

Action:

Shut down as much of the system as possible then load a program into RAM and run
it. If the load fails then the previous foreground program is restarted.

Entry conditions:
HL contains the address of the routine to call to load the program.

Exit conditions:

Does not exit!

Notes:

The system is partially reset before attempting to load the program. External
interrupts are disabled, as are all timer, frame flyback and keyboard break events.
Sound generation is turned off, indirections are set to their default routines and the
stack is reset to the default system stack. This process ensures that no memory
outside the firmware variables area is in use when loading the program.
Overwriting an active event block or indirection routine could otherwise have

unfortunate consequences.

The partial system reset does not change the ROM state or ROM selection. The
routine run to load the program must be in accessible RAM or an enabled ROM.
Note that the firmware jumpblock normally enables the lower ROM and disables
the upper ROM and so the routine must normally be in RAM above #4000 or in the
lower ROM.

The routine run to load the program is free to use any store from #0040 up to the
base of the firmware variables area (#B100) and may alter indirections and arm
external device interrupts as required. It should obey the following exit conditions:

If the program loaded successfully:

Carry true.
HL contains the program entry point.

If the program failed to load:

Carry false.
HL corrupt.

Always:
A, BC, DE, IX, IY and other flags corrupt.

PAGE 14.198 AMSTRAD CPC464 FIRMWARE

After a successful load the firmware is completely initialised (as at EMS) and the
program is entered at the entry address returned by the load routine. Returning
from the program will reset the system (perform RST 0).

After an unsuccessful load an appropriate error message is printed and the previous
foreground program is restarted, If the previous foreground was itself a RAM

then the default ROM is entered instead as the program may have been
corrupted during the failed loading.

Related entries:

CAS IN DIRECT
KL CHOKE OFF
MC START PROGRAM

AMSTRAD CPC464 FIRMWARE PAGE 14.199

178: MC START PROGRAM #BD16

Run a foreground program.

Action:
Fully initialise the system and enter a program.

Entry conditions:

HL contains the entry point address.
C contains the required ROM selection.

Exit conditions:

Never exits!

Notes:

HL and C comprise the ‘far address' of the entry point of the foreground program
(see section 2).

When entering a foreground program in ROM the ROM selection should be that

required to select the appropriate ROM. When entering a foreground program in
RAM the ROM selection should be used to enable or disable ROMs as the RAM
program requires (ROM select addresses #FC..#FF).

This routine carries out a full EMS initialisation of the firmware before entering
the program. Returning from the program will reset the system (perform RST 0).

MC START PROGRAM is intended for running programs in ROM or programs that
have already been loaded into RAM. To load and run a RAM program use MC

BOOT PROGRAM.

Related entries:

MC BOOT PROGRAM
RESET ENTRY (RSTO)

PAGE 14.200 AMSTRAD CPC464 FIRMWARE

179: MC WAIT FLYBACK #BD19

Wait for frame flyback.

Action:
Wait until frame flyback occurs.

Entry conditions:
No conditions.

Exit conditions:
All registers and flags preserved.

Notes:

Frame flyback is a signal generated by the CRT controller to signal the start of the
vertical retrace period. During this period the screen is not being written and so
major operations can be performed on the screen without producing unsightly
effects. A prime example is rolling the screen.

The frame flyback signal only lasts for a couple of hundred microseconds but the
vertical retrace period is much longer than this. However, there will be a ticker
interrupt in the middle of frame flyback which may cause the foreground processing
to be suspended for a significant length of time. It is important, therefore, to
perform any critical processing as soon after frame flyback is detected as is possible.

Related entries:
KLADDFRAMEFLY

AMSTRAD CPC464 FIRMWARE PAGE 14.201

180: MC SET MODE #BD1C

Set the screen mode.

Action:
Load the hardware with the required screen mode.

Entry conditions:
A contains the required mode.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

The required mode is checked and no action is taken if it 15 invalid. If it is valid then
the new value is sent to the hardware.

The screen modes are:

0: 160 x 200 pixels, 20 x 25 characters.
1: 320 x 200 pixels, 40 x 25 characters.
2: 640 x 200 pixels, 80 x 25 characters.

Altering the screen mode without notifying the Screen Pack will produce peculiar
effects on the screen. In general SCR SET MODE should be called to change screen
mode. This, in its turn, sets the new mode into the hardware.

Related entries:
SCRSETMODE

PAGE 14.202 AMSTRAD CPC464 FIRMWARE

181: MC SCREEN OFFSET #BD1F

Set the screen offset.

Action:

Load the hardware with the offset of the first byte on the screen inside a 2K screen
block and which 16K block the screen memory is located in.

Entry conditions:

A contains the new screen base.
HL contains the new screen offset.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

The screen base address is masked with #C0 to make sure it refers to a valid 16K
memory area. The default screen base is #C0 (the screen is underneath the upper

ROM).

The screen offset is masked with #07FE to make it legal. Note that bit 0 is i gnored
as the hardware only uses even offsets.

If the screen base or offset is changed without notifying the Screen Pack then
unexpected effects may occur on the screen. In general SCR SET BASE or SCR SET
OFFSET should be called. These, in their turn, send the values to the hardware.
Related entries:

SCR SET BASE
SCR SET OFFSET

AMSTRAD CPC464 FIRMWARE PAGE 14.203

182: MC CLEAR INKS #BD22

Set all inks to one colour.

Action:

Set the colour of the border and set the colour of all the inks. All the inks are set to
the same colour thus giving the impression that the screen has been cleared

instantly.

Entry conditions:
DE contains the address of an ink vector.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:
The ink vector has the form:

Byte(: Colour for the border.
Bytel: Colour forallinks.

The colours supplied are the numbers used by the hardware rather than the grey
scale numbers supplied to SCR SET INK (see Appendix V).

After the screen has been cleared (or whatever) the correct ink colours can be set by
calling MC SET INKS.

Thiz routine sets the colours for all 16 inks whether they can be displayed on the
screen in the current mode or not.

This ink clearing technique is used by the Screen Pack when clearing the screen or
changing mode (by SCR CLEAR and SCR SET MODE).

Related entries:
MC SET INKS

PAGE 14.204 AMSTRAD CPC464 FIRMWARE

183: MC SET INKS #BD25

Set colours of all the inks.

Action:
Set the colours of all the inks and the border.

Entry conditions:

DE eontains the address of an ink vector.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

The ink vector passed has the following layout:

Byte(): Colourfor the border.
Bytel: Colourforink0.
Byte2: Colourforink 1.

Byte 16: Colour for ink 15.

The colours supplied are the numbers required by the hardware rather than the
grey scale numbers supplied to SCRSET INK (see Appendix V).

This routine sets the colours for all inks including those that cannot be visible in the
current screen mode. However, it is only necessary to supply sensible colours for the

vigible inks.

The Screen Pack sets the colours for all the inks each time the inks flash and after
an ink colour has been changed (by calling SCR SET INK or SCR SET BORDER).

Related entries:

MC CLEAR INKS
SCRSETBORDER
SCR SETINK

AMSTRAD CPC464 FIRMWARE PAGE 14.205

184: MC RESET PRINTER #BD28

Reset the printer indirection.

Action:
Set the printer indirection, MC WAIT PRINTER, to its default routine.

Entry conditions:
No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:
This routine has no other effects.

Related entries:

MC WAIT PRINTER
MC PRINT CHAR

PAGE 14.206 AMSTRAD CPC464 FIRMWARE

185: MC PRINT CHAR #BD2B

Try to send a character to the Centronies port.

Action:

Send a character to the printer (Centronics port) or time out if the printer is busy
for toolong.

Entry conditions:
A contains the character to send (bit 7 ignored).

Exit conditions:

Ifthe character was sent OK:
Carry true,

If the printer timed out:
Carry false.

Always:

A and other flags corrupt.
All other registers preserved.

Notes:

This routine calls the Machine Pack indirection MC WAIT PRINTER to send the
character. The default indirection routine waits for the Centronics port to become
non-busy then sends the character. If the port remains busy for too long
(approximately 0.4 seconds) then the routine times out and the character is not
sent. This time out is provided so that the caller can test for break whilst driving the

printer.

Related entries:

MC RESET PRINTER
MC WAIT PRINTER

AMSTRAD CPC464 FIRMWARE PAGE 14.207

186: MC BUSY PRINTER

Test if the Centronics port is busy.

Action:
Test if the printer (Centronics port) is busy.

Entry conditions:

No conditions.

Exit conditions:

If Centronics port is busy:
Carry true.
If Centronics port isidle:

Carry false.
Always:

Other flags corrupt.
All other registers preserved.

Notes:
This routine has no other effects.

Related entries:
MC SEND PRINTER

#BD2E

PAGE 14.208 AMSTRAD CPC464 FIRMWARE

187: MC SEND PRINTER #BD31

Send a character to the Centronics port.

Action:
Send a character to the printer (Centronics port) which must not be busy.

Entry conditions:
A contains the character to send (bit 7 ignored).

Exit conditions:

Carry true.
A and other flags corrupt.

All other registers preserved.

Notes:

The printer must not be busy when a character is sent. The higher level routine MC
PRINT CHAR will automatically wait for the printer to become non-busy and
should be used in preference.

Related entries:

MC BUSY PRINTER
MC PRINT CHAR

AMSTRAD CPC464 FIRMWARE PAGE 14.209

188: MC SOUND REGISTER #BD34

Send data to a sound chip register.

Action:

Set a sound chip sound register. This is a rather convoluted action because of the
way the hardware has been designed.

Entry conditions:

A contains the sound chip register number.
C contains the data to send.

Exit conditions:

AF and BC corrupt.
All other registers preserved.

Notes:

This routine enables interrupts.

Related entries:

None!

PAGE 14.210 AMSTRAD CPC464 FIRMWARE

189: JUMP RESTORE #BD37

Restore the standard jumpblock.

Action:

Set the main firmware jumpblock to its standard state as described in sections 13.1
and 14.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

This routine may be used to restore the jumpblock to its standard routines after the
user has changed entries in it. The whole of the jumpblock is set up so care must be

taken if other programs may have patched it.

The indirections jumpblock is set up piecemeal by the various packs’ initialisation
and reset routines. JUMP RESTORE does not set up the indirections.

Related entries:

GRA RESET

KM RESET

MC RESET PRINTER
SCR RESET

TXT RESET

AMSTRAD CPC464 FIRMWARE PAGE 14.211

15 The Firmware Indirections.

This section gives the detailed entry and exit conditions and effects of the routines
in the indirections jumpblock. See section 13.2 for a list of these routines.

The firmware indirections are taken by the firmware at key points. They allow the
user to intercept and alter a number of firmware actions without having to provide
a complete new firmware package.

The descriptions given are for the default settings of the indirections. Replacement
routines need not perform all the actions that the default routine performs although

they are advised to do so.

AMSTRAD CPC464 FIRMWARE PAGE 15.1

IND: TXT DRAW CURSOR #BDCD

Place the cursor blob on the screen (if enabled).

Default action:

If the cursor is enabled and turned on the cursor blob is drawn on the screen. If not
then no action is taken. The current text position is forced into the window (see TXT
VALIDATE) and the cursor blob is written at the resulting position. The cursor blob
is an inverse patch. This routine will only be called twice if TXT UNDRAW
CURSOR is called in between.

Entry conditions:

No conditions.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

This indirection is provided to allow the user to change the form of the cursor blob.
See TXT PLACE CURSOR for a deseription of how the cursor blob is normally

written,

The Text VDU routines call this indirection whenever the cursor is placed on the
screen. All the Text VDU routines that read from the screen, write to the screen or
change the current position remove the cursor (using TXT UNDRAW CURSOR)
before performing their action and place it back on the screen afterwards (using
TXT DRAW CURSOR). An example of such a routine is TXT WR CHAR that writes

acharacter on the screen.
This indirection is set up when TXT INITIALISE or TXT RESET is called.

Related entries:

TXT PLACE CURSOR
TXTUNDRAW CURSOR

PAGE 15.2 AMSTRAD CPC464 FIRMWARE

IND: TXT UNDRAW CURSOR #BDDO

Remove the cursor blob from the screen (if enabled).

Default action:

If the cursor is enabled and turned on the cursor blob is removed from the screen. If
not then no action is taken. The cursor blob is an inverse patch. This routine will
only be called after TXT DRAW CURSOR has been used to place the cursor on the

BCTEEN.

Entry conditions:

No conditions.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

This indirection is provided to allow the user to change the form of the cursor blob.
See TXT REMOVE CURSOR for a description of how the cursor blob is normally

removed,

The Text VDU routines call this indirection to remove the cursor from the screen.
All the Text VDU routines that read from the screen, write to the screen or change
the current position remove the cursor (using TXT UNDRAW CURSOR) before
performing their action and place it back on the screen afterwards (using TXT
DRAW CURSOR). An example of such a routine is TXT WR CHAR that writes a

character on the screen.
This indirection is set up when TXT INITIALISE or TXT RESET is called.

Related entries:

TXT DRAW CURSOR
TXT REMOVE CURSOR

AMSTRAD CPC464 FIRMWARE PAGE 15.3

IND: TXT WRITE CHAR #BDD3

Write a character onto the screen.

Default action:
Put a character on the screen at a character position.

Entry conditions:

A contains the character to write.
H contains the physical column to write at.
L contains the physical row to write at.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The character position to write at is given in physical coordinates. i.e. Row 0,
column 0 is the top left corner of the screen. The position is not checked for legality.

TXT WRITE CHAR is called by TXT WR CHAR to print a character on the screen.
The removing of the cursor blob and the calculation of the new current position are
performed by TXT WR CHAR and not by TXT WRITE CHAR.

This indirection is set up when TXT INITIALISE or TXT RESET is called.

Related entries:

TXT OUTPUT

TXT UNWRITE
TXTWR CHAR

PAGE 15.4 AMSTRAD CPC464 FIRMWARE

IND: TXT UNWRITE #BDD6

Read a character from the screen,

Default action:
Try to read a character from the screen at a character position.

Entry conditions:

H contains the physical column to read from.
L contains the physical row to read from.

Exit conditions:
If a readable character was found:

Carry true.
A contains the character read.

If no recognisable character was found:

Carry false.
A contains zero.

Always:

BC, DE, HL and other flags corrupt.
All other registers preserved.

Notes:

The character position to read from is given in physical coordinates. 1.e. Row 0,
column 0 is the top left corner of the screen. The position is not checked for legality.

This indirection is called by TXT RD CHAR to read a character from the screen.
TXT RD CHAR removes the cursor from the screen before calling this indirection,

The read is performed by comparing the matrix found on the screen with the
matrices used to generate characters. As a result changing a character matrix,
changing the pen or paper inks or changing the screen (e.g. drawing a line through
a character) may make the character unreadable. In particular the cursor blob will
cause confusion and so it should not be on the screen.

Special precautions are taken against space being generated. Initially the character
is read assuming that the character was written in the current pen ink. If this fails
to generate a recognisable character or it generates space (character #20) then
another try is made by assuming that the background to the character was written

in the current paper ink.

AMSTRAD CPC464 FIRMWARE PAGE 15.5

The characters are scanned starting with #00 and finishing with #FF. Thus, if aa
there are two possible character matrices that match the screen, the smaller of the

two characters will be returned.
This indirection is set up when TXT INITIALISE or TXT RESET is called.

Related entries:

TXTRDCHAR
TXTWRITE CHAR

PAGE 15.6 AMSTRAD CPC464 FIRMWARE

IND: TXT OUT ACTION #BDD9

Output a character or control code.

Default action:

Print a character on the screen or obey a control code (characters #00..#1F). Works
on the currently selected stream (except as noted below).

Entry conditions:
A contains the character or code.

Exit conditions:

AF BC, DE and HL corrupt.
All other registers preserved.

Notes:

This indirection is called by TXT OUTPUT to do the work of printing characters or
obeying the control codes. It is provided to allow the user to change the method of
dealing with characters and control codes or to allow the user to redirect output (to
the printer for example). TXT OUTPUT merely preserves the registers around the
call of TXT OUT ACTION.

Control codes may take up to 9 parameters. These are the characters sent following
the initial control code. The characters sent are stored in a buffer until sufficient
have been received to make up all the required parameters. The control code buffer
is only long enough to accept 9 parameter characters.

There is only one control code buffer which is shared between all the streams. It is,
therefore, possible to get unpredictable results if the output stream is changed part
of the way through sending a control code sequence.

If the VDU is disabled then no characters will be printed on the screen. However,
control codes will still be obeyed.

If the graphics character write mode is enabled then all characters and control codes
are printed using the Graphics VDU (see GRA WR CHAR) and are not obeyed.
Normally characters are written by the Text VDU (see TXT WR CHAR).

This indirection is set up when TXT INITIALISE or TXT RESET is called.

Related entries:

TXT OUTPUT
TXTWRCHAR

AMSTRAD CPC464 FIRMWARE PAGE 15.7

IND: GRA PLOT #BDDC

Plot a point.

Default action:

Check if the point lies inside the current window and if so write it in the current
graphics pen ink and using the current graphics write mode. The current graphics
position is always moved to the specified point.

Entry conditions:

DE contains the user X coordinate of the point to plot.
HL contains the user Y coordinate of the point to plot.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The position of the point to plot is given in user coordinates, i.e, relative to the user
origin.

This indirection is called by GRA PLOT RELATIVE and GRA PLOT ABSOLUTE
to plot the point requested. It is provided to allow the user to change the method for
plotting (to output to an X-Y plotter for example). GRA PLOT RELATIVE converts

from relative to user coordinates and then calls this indirection; GRA PLOT
ABSOLUTE calls this indirection immediately.

To write the point on the screen the SCR WRITE indirection is used. Thus the point
is plotted using the current graphics write mode.

This indirection is set up when GRA INITTALISE or GRA RESET is called.

Related entries:

GRAPLOT ABSOLUTE
GRAPLOT RELATIVE
GRATEST

SCR WRITE

PAGE 15.8 AMSTRAD CPC464 FIRMWARE

IND: GRA TEST #BDDF

Test a point.

Default action:

Check if the point is inside the graphics window and return the ink it is currently
set to if so. Otherwise, return the current graphic paper ink. The current graphics
position is always moved to the specified point.

Entry conditions:

DE contains the user X coordinate of the point to test.
HL contains the user Y coordinate of the point to test.

Exit conditions:
A contains the decoded ink of the specified point.

BC, DE, HL and flags corrupt.
All other registers preserved.

Notes:

The position of the point to test is given in user coordinates, i.e. relative to the user
origin.

This indirection is used by GRA TEST RELATIVE and GRA TEST ABSOLUTE to
test the point requested. It is provided to allow the user to change the method for
testing (comparing with the current pen ink for example). GRA TEST RELATIVE
converts from relative to user coordinates and then calls this indirection; GRA
TEST ABSOLUTE calls this indirection immediately.

To test the ink of a point inside the window the SCR READ indirection is used.
This indirection is set up when GRA INITIALISE or GRA RESET is called.

Related entries:

GRAPLOT
GRA TEST ABSOLUTE
GRATEST RELATIVE
SCRREAD

AMSTRAD CPC464 FIRMWARE PAGE 15.9

IND: GRA LINE #BDE2

Draw a line.

Default action:

Draw a line in the current graphics pen ink between the current graphies position
and the given endpoint using the current graphics write mode. Points on the line
that lie outside the current graphics window will not be plotted. The current
graphics position is always moved to the specified endpoint.

Entry conditions:

DE contains the user X coordinate of the endpaoint.
HL contains the user Y coordinate of the endpoint.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

The position of the endpoint is given in user coordinates, i.e. relative to the user
origin.

This indirection is used by GRA LINE RELATIVE and GRA LINE ABSOLUTE to
draw the line requested. It is provided to allow the user to change the method for
line drawing (to output to an X-Y plotter for example). GRA LINE RELATIVE
converts from relative to user coordinates and then calls the indirection; GRA LINE
ABSOLUTE calls the indirection immediately.

The line is split up into horizontal or vertical sections that are drawn separately
(see SCR HORIZONTAL and SCR VERTICAL). The SCR WRITE indirection is
called to write the points in these sections. This means that the line is plotted using
the current graphics write mode.

This indirection is set up when GRA INITIALISE or GRA RESET is called.

Related entries:

GRALINE ABSOLUTE
GRA LINE RELATIVE
SCRHORIZONTAL
SCRVERTICAL

PAGE 15.10 AMSTRAD CPC464 FIRMWARE

IND: SCR READ #BDES5

Read a pixel from the screen.

Default action:
Read a pixel from the screen and decode itsink.

Entry conditions:

HL contains the screen address of the pixel.
C contains the mask for the pixel.

Exit conditions:

A contains the decoded ink that the pixel was set to.

Flags corrupt.
All other registers preserved.

Notes:

The mask supplied must be a mask for a single pixel otherwise the decoding of the
ink read from the screen will not work correctly.

This indirection is set up when SCR INITIALISE or SCR RESET is called. It is
called by GRA TEST.

Related entries:

GRATEST
SCR WRITE

AMSTRAD CPC464 FIRMWARE PAGE 15.11

IND: SCR WRITE #BDES

Write pixel(s) using the current graphics write mode.

Default action:
Plot a pixel or pixels on the screen using the current graphics write mode.

Entry conditions:

HL contains the screen address of the pixel(s).
C contains the mask for the pixel(s).
B contains the encoded ink to plot with.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:

The pixel mask supplied can be for a single pixel or more than one pixel (or even no
pixels). The ink supplied should be encoded to cover the whole of a byte (see SCR
INK ENCODE).

The pixel is plotted using the current Graphics VDU write mode. These modes are:

FORCE Pixel is set to the new ink irrespective of the old ink.
XOR Pixel is set to the ink formed by exclusive-oring the new ink for
the pixel and its current setting.
AND Pixel is set to the ink formed by anding the new ink for the pixel
and its current setting.
OR pixel is set to the ink formed by oring the new ink for the pixel
and its current setting.
The write mode can be set by calling SCR ACCESS appropriately.
This indirection is called by all Graphics VDU write routines, in particular GRA
PLOT RELATIVE, GRA PLOT ABSOLUTE, GRA LINE RELATIVE, GRA LINE
ABSOLUTE and GRA WR CHAR, to plot pixels on the screen. It is provided to
allow the user to intercept the lowest level of point plotting (perhaps to add yet
another plotting mode).

This indirection is set up when SCR INITIALISE or SCR RESET is called.

Related entries:

GRA PLOT
SCR ACCESS
SCR PIXELS
SCR READ

PAGE 15.12 AMSTRAD CPC464 FIRMWARE

IND: SCR MODE CLEAR #BDEB

Clear the screen to ink 0.

Default action:

Clear the screen memory to zeros. This indirection is provided to allow the user to
prevent the screen being cleared after the mode is changed.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.
Notes:

Normally this indirection performs the actions described in SCR CLEAR.
This indirection is set up when SCR INITIALISE or SCR RESET is called.

M B. When this indirection is called the text and graphics VDUs are in
non-standard states.

Related entries:

SCR CLEAR
SCR SET MODE

AMSTRAD CPC464 FIRMWARE PAGE 15.13

IND: KM TEST BREAK #BDEE

Test for break (or reset).

Default action:

Test if the escape key is pressed, if not then no action is taken. If escape, shift and
control are all pressed and no other keys then the system is reset. Otherwise, a
break event is reported (see KM BREAK EVENT).

Entry conditions:

Interrupts disabled.

C contains shift and control key states.
Exit conditions:

AF and HL corrupt.

All other registers preserved.

Notes:

This indirection is called by the firmware from the interrupt path. Thus interrupts
are disabled and they must remain disabled.

If bit 7 of C is set then the control key is pressed, If bit 5 of C 1s set then one of the
shift keys is pressed.

This indirection is called after the keys have been scanned and the escape key was
found to have been pressed. It is provided to allow the user to alter the action of a
break (particularly to prevent the system reset, see RESETENTRY).

This indirection is set up when KM INITIALISE or KM RESET is called.

Related entries:
KEMBREAKEVENT

PAGE 15.14 AMSTRAD CPC464 FIRMWARE

IND: MC WAIT PRINTER #BDF1

Print a character or time out.

Default action:

Wait for the Centronics port to become not busy and then send a character to it. If
the port remains busy for a long time the routine times out and the character is not

sent.

Entry conditions:
A contains the character to send.

Exit conditions:
Ifthe character was sent OK:

Carry true.

If the Centronics port timed out:
Carry false.
Always:

A and BC corrupt.
All other registers preserved.

Notes:

This indirection is provided to allow the user to drive the printer in a different way.
For example, ‘escape sequences’ could be handled or the time out could be changed.

This indirection is called by the routine MC FRINT CHAR. It tests whether the
printer is busy in the same way as MC BUSY PRINTER and sends the character in
the same way as MC SEND PRINTER.

This indirection is set up when MC RESET PRINTER is called.

Related entries:

MC BUSY PRINTER
MC PRINT CHAR
MC SEND PRINTER

AMSTRAD CPC464 FIRMWARE PAGE 15.15

16 The High Kernel Jumpblock.

Separate from the main firmware jumpblock is a small jumpblock for Kernel
routines associated with ROM state and ROM selection. The routines accessed
through this jumpblock are all RAM resident, to avoid confusion while the ROM
state and ROM select are changed! The RAM area is copied out of ROM during the
power-up initialisation. The jumpblock should not be altered by the user.

The entry KL POLL SYNCHRONOUS is the ‘odd man out’ amongst the routines in
this jumpblock. Unlike the other synchronous event handling routines, which are in
the lower ROM, this routine is RAM resident. This minimises the overhead
involved in polling for synchronous events.

A brief listing of the entries in this jumpblock can be found in section 13.3. A
discussion of ROMs and the memory map can be found in section 2, further
discussion of ROMs can be found in section 9 and a discussion of events can be found
in section 11.

AMSTRAD CPC484 FIRMWARE PAGE 16.1

HI: KL U ROM ENABLE #B900

Enable the upper ROM.

Action:

Enables the currently selected upper ROM. Reading from addresses #C000 and up
will now return the contents of the ROM.

Entry conditions:

No conditions,

Exit conditions:
A contains the previous ROM state.

Flags corrupt.
All other registers preserved.

Notes:

The mechanisms provided for calling subroutines in the upper ROM and for
selecting upper ROMs automatically enable the ROM as required. This routine is
used by the firmware but is otherwise of little use.

The previous ROM state may be passed to KL ROM RESTORE to reset the state to
what it was before this routine was called.

This routine enables interrupts.

Related entries:

KLLROMENABLE
KL ROM RESTORE
KL ROM SELECT
KL UROM DISABLE

PAGE 16.2 AMSTRAD CPC464 FIRMWARE

HI: KL U ROM DISABLE #B903

Disable the upper ROM.

Action:

Disables the upper ROM. Reading from addresses #C000 and up will now return
the contents of the RAM.

Entry conditions:

No conditions.

Exit conditions:
A contains the previous ROM state.

Flags corrupt.
All other registers preserved.

Notes:

Disabling the upper ROM gives read access to the top 16K of RAM, which is usually
used as the screen memory. Note that the mapping of a location in screen memory
to pixels on the screen depends on the mode and on the screen offset.

It is inadvisable to disable the upper ROM while executing instructions in it!

The previous ROM state may be passed to KL ROM RESTORE to reset the state to
what it was before this routine was called.

This routine enables interrupts.

Related entries:

KL L ROM DISABLE
KL ROM RESTORE
KL UROM ENABLE

AMSTRAD CPC464 FIRMWARE PAGE 16.3

HI: KL L ROM ENABLE #B906 s

Enable the lower ROM.

Action:

Enables the lower ROM. Reading from addresses below #4000 will now return the
contents of the ROM.

Entry conditions:

Noconditions.

Exit conditions:

A contains the previous ROM state.

Flags corrupt.

All other registers preserved.

Notes: 2

In general the lower ROM is disabled except when a firmware routine is called. The
firmware jumpblock arranges to enable the lower ROM automatically and to
disable it again when the routine returns. This routine is used by the firmware but
1s otherwise of little use.

The previous ROM state may be passed to KL ROM RESTORE to reset the state to
what it was before this routine was called.

This routine enables interrupts.

Related entries:

KL L ROM DISABLE
KL ROM RESTORE
KL UROM ENABLE

PAGE 164 AMSTRAD CPC464 FIRMWARE

HI: KL L ROM DISABLE #B909

Disable the lower ROM.

Action:

Disables the lower ROM. Reading from addresses below #4000 will now return the
contents of the RAM.

Entry conditions:

No conditions.

Exit conditions:
A contains the previous ROM state.

Flags corrupt.
All other registers preserved.

Notes:

In general the lower ROM is disabled except when a firmware routine is called. The
firmware jumpblock arranges to enable the lower ROM automati cally and to
disable it again when the routine returns.

The previous ROM state may be passed to KL ROM RESTORE to reset the state to
what it was before this routine was called.

This routine enables interrupts.

Related entries:

KLLROMENABLE
KL ROM RESTORE
KL UROM DISABLE

AMSTRAD CPC464 FIRMWARE PAGE 16.5

HI: KL ROM RESTORE #B90C

Restore the previous ROM state.

Action:

The ROM state change routines all return a value giving the previous ROM state.
Given that value KL ROM RESTORE will reset the state to what it was before the

change.

Entry conditions:
A contains the previous ROM state.

Exit conditions:

AF corrupt.
All other registers preserved.

Notes:
The previous ROM state is the value returned by one of:

KL UROM ENABLE
KL UROM DISABLE
KL L ROM ENABLE

KL L. ROM DISABLE
KL ROM SELECT

It is possible to use KL U ROM DISABLE to reverse the effect of a call of KL U ROM
ENABLE (amongst various other combinations). However, calling KL ROM
RESTORE is the prefered method since it restores the state to what it was, which
might have been enabled anyway.

This routine enables interrupts.

Related entries:

KLLROM DISABLE
KL LROMENABLE
KL ROM SELECT
KL UROM DISABLE
KLUROMENABLE

PAGE 16.6 AMSTRAD CPC464 FIRMWARE

HI: KL ROM SELECT #BO0F

Select a particular upper ROM.

Action:
Select a given upper ROM and enable the upper ROM.

Entry conditions:
C contains the ROM select address of the required ROM.

Exit conditions:

C contains the ROM select address of the previously selected ROM.
B contains the previous ROM state.

AF corrupt.
All other registers preserved.

Notes:

The previous state can be passed to KL ROM RESTORE to reset the ROM enable to
what it was. Both the previous state and the previous selection can be passed to KL
ROM DESELECT to restore the state to what it was and to select the previously
selected ROM again.

The mechanisms provided for calling routines in expansion ROMs automatically
perform ROM selection as required (see section 2).

It is inadvisable to select another upper ROM whilst executing instructions in the
upper ROM.

This routine enables interrupts.

Related entries:

KL CURR SELECTION
KL PROBE ROM

KL ROM DESELECT
KL ROM RESTORE

AMSTRAD CPC464 FIRMWARE PAGE 16.7

HI: KL CURR SELECTION #B912

Ask which upper ROM is currently selected.

Action:
Returns the ROM select address of the currently selected upper ROM.

Entry conditions:

No conditions.

Exit conditions:
A contains the ROM select address of the currently selected ROM.
All other registers and flags preserved.

Notes:

It is not possible to predict the ROM select address at which any particular
expansion ROM will be fitted. The ‘far address' used to reference subroutines in
expansion ROMs includes a ROM select byte which must be set up at run time. This
routine returns the ROM select address of the current ROM so that it can set up

suitable ‘far addresses’.

Related entries:

KL PROBE ROM
KL ROMSELECT

PAGE 16.8 AMSTRAD CPC464 FIRMWARE

HI: KL PROBE ROM #B915

Ask class and version of a ROM.

Action:

The first few bytes of all upper ROMs contain information in a standard form about
the ROM. This routine extracts the class, mark number and version number bytes
from the ROM at the given ROM select address.

Entry conditions:
C contains the ROM select address of the ROM to probe.

Exit conditions:

A contains the ROM's class.
L contains the ROM's mark number.
H contains the ROM’s version number.

B and flags corrupt.

All other registers preserved.

Notes:

The ROM class returned may take any of the following values:
0: Foreground ROM.
: Background ROM.
2 Extension foreground ROM.

480: Onboard ROM (the built in BASIC foreground program).

Selecting a ROM address where no ROM is fitted implicitly selects the on-board
ROM and so it will return #80 as its class.

The meaning of the mark and version numbers depends on the ROM.
See section 9 for a description of expansion ROMs.
This routine enables interrupts.

Related entries:

KL ROM SELECT
KL CURR SELECTION

AMSTRAD CPC464 FIRMWARE PAGE 16.9

HI: KL ROM DESELECT #B918

Restore previous upper ROM selection.

Action:

Set the ROM state and upper ROM selection to what they were before KL ROM
SELECT was called.

Entry conditions:

(contains the ROM select address of the previously selected ROM.
B contains the previous ROM state.

Exit conditions:
(contains the ROM select address of the currently selected ROM.

B corrupt.
All other registers and flags preserved.

Notes:

The previous ROM selection and state are the values returned by KL ROM
SELECT. The currently selected ROM returned by this routine is the ROM that was
selected by calling KL ROM SELECT (unless further selections have been made).

The mechanisms provided for calling subroutines in expansion ROMs
automatically perform ROM selection as required.

It is inadvisable to select another upper ROM whilst executing instructions in the
upper ROM.

This routine enables interrupts.

Related entries:

KL CURR SELECTION
KL ROM RESTORE
KL ROM SELECT

PAGE 16.10 AMSTRAD CPC464 FIRMWARE

HI: KL. LDDR #BI1E

Move store (LDDR) with ROMs turned off.

Action:

Performs an LDDR instruction (LoaD Decrement and Repeat) with both upper and
lower ROMs disabled.

Entry conditions:
BC, DE, HL as required by LDDR instruction.

Exit conditions:
F,BC, DE, HL as set by LDDR instruction.
All other registers preserved.

Notes:
This routine may be used to move areas of RAM irrespective of the ROM state.

This routine enables interrupts.

Related entries:

KLLDIR
RAM LAM (RST4)

PAGE 16.12 AMSTRAD CPC464 FIRMWARE

HI: KL LDIR #B91B

Move store (LDIR) with ROMs turned off.

Action:

Performs an LDIR instruction (LoaD Increment and Repeat) with both upper and
lower ROMs disabled.

Entry conditions:
BC, DE, HL as required by the LDIR instruction.

Exit conditions:

F, BC, DE, HL as set by the LDIR instruction.
All other registers preserved.

Notes:
This routine may be used to move areas of RAM irrespective of the ROM state.

This routine enables interrupts.

Related entries:

KLLDDR
RAMLAM (RST4)

AMSTRAD CPC464 FIRMWARE PAGE 16.11

HI: KL POLL SYNCHRONOUS #B921

Check if an event with higher priority than the current event is
pending.

Action:

If the synchronous event queue is not empty then the priority of the highest priority
pending event is compared with the current event’s priority (ifany).

Entry conditions:

No conditions.

Exit conditions:

Ifthere is a higher priority event pending:
Carry true.

Ifthere is no higher priority event pending:
Carry false,

Always:

A and other flags corrupt.
All other registers preserved.

Notes:

This routine is in the high jumpblock to minimise the overhead of polling for
synchronous events. If the synchronous event queue is empty the routine takes only
a few instructions.

While a synchronous event is being processed the Kernel remembers its priority.

The synchronous event routine may itself poll the synchronous event queue, but
only events of a higher priority than itself are notified toit.

This routine may enable interrupts.

Related entries:

KLEVENT

KL DONE SYNC
KL DOSYNC
KLNEXTSYNC

AMSTRAD CPC464 FIRMWARE PAGE 16.13

17 The Low Kernel Jumpblock.

The bottom of memory, from #0000 to #003F inclusive, is occupied by the code for
the restart (RST) instructions and a number of Kernel entries. Most of these entries
are concerned with access to subroutines in ROM and RAM. The RST's are:

RST 0 performs a system reset.

RST instructions 1 to 5 inclusive have been used to extend the Z80 instruction
set to provide extra CALL and JUMP instructions, which use addresses
extended to include ROM state and ROM select components,

RST 6 is available to the user.

RST 7 is used by interrupts.

Since all the entries supplied must be available whether the lower ROM is enabled
or not, the area is copied into RAM from the ROM during power-up initialisation.

The user is not intended to alter this jumpblock (except where noted in the USER
RESTART and EXT INTERRUPT areas). If the user does change the area then it
is the user's responsibility to ensure that the changes do not affect other programs.
To some extent this can be achieved by ensuring that the lower ROM is always
enabled when other programs are running. However, since the other programs may
disable the lower ROM this is insufficient in most cases. Ideally the original jump-
hlock contents should be restored where there is any doubt.

Section 2 contains a discussion of ROMs and the memory map and section 9
contains a general discussion of external ROMs. A brief list of the routines in this

area can be found in section 13.4.

AMSTRAD CPC464 FIRMWARE PAGE 17.1

LOW: RESET ENTRY RST 0 #0000

Completely reset the machine as if powered up.

Action:

When the machine is first turned on execution starts here. Calling or jumping to
#0000, or executing RST 0, resets the machine toitsinitial power-up state.

Entry conditions:

No conditions.

Exit conditions:
Does not return!

Notes:

All hardware is reset and the firmware is completely initialised. Once all tables and
jumpblocks have been set up, control is passed to the default entry in ROM 0 (see
section 9).

Related Entries.
MC START PROGRAM

PAGE 17.2 AMSTRAD CPC464 FIRMWARE

LOW: LOW JUMP RST1 #0008

Jump to lower ROM or RAM, takes inline ‘low address’ to jump
to.

Action:

RST 1 is used to extend the instruction set. It is an expanded form of the jump
instruction. It should be followed by a 2 byte ‘low address' which specifies the
location to jump to and the required ROM state.

Entry conditions:
All registers and flags are passed to the target routine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:
The ‘low address' following the restart instruction is laid out as follows:
Bit: 15 14 13 0
U| L Address

Ifthe ‘U’ bit is set then the upper ROM is disabled.

Ifthe ‘L' bit is set then the lower ROM is disabled.

‘Address’ is the actual address of the target routine to jump to once the ROM
state has been set.

When the target routine returns the ROM state 1s restored to what it was before the
jump. To accomplish this 4 bytes are pushed onto the stack and so care should be
taken when indexing up the stack (to find the address of inline parameters, for
example).

The LOW JUMP, RST 1, ‘instruction’ may replace the first byte of a JP (jump)
instruction. It is intended for use in jumpblocks. The main firmware jumpblock is
made up almost exclusively of LOW JUMP ‘instructions’.

It is assumed that the destination of the jump is a routine which will return in the
usual way. The restart instruction itself does not return. The value at the top of
the stack when a LOW JUMP is executed must, therefore, be a return address.

Executing a LOW JUMP enables interrupts.

AMSTRAD CPC464 FIRMWARE PAGE 17.3

LOW: KL LOW PCHL #000B

Jump to lower ROM or RAM.
Register HL contains the ‘low address’ to jump to.

Action:

Takes a ‘low address’ as a parameter and jumps to it. The low address’ specifies both
the address to jump to and the ROM state required.

Entry conditions:
HL contains the ‘low address’ to jump to.
All registers and flags are passed to the target routine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:
The ‘low address’ is laid out as follows:
Bit: 15 14 13 0

Ul L Address

If the ‘U’ bit is set then the upper ROM is disabled.
If the ‘L’ bit is set then the lower ROM is disabled.
‘Address’ is the actual address to jump to, once the ROM state has been set.

When the target routine returns the ROM state is restored to what it was before the
jump. To accomplish this 4 bytes are pushed onto the stack and so care should be
taken when indexing up the stack (to find the address of inline parameters, for

example).

It is assumed that the destination of the jump is a routine which will return in the
usual way. The value at the top of the stack when a LOW PCHL is executed must,

therefore, be a return address.

Interrupts are enabled.

Related entries:

KL FAR ICALL

KL FAR PCHL

LOW JUMP (RST1)
PCHL INSTRUCTION

AMSTRAD CPC464 FIRMWARE PAGE 175

LOW: PCBC INSTRUCTION #000E

Jump to address in BC.

Action:

Equivalent to the JP (HL) instruction (or PCHL in some assembler dialects), except
that the destination is in BC not HL.

Entry conditions:
BC contains the address to jump to.
All registers and flags are passed to the target rou tine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:

Calling PCBC INSTRUCTION is a useful way of invoking a routine whose address
has been picked out of a table or otherwise established at run time,

Related entries:

KL FAR PCHL
KL LOW PCHL
KL SIDE PCHL
PCDE INSTRUCTION
PCHL INSTRUCTION

PAGE 17.6 AMSTRAD CPC464 FIRMWARE

LOW: SIDE CALL RST 2 #0010

Call to a sideways ROM, takes inline ‘side address’ to call.

Action:

RST 2 is used to extend the instruction set. It is an expanded form of the CALL
instruction. It should be followed by a 2 byte ‘side address’ which specifies the
location to call and the required ROM selection.

Entry conditions:

All registers and flags are passed to the target routine untouched except for
TY {(which is set to point at a background ROM's upper data area).

Exit conditions:

IY preserved.
All other registers and flags are as set by the target routine.

Notes:

The ‘side address’ following the restart instruction is laid out as follows:
Bit: 15 14 13 0
Off Address

‘Off gives a value in the range 0.3, which, when added to the ROM select
address of the main foreground ROM, gives the ROM select address of the
required ROM.

After #C000 has been added to it, ‘address’ is the address of the routine to call.

The target routine returns to the instruction immediately following the inline ‘side
address’. The ROM select and ROM state are restored to what they were before the
call. To accomplish this 6 bytes are pushed onto the stack and so care should be
taken when indexing up the stack (to find the address of inline parameters, for

example).

When the target routine is entered the lower ROM is disabled and the appropriate
upper ROM is selected and enabled.

SIDE CALLs are provided to support foreground programs split over a number of
ROMs (up to four). See section 3 on expansion ROMs,

Interrupts are enabled.

Related entries:

FAR CALL (RST3)
KL SIDE PCHL

AMSTRAD CPC464 FIRMWARE PAGE 17.7

LOW: KL SIDE PCHL #0013
Call to a sideways ROM, HL contains ‘side address’ to call.

Action:

Takes a ‘side address’ and calls it. The ‘side address’ specifies the address of the
routine to call and which upper ROM to select.

Entry conditions:
HL contains the ‘side address’ to call.
All registers and flags are passed to the target routine untouched except for

IY (which is set to point at a background ROM’s upper data area).

Exit conditions:

IY preserved.

All other registers and flags are as set by the target routine.

Notes:

The ‘side address’ is laid out as follows:
Bit: 15 14 13 0

Off Address

‘Off gives a value in the range 0.3, which, when added to the ROM select
address of the main foreground ROM, gives the ROM select address of the
required ROM.

Aftar #C000 has been added to it, ‘address’ is the address of the routine to call.

When the target routine is entered the lower ROM is disabled and the appropriate
upper ROM is selected and enabled.

When the target routine returns the ROM select and ROM state are restored to
what they were before the call. This is accomplished by pushing 6 bytes onto the
stack and so care should be taken when indexing up the stack (to find the address of
inline parameters, for example).

PAGE 178 AMSTRAD CPC464 FIRMWARE

Side calls are provided to support foreground programs split over a number of ROMs
{up to four). See section 9 on external ROMs.

Interrupts are enabled.

Related entries:

FAR CALL (RST3)
KL FAR ICALL
KL FAR PCHL

AMSTRAD CPC464 FIRMWARE PAGE 17.9

LOW: PCDE INSTRUCTION #0016

Jump to addressin DE.

Action:

Equivalent to the JP (HL) instruction (or PCHL in some assembler dialects), except
that the destination is in DE not HL.

Entry conditions:
DE contains the address to jump to.
All registers and flags are passed to the target routine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:

Calling PCDE INSTRUCTION is a useful way of invoking a routine whose address
has been picked out of a table or otherwise established at run time.

Related entries:

KLFARPCHL
KLLOWPCHL
KL SIDE PCHL
PCBC INSTRUCTION
PCHLINSTRUCTION

PAGE 17.10 AMSTRAD CPC464 FIRMWARE

LOW: FAR CALL RST3 #0018

Call subroutine in RAM or any ROM, takes inline address of ‘far
address’.

Action:

RST 3 is used to extend the instruction set. It is an expanded form of the CALL
instruction that allows routines to be called anywhere in RAM or in any ROM. The
restart is followed by the address of a 3 byte ‘far address’ which specifies the location
to call and the required ROM state and ROM selection.

Entry conditions:

All registers and flags are passed to the target routine untouched except for IY
(which is set to point at a background ROM'’s upper data area).

Exit conditions:

IY preserved.
All other registers and flags are as set by the target routine.
Notes:

The restart instruction takes a 2 byte inline parameter which is the address of a ‘far
address’. The ‘far address’ is laid out as follows:

Byte: 0 1 2
Address | ROM

Bytes 0.1 give the address of the routine to call.
Byte 2 is the ROM select byte which takes values as follows:

#00..#FB: Select the given ROM, enable upper, disable lower.
#FC: Nochange of ROM selection, enable upper, enable lower.
#FD: No change of ROM selection, enable upper, disable lower.
#FE: No change of ROM selection, disable upper, enable lower.
#FF: No change of ROM selection, disable upper, disable lower.

The reason that the ‘far address’ is not contained in the FAR CALL instruction
directly is because the ROM select byte for routines in ROM will depend upon the
particular configuration of expansion ROMs on the machine and must therefore be

established and set at run time.

Registers are passed to the target routine untouched except for the IY register.
When entering a background ROM this is set to point at the base of the ROM's
upper data area. (See section 9.4 and KL INIT BACK).

AMSTRAD CPC464 FIRMWARE PAGE 17.11

The target routine returns to the instruction immediately following the inline
parameter. The ROM select and ROM state are restored to what they were before
the call. This is accomplished by pushing values on the stack and so care should be
taken when indexing up the stack after a FAR CALL instruction. (The stack usage
is 4 bytes for ROM select bytes in the range #FC. #FF and 6 bytes for ROM select

bytes in the range #00..#FB.)

Interrupts are enabled.

Related entries:

KLFARICALL
KLFARPCHL
LOW JUMP (RST1)
SIDE CALL(RST2)

PAGE 17.12 AMSTRAD CPC464 FIRMWARE

LOW: KL. FAR PCHL #001B

Call subroutine in RAM or any ROM.
C and HL contain the ‘far address’ to call.

Action:

The far call mechanism allows subroutines to be called anywhere in RAM or in any
ROM. This routine takes a ‘far address’ and calls the given routine setting the
requested ROM state and ROM selection.

Entry conditions:

HL contains the address of the routine to call.
C contains the ROM select byte.

All registers and flags are passed to the target routine untouched except for
[V (which is set to point at a background ROM’s upper data area).

Exit conditions:

IY is preserved.
All other registers and flags are as set by the target routine,

Notes:

The ROM select byte takes values as follows:

#00_#FB: Select the given ROM, enable upper, disable lower.
4FC: Nochange of ROM selection, enable upper, enable lower.
#FD: Nochange of ROM selection, enable upper, disable lower.
#FE: Nochange of ROM selection, disa ble upper, enable lower.
#FF: Nochange of ROM selection, disable upper, disable lower.

Registers are passed to the target routine untouched except for the IY index
register. When entering a background ROM this is set to point at the base of the
ROM’s upper data area. (See section 9.4 and KL INIT BACK).

When the target routine returns, the ROM select and ROM state are restored to
what they were hefore the call. This is accomplished by pushing values onto the
stack and so care should be taken when indexing up the stack after using this
routine. (The stack usage is 4 bytes for ROM select bytes in the range #FC. . #FF

and 6 bytes for ROM select bytes in the range #00..#FB.)
Interrupts are enabled.

Related entries:

FAR CALL (RST3)
KLFARICALL
EL LOW PCHL
KL SIDE PCHL

AMSTRAD CPC464 FIRMWARE PAGE 17.13

LOW: PCHL INSTRUCTION #001E

Jump to addressin HL.

Action:
Entry comprises a JP (HL) instruction (or PCHL in some assembler dialects).

Entry conditions:
HL contains the address to jump to.
All registers and flags are passed to the target routine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:

Calling PCHL INSTRUCTION is a useful way of invoking a routine whose address
has been picked out of a table or otherwise established at run time.

Related entries:

KLFAR PCHL
KLLOWPCHL
KL SIDE PCHL
PCBC INSTRUCTION
PCDE INSTRUCTION

PAGE 17.14 AMSTRAD CPC464 FIRMWARE

LOW: RAM LAM RST 4 #0020

LD A,(HL) with all ROMs disabled.

Action:

RST 4 is used to extend the instruction set. It is equivalent to a LD A, (HL)
instruction except that it always reads from RAM irrespective of whether the ROMs
are enabled or not.

Entry conditions:

HL contains the address of the location to read.

Exit conditions:
A contains the value read from the given location.

All other registers and flags preserved.
Notes:

Writing to a location always writes to RAM, even if the location is in one of the
ROM areas and the ROM is enabled. The RAM LAM, RST 4, ‘instruction’ is the read

equivalent.

Interrupts are enabled.

Related entries:

KL LDDR
KL LDIR

AMSTRAD CPC464 FIRMWARE PAGE 17.15

LOW: KL. FAR ICALL #0023

Call subroutine in RAM or any ROM, HL poings at ‘far address’.

Action:

The far call mechanism allows subroutines to be called anywhere in RAM or in any
ROM. This routine takes the address of a ‘far address’ and calls the given routine
setting the ROM state and ROM selection required.

Entry conditions:

HL contains the address of the ‘far address’ to call.

All registers and flags are passed to the target routine untouched except for
IY (which is set to point at a background ROM's upper data area).

Exit conditions:

IY is preserved.
All other registers and flags are as set by the target routine.

Notes:
The parameter passed is the address of a 3 byte ‘far address’. This is laid out as
follows:

Byte: 0 1 2
Address |ROM

Bytes 0..1 give the address of the routine to call.
Byte 2 is the ROM select byte which takes values as follows:

#00..#FB; Select the given ROM, enable upper, disable lower.
#FC: Nochange of ROM selection, enable upper, enable lower,
#FD: Nochange of ROM selection, enable upper, disable lower.
#FE: Nochange of ROM selection, disable upper, enable lower.
#FF: Nochange of ROM selection, disable upper, disable lower.

Registers are passed to the target routine untouched except for the IY index
register, When entering a background ROM this is set to point at the base of the
ROM'’s upper data area, (See section 9.4 and KL INIT BACK).

When the target routine returns, the ROM select and ROM state are restored to
what they were before the call. This involves pushing values onto the stack and so
care should be taken in indexing up the stack after calling this routine. (The stack
usage is 4 bytes for ROM select bytes in the range #FC..4FF and 6 bytes for ROM
select bytes in the range #00..#FB.)

PAGE 17.16 AMSTRAD CPC464 FIRMWARE

Interrupts are enabled.

Related entries:

KLFAR CALL
KLFAR PCHL

AMSTRAD CPC464 FIRMWARE PAGE 17.17

LOW: FIRM JUMP RST 5 #0028

Jump to lower ROM, takes inline address to jump to.

Action:

RST 5 is used to extend the instruction set. It is an expanded form of the jump
instruction for jumping to routines in the lower ROM or into the central 32K of
RAM. The restart is followed by the address of the routine to jump to.

Entry conditions:
All registers and flags are passed to the target routine untouched.

Exit conditions:
All registers and flags are as set by the target routine.

Notes:

The lower ROM is enabled before the jump is taken and is disabled (rather than
restored) when the target routine returns. Neither the upper ROM state nor the
ROM selection are changed. Two bytes are pushed onto the stack and so care should
be taken when indexing up the stack (to find the address of inline parameters, for
example).

It is assumed that the destination of the jump is a routine which will return in the
usual way. The restart instruction itself does not return. The value at top of stack
when a FIRM JUMP is executed must, therefore, be a return address.

The FIRM JUMP, RST 5, ‘instruction’ may replace the first byte of a JP (jump)
instruction, particularly in jumpblocks, much like a LOW JUMP. A FIRM JUMP is
slightly faster than a LOW JUMP but a LOW JUMP is more flexible in dealing

with ROM states.
Interrupts are enabled.

Related entries:
LOWJUMP (RST1)

PAGE 17.18 AMSTRAD CPC464 FIRMWARE

LOW: USER RESTART RST6 #0030

Undedicated RST instruction.

Action:
The eight bytes from #0030 to #0037 inclusive may be patched as required.

Entry conditions:

Unknown.

Exit conditions:

Unknown.

Notes:

If the lower ROM is disabled when an RST 6 instruction is executed then the
instructions patched into locations #0030 to #0037 are executed in the normal way.

If the lower ROM is enabled when the RST 6 instruction is executed then the
firmware disables the lower ROM and jumps to #0030 to execute the instructions

planted by the user.

Generally the lower ROM is disabled except while the firmware is active. Since
there are no RST 6s in the firmware there should be no problem about the ROM
state when a RST 6 is executed. However, to cope with all eventualities, if the lower
ROM is found to be enabled when the restart is executed then the ROM state before
the lower ROM is disabled is saved in location #002B. If the lower ROM is found to
be disabled then location #002B is left untouched. The value stored is suitable to be
passed to KL ROM RESTORE to re-enable the ROM (although KL L ROM ENABLE

will have the same effect).

The user can detect whether the lower ROM was enabled when the restart was
executed if location #002B is set to zero when the RST 6 area is patched and after
processing each restart. If #002B is zero when the RST 6 code is entered then the
lower ROM was disabled, and if it is non-zero then the lower ROM was enabled.

The default action for RST 6 as set at power-up is to perform a RST 0, Le. a system
reset,

Related entries:

None.

AMSTRAD CPC464 FIRMWARE PAGE 17.19

LOW: INTERRUPT ENTRY RST7 #0038

Hardware interrupt entry point.

Action:

The Z80 runs in interrupt mode 1, which treats normal interrupts as RST 7
instructions, The firmware interrupt handler looks after the built in regular time
interrupt. External interrupts, generated by expansion hardware, are passed on to
user supplied software,

Entry conditions:

No conditions.

Exit conditions:
All registers and flags preserved.

Notes:
The user must not use RST 7s as these are dedicated to the processing of interrupts.

If the interrupt is from an external source then the user supplied interrupt rou tine,

EXTINTERRUPT, iscalled.
See section 10 for a fuller discussion of interrupts.

The user may patch this area (#0038, #003A inclusive) to intercept interrupts if it
is absolutely necessary (see Appendix XI),

Related entries:
EXTINTERRUPT

PAGE 17.20 AMSTRAD CPC464 FIRMWARE

LOW: EXT INTERRUPT #003B

External interrupt routine.

Action:

The five bytes from #003B to #003F inclusive must be patched by the user if there
are going to be any external interrupts. When an external interrupt is detected by
the firmware interrupt handler the lower ROM is disabled and the code at #003B is

called.

Entry conditions:

No conditions.

Exit conditions:

AF, BC, DE and HL corrupt.
All other registers preserved.

Notes:

When the routine is called interrupts are disabled and they must remain disabled.
Under no circumstances may the user enable interrupts or use the second register
set. Before the routine returns it must clear the interrupt source.

See section 10.2 for a discussion of external interrupts.

When an interrupt routine is set up the current contents of #003B..#003F should
be copied elsewhere before they are replaced. If, when the routine is called, it
discovers that its hardware is not responsible for the interrupt then it should jump
to the copy of the previous external interrupt routine (whose hardware may be
responsible).

The purpose of an interrupt routine is to clear the interrupt as quickly as possible,
and perhaps perform a minimum of processing. While in the interrupt path no
further interrupts are acknowledged. If the interrupt generates a substantial work
load, then it should be translated into an event, so that the system is not delayed in
the interrupt path for any longer than necessary (see section 10.3).

The interrupt routine must be in RAM at addresses lower than #C000 (as the ROM
enable and disable routines cannot be called from the interrupt path).

The default external interrupt routine merely returns. This means that the
interrupt will not be cleared and so it will repeat as soon as interrupts are
re-enabled. This will cause the machine to lock up’.

Related entries:

INTERRUPT ENTRY
KL EVENT

AMSTRAD CPC464 FIRMWARE PAGE 17.21

Appendix |
Key Numbering.

The various tables in the Key Manager, such as tte translation tables or the
repeating key table, are all accessed by key number. The numbering of the keys

(and joysticks) is given in the following diagrams:

Main Keyboard

Function/Numeric Cursor Keys

Keypad

10|11
20|12
13|14
15(7

L= % 1 O - %
co
-

AMSTRAD CPC464 FIRMWARE APP 11

72 48
74 75 50 51
73 49
Joystick 0 Joystick 1
77 76 53 52
Fire 1 Fire 2 Fire 1 Fire 2

Note that joystick 1 overlays keys 48.53 on the main keyboard and is
indistinguisable from them.

The following table translates key numbers in the opposite direction, from the key
number to the inscription on the keytop. Where there is a symbol on the keytop an
appropriate word is used, RIGHT for the right cursor key for example. Brackets
around the inscription are used to distinguish the various areas of the keyboard as

follows:
(..} Function key (numeric keypad).
(.) Joystick 0.
[..] Joystick 1.
0 1 2 3 4 5 6 7
0 | UP RIGHT DOWN (9] 6) 3] [ENTER) (.
8 | LEFT COPY ({7) |8) {(5) {1} {2} {0}
16| CLR | ENTER | (4) SHIFT \ CTRL
24| 1 - a P - : /
321 0 9 0 1 L K M ’
40| B 7 u Y H J N SPACE
48| 6 5 R T G F B v
[UP] [DOWN] [LEFT] [RIGHT] [FIRE2] [FIRE1] [SPARE]
56| 4 3 E w S D C X
64| 1 2 ESC @ TAB A CAPS Z
72| (UP) (DOWN) (LEFT) (RIGHT) (FIRE2) (FIRE1) (SPARE) DEL

APP 1.2

AMSTRAD CPC464 FIRMWARE

Appendix 11
Key Translation Tables.

See section 3, and section 3.2 in particular, for a description of key translation. Also,
Appendix I, which gives the key numbering scheme, may be of interest.

There are three keyboard translation tables used. These convert a key into its
associated character or token. One table is used to translate keys when the control
key is pressed, one is used to translate keys when the shift kev is pressed or the shift
lock is on but the control key is not pressed, the last is used to translate keys when

neither shift nor control is pressed.

The diagrams following describe the default translation tables. Where possible the
correct character has been placed on the key. The actual value for each of these
characters can be found in Appendix VI on the character set. In the cases where the
key produces a value which is not a printable ASCII character the abbreviations in
the following table will be used. The default settings of the expansion tokens are

given in Appendix IV.
Characters and Codes.

NUL #00 ASCII control code.
SOH #01 ASCII control code.
STX #02 ASCII control code.
ETX #03 ASCII control code.
EOT #04 ASCII control code.
ENQ #05 ASCII control code.
ACK #06 ASCII control code.
BEL #07 ASCII control code.
BS #08 ASCII control code.
HT #09 ASCII control code.
LF H#OA ASCII control code.
VT #0B ASCII control code.
FF ¥0C ASCII control code.
CR #0D ASCII control code.
SO HOE ASCII control code.
Sl #OF ASCII control code.

AMSTRAD CPC464 FIRMWARE APP 2.1

DLE #10
DC1 #11
DC2 #12
DC3 #13
DC4 #14
NAK #15
SYN #16
ETB #17
CAN #18
EM #19
SUB #1A
ESC #1B
FS #1C
GS #1D
RS #1E
Us #1F
SPACE #20
UP #5E
DEL RTF
LB HAZ
Expansion Tokens.
FO #EB0
Fl #B1
F2 #B82
Fi HE3
F4 HE4
Fb HB5
F6 H86
F7 HET
F8 #98
F9 H89

APP 22

ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.
ASCII control code.

ASCII control code.

ASCII control code.

ASCII space character.

Up arrow.

ASCII code.

Pound character.

Function key 0.
Function key 1.
Function key 2.
Function key 3.
Function key 4.
Function key 5.
Function key 6.
Function key 7.
Function key 8.
Function key 9.

AMSTRAD CPC464 FIRMWARE

F., #EA
FEN #8B
FRUN #BC
Edit and Cursor Codes,
COPY HEO
INS #E1
WUP #F0
WDN #F1
WLT HF2
WRT #F3
RUFP HF4
RDN HF5
RLT #F6
RRT HF7
BEG HF8
END #F9
STA HFA
FIN HFB
System Tokens.

BRK #FC
CAPS 4FD
SHIFT 4FE

#FF

Function key full stop.
Function key enter without control pressed.
Funetion key enter with control pressed.

Copy key.
Insert/overwrite toggle key.

Write cursor up.
Write cursor down.
Write cursor left,
Write cursor right.

Read cursor up.
Read cursor down.
Read cursor left.
Read cursor right.

Write cursor to start of text.
Write cursor to end of text.
Write cursor to start of line.

Write cursor to end of line.

Break key token.
Caps lock toggle token.
Shift lock toggle token.

lgnore.

Keys that are not marked in the diagrams following generate the system ignore

token, #FF.

Normal Translation Table.

The following diagram describes the translation when neither shift nor control is
pressed.

Main Keyboard

BRK | 1 2 3 4 5 B 7 8 8 i} UP | OLE | DEL
HT | g | w] & |T t ¥y u |1 o p a [
CR
CAPS B & d f g h J k | 1
T K g L b n m ! !

Function/Numeric Cursor Keys
Keypad
F7 | F8 | e WUP
es | g5 | B WLT [COPY] WRT
Fi1 | Fz | F3 WDN
Fo | F. |FEN
VT 6
BS HT r §
LF 5
Joystick Joystick 1
z X f g
Firel Fire2 Firel Fire2

APP 24 AMSTRAD CPC484 FIRMWARE

Shift Translation Table.

The following diagram describes the translation when either shift key is pressed, or
the shift lock is on, but the control key is not pressed.

Main Keyboard

Function/Numeric
Keypad

F1 F2 | FA

LF

Joystick 0

F 4

X

Fire 1

AMSTRAD CPC464 FIRMWARE

Fire 2

| . = | s |owE | DEL
] P |
CR
L L] + I
?
Cursor Keys
RUP
RLT |COPY] RAT
RDN
%
R T
&
Joystick 1
F G
Firel Fire2
APP 25

Control Translation Table.

The following diagram describes the translation when the control key is pressed.

Main Keyboard

BRK - s RS | OLE | DEL
inus | oc1 | eve| ena| pcz| pca| Em | Mak| HT | 51 | DLE | NUL
CR
sHIFT |soH |pcs | eot| ack| BeL] Es | LF | vT | FF GS
SUB| CAN| ETX | SYN| STX | 50 | CR F5
Function/Numeric Cursor Keys
Keypad
FT | F& Fe BEG
F4 | F5 | P8 STA |COPY| FIN
Fi F2 | FA END
FO | F FEM
bDcz2 Dc4
Joystick 0 Joystick 1
ACK BEL
Firel Fire2 Firel Fire2

APP 26 AMSTRAD CPC464 FIRMWARE

Appendix 111
Repeating Keys.

Which keys are allowed to repeat may be set by the user. See section 3 (and section
3.5 in particular) for a full description of repeating keys. Also, see Appendix I which
gives the key numbering scheme,

The default repeating key table is described in the following diagrams. Keys which
are not allowed to repeat are marked with an asterisk.

Main Keyboard

*
*
*
*
= *
*
Function/Numeric Cursor Keys
Keypad
* | * [*
* * *
* * *
* | ® | *
Joystick 0 Joystick 1
Fire 1 " » Fire 1 Fire 2

AMSTRAD CPC464 FIRMWARE APP 3.1

Appendix IV
Function Keys and Expansion

Strings.

Function keys are more fully explained in section 3, and in section 3.7 in particular.
The following table specifies the default string for each expansion token and which
key the token is associated with by default.

Token Value Default String Default Key

0 #80 0 Function key 0.

1 #81 1 Function key 1.

2 #82 2 Function key 2.

3 #83 3 Function key 3.

4 HE4 4 Function key 4.

5 #95 5 Function key 5.

] 486 6 Function key 6.

T HB8T T Function key 7.

8 #88 B Funetion key 8.

9 #89 9 Function key 9.

10 HBA : Function key full stop.

11 HEB CR Function key enter.

12 HEBC RUN"CR Function key enter with control
13..31 #8D..#9F None.,

Tokens 13..31 are all set to empty strings and none of them are defaulted to
associate with a key.

CR stands for carriage return (character #0D)

AMSTRAD CPC464 FIRMWARE APP 4.1

Appendix V
Inks and Colours.

A full discussion of inks and colours can be found in section 6.2. This appendix lists
the eolours that are available and the default settings for the inks

There are 27 colours available. The Screen Pack refers to these colours by a grey
scale number so that colour 0 is the darkest and colour 26 is the brightest. The
hardware requires these grey scales to be translated into the hardware code for the
colour, It is unlikely that the user will ever need to deal with the hardware
numbers, they are merely given for information.

Grey Scale Colour HW Number
0 Black 20
1 Blue 4
2 Bright blue 21
3 Red 28
4 Magenta 24
5 Mauve 29
6 Bright red 12
7 Purple 5
8 Bright magenta 13
9 Green 22

10 Cyan 6
11 Sky blue 23
12 Yellow 30
13 White 0
14 Pastel blue 31
15 Orange 14
16 Pink 1
17 Pastel magenta 15
18 Bright green 18
19 Sea green 2
20 Bright cyan 19
21 Lime 26
22 Pastel green 25
23 Pastel cyan 27
24 Bright yellow 10
25 Pastel vellow 3
26 Bright white 11

AMSTRAD CPC464 FIRMWARE APP 5.1

The user can set the colours in which the 16 inks and the border are displayed. The
following table gives the default settings:

Ink Colour Colour Numbers
Border Blue (1/1)
0 Blue (11)
1 Bright vellow (24/24)
2 Bright cyan (20/20)
3 Bright red (6/6)
4 Bright white (26/26)
5 Black (0/0)
6 Bright blue (22)
7 Bright magenta (B/B)
8 Cyan (10/10)
9 Yellow (12/12)
10 Pastel blue (14/14)
11 Pink (16/16)
12 Bright green (18/18)
13 Pastel green (22/22)
14 Flashing blue / bright yellow (1/24)
15 Flashing sky blue / pink (11/16)

APP 5.2 AMSTRAD CPC464 FIRMWARE

Appendix VI
Displayed Character Set.

There are 256 symbols in the displayed character set. All of these can be printed,
although it requires special effort to print characters 0..31 which are often
interpreted as control codes. The user can set the matrix for any or all characters
(see section 4.6). The following lists describe the default character set.

The character set is split into a number of areas for ease of description:

0..31 (#00..#1F) ASCII control codes.
32..127 (#20..#TF) ASCII characters.
128..143 (#80.#8F) Block graphics.
144.159 (#90.#9F) Line graphics.
160..191 (#A0..#BF) Further characters.

192.255 (#CO.#FF) Miscellaneous graphic symbols.

a. ASCII Control Codes.

0 #00 NUL 0O Square.
1 #01 SOH [UpsidedownL.
2 #02 STX 1L UpsidedownT.
3 #03 ETX 1 BackwardsL.
4 #04 EOT # Lightning flash.
5 #05 ENQ B Squarewith adiagonal cross.
6 #06 ACK « Tick.
7 #07 BEL ® Bell (semi-circle with feet),
8 #08 BS « Left pointing arrow.
9 #09 HT <+ Right pointing arrow.
10 #0A LF + Down pointing arrow,
11 #0B VT * Uppointing arrow.
12 #0C FF % Christmas tree (down pointing arrow with a tail).
13 #0D CR ¢ Bent left pointing arrow.
14 #OE SO ® Circle with a diagonal cross.
15 #OF 8l ©@ Circle with a central dot.

AMSTRAD CPC464 FIRMWARE APP 6.1

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
a1

b. ASCII Characters.

#10
#11
#12
#13
#14
K15
#16
#17
#18
#19
H1A
#1B
#1C
#1D
#1E
#1F

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC

FS
GS
RS
Us

EEE OoOs=MlIlRxOoOO0@e®0

Square with a horizontal bar.
Circle with three o'clock.
Circle with half past three.
Circle with half past nine.
Circle with nine o'clock.
Crossed out tick.

Square wave.

Sideways T.

Hour glass.

Vertical bar with a central blob.
Backwards question mark.
Circle with a horizontal bar.
Square with nine o'clock.
Square with half past nine.
Square with half past three.
Square with three o'clock.

Characters 32..127 (#20..#7F) are listed in the following table. They make up the
standard ASCII character set.

0 9 3 4 5 6 7 8 9 10 11 12 13 14 I5

0 a & ST e 9 ATE C°D B ¥
32 #20 v @ § iRelkelial] X ¥ e b
48430 | 0 2 3 4 656 7 8 9 Sl o B B
64 #40 | @ B ¢ DEFQIED JY¥E LWM W O
80 #50 | P R ST N NWX T2 hy Vgd st
96 #60 | bt d e Fghij kB 1 mmun o
112870 | p rstuvwxyztl}n::::

APP 6.2

AMSTRAD CPC464 FIRMWARE

c. Block Graphics.

Characters 128..143 (#80..#8F) are a set of block graphics. Each character is
divided into four cells. Bits 0..3 of the character number determine which cells are
filled. If the appropriate bit is set then the cell is filled in, otherwise it is left blank.

The cells are:

Bit0 | Bitl

Bit2 | Bit3

In the following list cells that are filled are marked with an ®, cells that are blank
are marked with an O.

128 #80 Block graphic
129 KAl Block graphic
130 HE2 Block graphic
131 #83 Block graphic
132 HB84 Block graphic
133 #85 Block graphic
134 HB6 Block graphic

135 #87 Block graphic
136 HE8 Block graphic
137 #89 Block graphic
138 HBA Block graphic
139 #EB Block graphic
140 #EC Block graphic
141 #8D Block graphic
142 #8E Block graphic

m E P E@ @ @ §E 8 8B 5 B3 &6 @B H

143 #8F Block graphic

AMSTRAD CPC464 FIRMWARE APP 6.3

d. Line Graphics

Characters 144..159 (#90.. #9F) are a set of line graphics. The lines join the centre
of the character to the centre of an edge. Each of the lines is associated with a bit
of the character number. If the bit is set then the line is present, if the bit is not set
then the line is not present. The central block of the character is always set.

The lines are associated with bits as follows:

BIT

BIT3 BIT1

BIT

144 #90 Line graphic

145 #91 Line graphic

146 #92 Line graphic -
147 #93 Line graphic L
148 #94 Line graphic |
149 #95 Line graphic |
150 #96 Line graphic r
151 #97 Line graphic =
152 #98 Line graphic —
153 #99 Line graphic =
154 H#OA Line graphic e
155 #9B Line graphic L
156 #aC Line graphic m
157 #9D Line graphic -
158 H9E Line graphic 1
159 HIF Line graphic +

APP 6.4 AMSTRAD CPC464 FIRMWARE

e. Further Characters.

160 #AD N Circumflex

161 #Al r Acute accent

162 HAZ e Umlaut

163 HA3 £ Pound

164 #A4 & Copyright

165 #AS ﬂ Pilcrow

166 #A6 5 Section

167 HAT L1 Open single quote (pairs with character 39)
168 #A8 1a One quarter

169 #A9 12 One half

170 HAA 34 Three quarters

171 #AB it Plus or minus

172 #AC - Division

173 #AD - Not

174 #AE {-', Inverted question mark
175 #AF i Inverted exclamation mark
176 #B0 x Lower case alpha

177 #B1 B Lower case beta

178 #B2 3 Lower case gamma

179 #B3 s Lower case delta

AMSTRAD CPC464 FIRMWARE APP 6.5

180
181
182
183
184
185
186
167
188
189
130

191

#B4
#B5
#B6
#B7
#BSE
AB9
ABA
#BB
#BC
#BD
#BE

#BF

mMMEXMYWSs AT X O

Lower case epsilon
Lower case theta
Lower case lambda
Lower case mu
Lower case pi
Lower case sigma
Lower case phi
Lower case psi
Lower case chi
Lower case omega
Upper case sigma

Upper case omega

f. Miscellaneous Graphics Symbols.

192
193
194
199
196
1897
198
199
200
201
202
APP 6.6

#CO
#C1
#C2
#C3
#C4
#C5
#Co
#C7
HC8
#C9
HCA

P

O M DN

Diagonal line joining top to left.
Diagonal line joining top to right.
Diagonal line joining bottom to right.
Diagonal line joining bottom to left.
Diagonal lines joining top to left and right.
Diagonal lines joining right to top and bottom.
Diagonal lines joining bottom to right and left.
Diagonal lines joining left to top and bottom.
Diagonal lines joining top to left and bottom to right.
Diagonal lines joining top to right and bottom to left.
Diamond joining all edges.

AMSTRAD CPC464 FIRMWARE

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

#CB
#CC
#CD
#CE
HCF
#D0
#D1
#D2
#D3
#D4
#D5
#D6
AD7
AD8
#D3
#DA
#DB
#DC
#DD
#DE
#DF
AED

#E1

AE2

P ¥ R EEFE o AR ANT] L I8 ANXK

Both major diagonals (large X).

Forwards major diagonal (large slash).
Backwards major diagonal (large backslash).
Chequered pattern.

Shading.

Line along top edge.

Line along right edge.

Line along bottom edge.

Line along left edge.

Triangle filling top left corner.

Triangle filling top right corner.

Triangle filling bottom right corner.
Triangle filling bottom left corner.

Top half shaded.

Right half shaded.

Bottom half shaded.

Left half shaded.

Shaded triangle filling top left corner.
Shaded trinagle filling top right corner.
Shaded triangle filling bottom right corner.

Shaded triangle filling bottom left corner.

Happy face.
Sad face.
Club.

AMSTRAD CPC464 FIRMWARE APP 6.7

227 4E3 @ Diamond.

28 #E4a @ Heart.

229 4E5 Spade.

230 #EB L Empty circle.

231 HET E Filled circle.

232 HEB 1] Empty square.

233 #E9 B Filled square.

234 EA o Male (Mars).

235 #eB Q Female (Venus).

236 sic) Crochet.

237 KED JI- Quaver.

238 HEE S:E Star.

239 HEF A Rocket.

240 #F0 4’- Up pointing arrow head.
241 #F1 + Down pointing arrow head.
242 HF2 ,'. Left pointing arrow head.
243 #F3 _', Right pointing arrow head.
244 AF4 i Up pointing triangle.

245 #F5 v Down pointing triangle.
246 #F6 P Right pointing triangle.
247 RFT -‘ Left pointing triangle.

248 HFS '-E" Dancing person standing.
249 #F9 ;{ Dancing person doing splits.
250 HFA _.k Dancing person with left leg out.

APP 6.8 AMSTRAD CPC464 FIRMWARE

251
252

254

259

AMSTRAD CPC464 FIRMWARE

#FB
#FC
#FD
#FE
#FF

F oM w5

Dancing person with right leg out.
Bomb.

Mushroom (cloud).

Up and down arrow.

Right and left arrow.

APP 6.9

Appendix VII
Text VDU Control Codes.

Character values in the range 0..31 sent to the main Text VDU output routine (TXT
OUTPUT) do not produce a character on the screen, but are interpreted as control
codes, These codes may affect the meaning of one or more of the following
characters, which are the code's parameters.

All control codes work on the currently selected stream unless otherwise indicated.
For instance, setting the pen, code 15, sets the text pen ink for the currently selected
stream whilst setting the colour of an ink, code 28, will affect all streams (and the

Graphics VDU).

Certain codes force the current position (the cursor position) to a legal position
inside the current window before they are obeyed. This is explained in more detail
in section 4.5. The cursor may be left in an illegal position.

The following table specifies the default actions for the control codes. By changing
entries in the control code table the action of these codes can be altered as desired.

See section 4.7 for a full description.

Code Name Params Action

0 NUL 0 No effect.

SOH 1 Print the character given by the parameter
(see TXT WR CHAR). This allows
characters 0..31 to be printed.

2 STX 0 Disable the cursor blob (see TXT CUR
DISABLE). Reverses the effect of ETX (code

3).

3 ETX 0 Enable the cursor blob (see TXT CUR
ENABLE). Reverses the effect of STX (code

2).

4 EOT 1 Set the screen mode given by the parameter
(see SCR SET MODE). The parameter 1s
taken MOD 4 and the value 3 is ignored:

0 sets mode 0 (160 x 200).
1 sets mode 1 (320 x 200).
2 sets mode 2 (640 x 200).

9 ENQ 1 Print the character given by the parameter
using the Graphics VDU as if the graphic
character write mode was active (see TXT
SET GRAPHIC and GRA WR CHAR).

AMSTRAD CPC464 FIRMWARE APP 7.1

6 ACK 0 Enable the VDU (see TXT VDU ENABLE).
Reverses the effect of NAK (code 21).

7 BEL 0 Makes a short bleep sound. Note that this
flushes the sound queues.

8 BS 0 Make the current position legal then move
left one character.

9 TAB 0 Make the current position legal then move
right one character.

10 LF 0 Make the current position legal then move
down one line,

11 VT 0 Make the current position legal then move
up one line,

12 FF 0 Clear the current window and move the
current position to the top left corner (see
TXT CLEAR WINDOW).

13 CR 0 Make the current position legal and then

move it to the left edge of the window on the
current line (see TXT SET COLUMN).

14 S0 1 Set the paper ink to the ink given by the
parameter {see TXT SET PAPER)
Parameter is taken MOD 16.

15 SI 1 Set the pen ink to the ink given by the
parameter (see TXT SET PEN). Parameter
15 taken MOD 16.

16 DLE 0 Make the current position legal then clear it
to the current paper ink.

17 DC1 0 Make the current position legal then clear

from the left edge of the window to the
current position inclusive. The affected cells
are set to the current paper ink.

18 DC2 0 Make the current position legal then clear
from it to the right edge of the window
inclusive. The affected cells are set to the
current paper ink.

19 DC3 0 Make the current position legal then clear
from the start of the window to the current
position inclusive. The affected cells are set
to the current paper ink,

20 DC4 0 Make the current position legal then clear
from it to the end of the window inclusive.
The affected cells are set to the current
paper ink.

4 NAK] Disable the VDU (see TXT VDU DISABLE).
Reverses the effect of ACK (code 6).

APP 7.2 AMSTRAD CPC464 FIRMWARE

25

26

27
28

29

30

31

SYN

CAN

EM

SUB

ESC
FS

Us

Set the character write mode from the
parameter (see TXT SET BACK). The
parameter is taken MOD 2 and:

0 sets opaque mode (the default mode).
1 sets transparent mode.

Set the Graphics VDU write mode from the
parameter (see SCR ACCESS). The parameter
is taken MOD 4 and:

0 sets FORCE mode (the default mode).

1 sets XOR mode.

2 sets AND mode,

3 sets OR mode.

Exchange the current pen and paper inks (see
TXT INVERSE).

Set the matrix for a character (see TXT SET
MATRIX). The first parameter specifies which
character is to be set. The next 8 parameters
are the matrix for the character (given top to
bottom). If the character is not user definable
then no action is taken.

Set the limits of the text window (see TXT
WIN ENABLE). The first two parameters
specify the left and right columns of the
window (the smaller is the left column); the
last two parameters specify the top and bottom
rows of the window (the smaller is the top row).

No effect - available for user.

Set the colours in which to display an ink (see
SCR SET INK). The first parameter is taken
MOD 16 and specifies which ink is to be set.
The second and third parameters are taken
MOD 32 and specify the two colours for the
ink.

Set the colours with which to display the
border (see SCR SET BORDER). The two
parameters are taken MOD 32 and specify the
two colours for the border.

Move the current position to the top left corner
of the window (see TXT SET CURSOR).

Move the current position to a given position in
the current window (see TXT SET CURSOR).
The first parameter specifies the column to
move to, the second parameter specifies the
row to move to (row 1, column 1 is the top left
corner of the window).

AMSTRAD CPC464 FIRMWARE APP 7.3

Appendix VIII
Notes and Tone Periods.

The tables which follow give the recommended tone period settings for notes in the
even tempered scale for the full eight octave range. The period is calculated from
the note frequency as follows (since the period is given in 8 microsecond units):

Period = 125000 / Frequency
The frequeney for each note is caleulated from International A as follows:
Frequency = 440 * (2(Octave + (N - 10)/12))

where:

Octave is the octave number. 0 is the octave including International A (and
middle C), -1 is the octave below, +1 is the octave above ete.

N is the note number. 1isC, 215 C#, 3 is D ete.

The period is an integer value and so the frequency of the note produced 18 not
exactly the required frequency. The relative error is given in the tables below. This

is calculated as follows:
Error = (Required frequency - Actual frequency) / Required frequency

Note Frequency Period Error Octave -3
C 32.703 3822 H#OEEE -0.007%
C# 34 648 3608 HOE1B +0.007%
D 36.708 3405 #0D4D -0.007%
D# 38.891 3214 HOCBE -0.004%
E 41.203 3034 AOBDA +0.008%
F 43.654 2863 #OBZF -0.016%
F# 46.249 2703 HOABF +0.009%
G 48.999 2551 HKO9F7 -0.002%
G# 51.913 2408 #0968 +0.006%
A 55.000 2273 #08E1 +0.012%
A# 58.270 2145 #0861 -0.008%
B 61.735 2025 AOTES +0.011%

AMSTRAD CPC464 FIRMWARE APP 8.1

Note Frequency Period Error Octave -2
C 65.406 1911 ROT777 -0.007%
CH 69.296 1804 #070C +0.007%
D 73.416 1703 HO6AT +0.022%
D# 77.782 1607 RO647 -0.004%
E 82.407 1517 #OSED +0.009%
F 87.307 1432 #0598 +0.019%
F# 92.499 1351 #0547 -0.028%
G 97.999 1276 RO04FC +0.037%
G# 103.5826 1204 A04D4 +0.005%
A 110.000 1136 #0470 -0.032%
AR 116.541 1073 #0431 +(.039%
B 123.471 1012 #03F4 0.038%
Note Frequency Period Error Octave -1
C 130.813 956 #03DC +0.046%
C# 138.591 902 #0386 +0.007%
D 146.832 851 #0353 -0.037%
D# 155.564 804 #0324 +0.058%
E 164 814 To8 #O2F6 -0.067%
F 174.614 716 #02CC +0.019%
F# 184.997 676 H02A4 +0.046%
G 195.998 638 #027E +0.037%
G# 207.652 602 #O25A +0.005%
A 220.000 568 #0238 -0.032%
AR 233.082 236 #0218 -0.055%
B 246,942 506 HOLFA -0.038%

APP 82

AMSTRAD CPC464 FIRMWARE

Note Frequency Period Er-or Octave 0
C 261.626 478 #01DE +().046% Middle C
C# 277.183 451 #01C3 +0.007%
D 293.665 426 HO1AA +0.081%
D# 311.127 402 #0192 +0.1156%
329.628 379 KO17B -0.057%
F 349.228 358 #0166 +0.019%
F# 369.994 338 #0152 +0.046%
x 391.995 319 #013F +0.037%
G# 415.305 J01 #012D +0.005%
A 440.000 284 #011C -0.032% International A
AR 466.164 268 #010C -0.1055%
B 493.883 263 HO0OFD -0.038%
Note Frequency Period Er-or Octave 1
¢ 523.251 239 HO0EF +(.1146%
C# 554.360 225 H#0O0E1 -0.215%
D 587.330 213 H#00DS +0.081%
D# 622.254 201 H00CH +0.058%
659,255 190 #00BE +0.:206%
F 698.457 179 #00B3 +0.019%
F# 739.985 169 HO0AD +0.046%
8 783.991 159 #O09F 0.277%
G# 830.609 150 #0096 -0.328%
A 880.000 142 #00BE -0.032%
A# 932.328 134 #0086 -0.0055%
B 987.767 127 #O07F +0.:156%
AMSTRAD CPC464 FIRMWARE APP 83

Note Freguency Period Error Octave 2

C 1046.502 119 #0077 0.374%
CH 1108.731 113 #0071 +0.229%
D 1174.659 106 #006A -0.390%
D# 1244 508 100 #0064 -0.441%
E 1318.510 85 #005F +0.206%
F 1396.913 89 #0059 -0.543%
F# 1479.978 84 #0054 -0.548%
G 1567.982 80 #0050 +0.350%
G# 1661.219 75 #0048 0.328%
A 1760.000 71 #0047 -0.032%
AR 1864.655 67 #0043 -0.055%
B 1975.533 63 #003F -0.435%
Note Frequency Period Error Octave 3
C 2093.004 60 #003C +0.462%
C# 2217.461 56 #0038 -0.662%
D 2349.318 53 #0035 -0.390%
D# 2489.016 50 #0032 -0.441%
E 2637.021 47 HOO0ZF -0.855%
F 2793.826 45 #002D +0.574%
F# 2959.955 42 #0O02ZA -0.548%
G 3135.963 40 #0028 +0.350%
G# 3322.438 38 #0026 +0.992%
A 3520.000 36 #2924 +1.357%
A# 3729.310 34 #0022 +1.417%
B 3951.066 32 #0020 +1.134%

APP 84 AMSTRAD CPC464 FIRMWARE

Note Frequency Period Error Octave 4

C 4186.009 30 #001E +0.462%
CH 4434.922 28 #001C -0.662%
D 4698.636 27 #0018 +1.469%
D# 4978.032 25 #0019 +1.441%
E 5274.041 24 #0018 +1.246%
K 5587.652 22 #0016 -1.685%
F# 5919.911 21 #0015 -0.548%
G 6271.927 20 #0014 +0.350%
G# 6644 875 19 #0013 +0.992%
A 7040.000 18 #0012 +1.357%
AR 7458.621 17 #0011 +1.417%
B 7902.133 16 #0010 +1.134%

The notes in the scale of C major are given in a slightly more digestible form below.

— 11—

B127
— A 42—
3159
F178
E 190
D213
C239
B 253
A B4 (International A)
319
F 358
E379
[426
— TR — (Middle)
B 506
A 568
Y 638
FT716
[] E758
D851
C 956
Bi012
All3s
G 1276
F1432
—F 1517T—
D1703
—191]—

AMSTRAD CPC464 FIRMWARE APP 8.5

Appendix IX
The Programmable Sound

Generator.

The programmable sound generator (PSG) is an AY-3-8912 chip. This is briefly
Jescribed in section 7.1. The PSG has a number of registers which are described
below. This information is provided for the interest of the user, particularly if
hardware enveloping is to be used (in which case section (e) will be of special
interest). However, the software enveloping provided by the Sound Manager can
achieve all that the sound chip is capable of unless very short attacks or decays are

required.

If the user is intending to drive the sound chip directly rather than by using the
Sound Manager then the information presented is not complete and the user should
consult the manufacturer’s data sheet. The user is advised to call the routine MC
SOUND REGISTER to write data to a sound chip register as this obeys the timing
constraints on access to the sound chip.

The following diagram indicates the interactions between the various sections of
the sound chip:

Envelope Tone /O
Generator Generators Er(lfalgl)es Port
(R11..R13) (RO..R5) (R14)
Amplitude Digital to Noise

Controls Analog Generator

(R8..R10) Converters (R6)

Outputs
AMSTRAD CPC464 FIRMWARE APP 9.1

The sound chip data registers are as follows:

Register 0: ~ Channel A tone period fine tune.

Register 1: Channel A tone period coarse tune.
Register 2: Channel B tone period fine tune.

Register 3: Channel B tone period coarse tune.
Register 4: Channel C tone period fine tune.

Register 5: Channel C tone period coarse tune.
Register 6: Noise period.

Register 7: Enables and I/O direction.

Register 8: Channel A amplitude and envelope enable.
Register 9: Channel B amplitude and envelope enable.
Register 10: Channel C amplitude and envelope enable.
Register 11: Envelope period fine tune.

Register 12: Envelope period coarse tune.

Register 13: Envelope shape.

Register 14: Input from or output to port A.

Register 15: Not used.

a. Tone Generators (Registers 0..5)

Each channel has two tone period registers associated with it. These set the period
of the sound to be generated (in units of 8 microseconds) by that channel. The fine
tune register stores the least significant 8 bits of the period; the coarse tune register
stores the most significant 4 bits of the period. To include the tone in the output of
a channel the appropriate bit in the enables register must be cleared.

b. Noise Generator (Register 6).

There is a single pseudo-random noise source. The output from this can be included
in the output of any of the three channels (as specified by the enables register). The
period of the noise generator is set by bits 0..4 of the noise period register. The
period specifies the middle frequency of the noise produced in 8 microsecond units.

c. Enables (Register 7).

The enables register specifies whether tone or noise is to be included in the output
from each channel. It also specifies whether the I/O port is to act in input or in
output mode. The bits are allocated as follows:

Bit 0: Channel A tone disable.
Bit 1: Channel B tone disable.
Bit 2: Channel C tone disable.
Bit3: Channel A noise disable.
Bit4: Channel B noise disable.
Bit 5: Channel C noise disable.
Bit6: Port A output mode.
Bit7: Not used.

APP 9.2 AMSTRAD CPC464 FIRMWARE

Note that port A is connected to the keyboard and joystick and so the port must
always be in input mode. The user must ensure that bit 6 of the enables register is

always set to zero.

d. Amplitude Controls (Registers 8..10).

Each channel has an amplitude control register associated with it. Bit 4 of this
register specifies whether hardware enveloping is to be used for the channel. If the
bit is set then the channel amplitude (volume) is under the control of the hardware
envelope generator. If the bit is clear then the amplitude is set by bits 0..3 of the
register - a value of 0 means no sound and a value of 15 means maximum volume.

e. Envelope generator (Registers 11..13).

The sound chip has a single hardware envelope generator which can be used to
control any combination of the three sound channels as specified by the channel’s
amplitude register (see (d) above). Bits 0 to 3 of register 13 control the shape of the
envelope in a rather unobvious manner. The following table gives values required
to generate each of the 8 hardware envelopes that are possible. Other values (0..7)
duplicate envelopes 9 and 15.

8: \[\N\J\N\ Repeated jump up and ramp down.

9: \ Jump up and ramp down once then hold at minimum
volume (zero).

10: \/\/\/ Jump up then repeatedly ramp down and up again

11: \J Jump up and ramp down then jump up and hold at
maximum volume (fifteen).

12: /M/I/VM Repeatedly ramp up and drop down.

AMSTRAD CPC464 FIRMWARE APP 9.3

13: / Ramp up then hold at maximum volume (fifteen)

14: /\/\/\ Repeatedly ramp up and down again.

15: / | Ramp up and drop down once then hold at minimum
volume (zero).

The length of each of the ramps, upwards or downwards, is set by the envelope
period. The envelope period is a full 16 bit value whose less significant byte is stored
in register 11 and whose more significant byte is stored in register 12. The period
is given in 128 microsecond units and is the time between steps in the ramp. Since
the ramp has 16 steps (corresponding to the 16 volume settings) the total time taken
for the ramp is the envelope period times 1024 microseconds (i.e. the envelope
period approximately sets the total time for the ramp in milliseconds).

f. I/0 Port (Register 14).

The mode of operation of the PSG port is set by a bit in the enables register (see
section (c) above). However, since port A is dedicated to reading the keyboard and
joysticks it should always be operated in input mode. The port may be read by
reading the contents of register 14. However, scanning the keyboard is a complex
action and is best left to the Key Manager which provides ample facilities for access

to the keys.

References to port B in the manufacturer’s data sheet should be ignored as the
AY-3-8912 is a version of the chip that does not have port B.

APP 94 AMSTRAD CPC464 FIRMWARE

Appendix X
Kernel Block Layouts.

The user provides a number of blocks to the Kernel for various puposes. The layouts
of these blocks are described below, mainly for the interest of the user. There are
very few occasions when the user is allowed to write to one of these blocks. Routines
are provided to perform most actions that the user could wish to perform (see KL
INIT EVENT, KL ADD TICKER, KL NEW FRAME FLY, KL NEW FAST TICKER
and KL DISARM EVENT). These routines set values into the block from registers.
The user should not write to the blocks, except as noted below.

All the following blocks must lie in the central 32K of RAM (otherwise the Kernel
will be unable to access them).

a. Event Blocks.

See section 11 for a general discussion of events and event blocks. An event block
is laid out as follows:

0.1 Chain

2: Count

3: Class

45: Routine address
6: ROM

T+: User fields

Chain is a system pointer which must never be written to by the user. It is used to
store events on the various event queues.

Class records the type of the event. It should not be written to by the user.

Bit 0: 1 = Nearaddress,0 = Faraddress.

Bits 1..4: Synchronous event priority.

Bit 5: Must be zero.

Bit 6: 1 = Expressevent,0 = Normalevent.

Bit 7: 1 = Asynchronousevent,0 = Synchronousevent.

AMSTRAD CPC464 FIRMWARE (REV1) APP 10.1

Note that many system queues are kept in priority order and so the block must be
requeued if the priority is changed, it is not sufficient merely to change the priority
in the event block.

Count is the event count - a record of how many kicks are waiting to be processed or
whether the event is disabled. See section 11.2 for a full discussion of the use of the

event count.

Routine address and ROM make up the far address of the event routine. If the near
address bit in the event class is true then the event routine is at a near address - the
ROM select byte (byte 6) is ignored and the event routine is called directly. If the
near address bit is false then the event routine is at far address - bytes 4,5 and 6
make up the far address to call to run the event routine. The user may write to the
routine address and ROM fields (and to the near address bit in the class byte as
well) provided that the operation is performed indivisibly (i.e. interrupts should be
disabled).

The user fields are optional. They may be used to provide a data area specific to the
event block so that a single event routine may be shared between a number of
different event blocks (the event routine is passed the address of the user fields).

b. Ticker Queue Blocks.

See section 10 for a general discussion of ticker interrupts and the ticker queue. A
ticker queue block is laid out as follows:

0,1: Tick chain

2,3: Tick count

4,5: Recharge count
6+: Event block

Tick chain is a system pointer which must never be written to by the user. It is used
to store the block on the ticker queue.

Tick count is a count of the number of ticks before the next kick occurs. A tick count
of zero means that the tick block is dormant and will not generate any kicks.
(Ideally a dormant block should be removed from the ticker queue to avoid wasting
time). The user may write to this field if required providing this is done indivisibly.

Recharge count is the value that the tick count is set to after each kick. If the
recharge count is zero then the ticker block will become dormant after generating
one kick. The user may write to this field if required providing this is done
indivisibly.

Event block is a standard event block as described in section (a) above.

APP 10.2 AMSTRAD CPC464 FIRMWARE

c. Frame Flyback Queue Blocks.

See section 10 for a general discussion of frame flyback interrupts and the frame
flyback queue. A frame flyback queue block is laid out as follows:

0,1: Frame chain

2+: Event block

Frame chain is a system pointer which must never be written to by the user. It is
used to store the block on the frame flyback queue.

Event block is a standard event block as described in section (a) above.

d. Fast Ticker Queue Blocks.

See section 10 for a general discussion of fast ticker interrupts and the fast ticker
queue. A fast ticker queue block is laid out as follows:

0,1: Fast chain

2+ Event block

Fast chain is a system pointer which must never be written to by the user. It is used
to store the block on the fast ticker queue.

Event block is a standard event block as described in section (a) above.

AMSTRAD CPC464 FIRMWARE APP 10.3

Appendix XI
The Alternate Register Set.

The Z80 microprocessor has two sets of registers - the normal set (AF, BC, DE and
HL) and the alternate set (AF’, BC’, DE’ and HL). Unless the techniques outlined in
this appendix are implemented the user is prohibited from using the alternate
register set. This is because the alternate register set is used by the firmware (the
Kernel in particular) for storing certain system values and flags. Providing that the
user never enters the firmware then the alternate register set may be used without
restriction. Of course this would mean that the user would be unable to use any
facilities provided by the firmware. Furthermore, the user would also have to
disable interrupts as interrupts cause firmware routines to be executed.

In the sections below a number of different methods are described that allow the
user to overcome these restrictions. The method chosen will depend on what use is
to be made of the alternate register set.

a. The firmware’s use of the alternate register set.

The Kernel stores a couple of system variables in the alternate register set. This
allows the Kernel to access these variables easily and thus speeds up a number of
operations (particularly entry to and exit from firmware routines). Only BC’ and
the alternate carry flag (carry’) are used to store values, however, routines do make
use of the other alternate registers and so firmware routines may corrupt them.

B’ is used to store the IO address of the gate array (#7F). C’ is used to store the
value required to set the current ROM state and screen mode:

Bits 0..1: Set the screen mode.

Bit 2: Disables the lower ROM.

Bit 3: Disables the upper ROM.

Bits 4..7: System value to select gate array function.

By changing the ROM state bits and performing an OUT (C),C instruction the user
can enable or disable ROMs. (N.B. The Z80 OUT (C),r and IN (C),r instructions use
B as the top 8 bits of the /O address. The hardware uses these top bits for decoding
the /O address, it ignores the bottom 8 bits!) OUT (C),C may be used to change the
ROM state during the interrupt path when the normal Kernel entries (e.g. KL U
ROM ENABLE) may not be called because they enable interrupts.

Carry’ is normally false. When carry’ is true this indicates that the firmware is in
the interrupt path. The firmware occasionally uses this flag to allow it to take a
different action when it is in the interrupt path to the action it takes when it is not
in the interrupt path (usually avoiding enabling interrupts).

AMSTRAD CPC464 FIRMWARE APP 11.1

b. Simple use of the alternate register set.

The technique described in this section allows use of the alternate register set
providing that no firmware routines are called and that interrupts are disabled.

After disabling interrupts registers A’, DE’ and HL’ may be used as required. If
registers BC’ or F’ (in particular carry’) are used then their original contents must
be restored before interrupts are re-enabled. The user may alter bits in C’ (as
described in (a) above) and need not restore the original value provided that an
OUT (C),C is performed to keep the hardware abreast of the current state. The
machine will not function correctly if the hardware and the value in C’ are out of
step when interrupts are enabled.

This technique requires interrupts to be disabled for the duration of the operation
being performed. This is acceptable if the operation is short but not if the operation
is lengthy. Disabling interrupts for a lengthy period will stop many firmware
functions such as timers (and hence ink flashing, sound generation and keyboard
scanning). If the operation to be performed is lengthy then it might be better to
consider the use of one of the techniques described in sections (c) or (d) instead.

Example.

The user might want to provide a routine that performs an LD A,(BC) from
RAM (similar to the RAM LAM pseudo-instruction provided by the firmware).

The code for this routine could be written as follows:

AF ROM_BC:
PUSH BC
DI ;** About to use alternate registers
EXX
POP HL :Transfer BC to HL'

" LD A,C
SET 2,A ;Set the disable lower ROM bit
SET 3,A ;Set the disable upper ROM bit
ouT (C), A :Tell the hardware

" LD A,(HL) :Read the value from RAM

" our (0),C ‘Restore the old ROM state

" EXX
EI ;** End of use of alternate registers
RET

N.B. This routine must be RAM resident or disabling the ROMs will have an
unfortunate effect!

APP 11.2 AMSTRAD CPC464 FIRMWARE

c. Use of the alternate register set with interrupts enabled.

The technique described in this section allows the alternate register set to be used
and interrupts to be enabled. It does not allow firmware routines to be called.

The simplistic use of the alternate register set by disabling interrupts as described
above is unsatisfactory if this results in interrupts being disabled for an extended
period of time. By patching INTERRUPT ENTRY in the low Kernel jumpblock
interrupts can be trapped and appropriate action to restore the firmware registers
can be taken. The actions that must be performed are as follows:

Before starting to use the alternate register set the firmware’s BC’ is saved
and INTERRUPT ENTRY is patched so that the user’s interrupt routine is

used.

When the user has finished with the alternate register set the firmware’s BC’
and carry’ are restored and INTERRUPT ENTRY is patched back to the firm-

ware’s interrupt routine.

When an interrupt occurs the user’s alternate registers are saved, the
firmware’s BC' and carry’ are restored and INTERRUPT ENTRY is patched
back to the firmware’s interrupt routine. The latter is done in case a second
interrupt occurs whilst processing the events kicked from the interrupt path
of the first interrupt (remember that the event processing is performed with
interupts enabled).

After interrupt processing has finished the firmware’s BC’ is saved, the user’s
alternate registers are restored and INTERRUPT ENTRY is patched back to

the user’s interrupt routine again.

Note that when INTERRUPT ENTRY is patched it is vital to ensure that the lower
ROM is disabled and remains disabled. It is impossible to patch the ROM version of
INTERRUPT ENTRY! If an interrupt occured whilst the lower ROM was enabled
then the firmware would jump straight into its interrupt routine without restoring
its alternate registers first.

Example.
The following routines implement the scheme described above:

L

- The following storage locations are used

FIRM_BC: DEFS2 “Two bytes to store the firmware’s BC'
FIRM_INT: DEFS 2 ‘Two bytes to store the address of the
firmware’s interrupt routine
USER_AY: DEFS2 ‘Two bytes to store the user’s AF’
USER_BC: DEFS2 ‘Two bytes to store the user’s BC’
USER_DE: DEFS2 ‘Two bytes to store the user’s DE’
USER_HL: DEFS2 ‘Two bytes to store the user’s HL

AMSTRAD CPC464 FIRMWARE APP 113

This routine sets up the environment so that the
user may make use of the alternate register set.
N.B. Interrupts are enabled.

1
»
]
-
]
.
]

USER_ALTERNATE:

DI :An interrupt would be disastrous
EX AF, AF
EXX ;Swap to the alternate register set
LD (FIRM_BC), BC Save the firmware’s BC’
" LD HL,(INTERUPT_ENTRY +1)
LD (FIRM_INT), HL :Save the firmware’s interrupt routine
" LD HL, USER_INTERRUPT ;Use the replacement interrupt routine
LD (INTERRUPT_ENTRY + 1), HL
' LD HL,(USERAF)
PUSH HL
POP AF :Restore user’s AF’
LD BC, (USER_BC) ‘Restore user’s BC’
LD DE, (USER_DE) ;Restore user’s DE’
LD HL, (USER_HL) . :Restore user’s HL'
| EXX :Swap back to the standard register set
EX AF, AF
EI :We have finished with the alternate regs
RET

This routine restores the environment for the
firmware to use the alternate register set.
N.B. Interrupts are disabled and not re-enabled.

]
?
?
:
]
3

FIRM_ALTERNATE:

DI :An interrupt would be disastrous
EX AF, AF

EXX ;Swap to the alternate register set
LD (USER_HL), HL ;Save user’s HL'

LD (USER_DE), DE :Save user’s DE’

LD (USER_BC), BC ;Save user’s BC’

PUSH AF

POP HL

LD (USER_AF), HLL :Save user’s AF’

APP 114 AMSTRAD CPC464 FIRMWARE

LD HL,(FIRM_INT) ‘Restore the firmware’s interrupt routine
LD (INTERRUPT_ENTRY + 1), HL

LD BC, (FIRM_BC) ‘Restore the firmware’s BC’

OR AA :Set the firmware’s carry’ to be false

EXX :Swap back to the standard register set

EX AFAF

RET ‘N.B. May be about to enter the interrupt
:path so no EL

This routine replaces the firmware’s interrupt routine
when the user is using the alternate register set

SER_INTERRUPT:
CALL FIRM_ALTERNATE ‘Switch the environment to the firmware
CALL INTERRUPT_ENTRY ;Run the normal interrupt routine
JP USER_ALTERNATE -Switch the environment back to the user

:q e e e wa a

To start usin'g the alternate register set the user obeys the instruction:
CALL USER_ALTERNATE
To finish using the alternate register set the user obeys the instructions:

CALL FIRM_ALTERNATE
EI

d. Calling firmware routines whilst using the alternate register set.

The technique described in this section extends the technique described in section
(¢) to allow the user to call firmware routines whilst using the alternate register set.

To call a firmware routine requires exactly the same action as is required for the
interrupt routine:
Before calling a firmware routine the user’s alternate registers are saved, the
firmware’s BC’ and carry’ are restored and INTERRUPT ENTRY is patched
back to the firmware’s interrupt routine. The latter is done in case an
interrupt occurs whilst executing the firmware routine.

After running the firmware routine the firmware’s BC’ is saved, the user’s
alternate registers are restored and INTERRUPT ENTRY is patched back to

the user’s interrupt routine again.

As indicated in section (c) it is vital to ensure that the lower ROM remains disabled
while the alternate register set is in use since INTERRUPT ENTRY in the ROM is
not patchable and jumps straight to the firmware’s interrupt routine.

AMSTRAD CPC464 FIRMWARE APP 11.5

Using the routines defined in section (c) a firmware routine may be called by using
the following sequence:

CALL FIRM_ALTERNATE :Switch the environment to the firmware
El ;FIRM ALTERNATE disables interrupts
CALL firmware ‘Run the firmware routine

CALL USER_ALTERNATE :Switch the environment back to the user

The above code is rather long if a lot of firmware calls are to be made (10 bytes per
call). The following routine takes the address of a firmware routine to call to as an
inline parameter (and only uses 5 bytes per call).

; This routine saves the user’s alternate registers, calls a
: firmware routine whose address is passed inline and then
: restores the user’s alternate register set afterwards.

FIRM_ROUTINE:

CALL FIRM ALTERNATE ;Switch to the firmware environment
EXX :N.B. Interrupts are disabled

POP HL ‘Recover address of routine to call, uses
LDE, (HL) firmware’s DE’ and HL' which may be
INC HL ;corrupted

LDD, (HL) ;Get routine to call into DE’

INC HL

PUSH HL :Put the real return address back

LD HL, USER ALTERNATE ;Restore the user environment when
;the firmware returns by putting a

PUSH HL ‘fake return address on the stack
, PUSH DE ;Save the routine to call

EXX

El

RET ;Jump to the routine to call

To call a firmware routine using the above routine the following sequence should
be used:

CALL FIRM_ROUTINE
firmware :Address of routine to call
:FIRM ROUTINE returns here

APP 11.6 AMSTRAD CPC464 FIRMWARE

Appendix XII
The Hardware.

A. Processor.

The processor is a Z80A running at a clock frequency of 4.00 MHz (+0.1%). There is
logic that stretches MREQ and TORQ using the CPU WAIT facility so that the
processor can only make one access to memory each microsecond.

The processor NMI pin is pulled up and made available on the expansion bus.
However, a non-maskable interrupt may cause the firmware to violate various
timing constraints and so its use is not recommended.

The processor interrupt pin is driven by a flip-flop in the video gate array. This
flip-flop is set during every vertical flyback and every 52 scan lines thereafter until
the next vertical flyback. The interrupt is arranged to occur approximately 2 scans
(125 microseconds) into the 8 scan (500 microsecond) vertical flyback signal. The
interrupt latch is cleared by the processor acknowledging the interrupt, or
explicitly, using a software command. The top bit of the divide by 52 scan counter is
also cleared when the processor acknowledges an interrupt occurring after this
counter has overflowed. This allows the interrupt system to be expanded.

B. Memory.

ROM

A single 32K byte ROM is present on the processor board, but is mapped onto two
blocks of 16K in processor address space. The lower half of the ROM occupies
addresses #0000 to #3FFF and the upper half occupies addresses #C000 to #FFFF.
These two halves of the ROM can be separately enabled and disabled by two control
latches in the video gate array. On power-up or other system reset both halves of the

ROM are enabled.

An expansion port signal can be used to disable this internal ROM and allow
external ROM(s) to be accessed instead. These are selected by output instructions
and replace the upper half of the on-board 32K byte ROM when selected.

RAM

64K bytes of dynamic RAM are fitted to the processor board at addresses #0000 to
#FFFF. The lowest 16K and the top 16K are overlayed when ROM is enabled.
Whether the ROM is enabled or not affects where data is read from, it has no effect
on write operations which will be correctly performed ‘through’ the enabled ROM to

the underlying RAM.

AMSTRAD CPC464 FIRMWARE APP 12.1

VDU SCREEN MEMORY

The display uses 16k of the processor RAM memory as screen refresh memory. The
16k used can be switched between the blocks starting at #0000, #4000, #8000 and
at #C000 by the top two bits (bits 12 and 13) programmed into the HD6845S start
address register (see section 6.4 for further details).

The arrangement of data in the VDU screen memory is dependent on the VDU
mode currently selected. In all modes the memory can be considered as consisting of
8K 16 bit words. Each word contains either 4, 8 or 16 pixels (P0..Pn) of 1, 2 or 4 bits
(B0..Bm) depending on the mode as follows:

A0 Bit Mode 0 Mode 1 Mode 2
0 D7 PO BO PO BO PO BO
0 D6 P1BO P1B0 P1 BO
0 D5 P0 B2 P2 B0 P2 B0
0 D4 P1 B2 P3 B0 P3 B0
0 D3 P0 Bl P0 B1 P4 B0
0 D2 P1B1 P1B1 P5 BO
0 D1 PO B3 P2 Bl P6 B0
0 DO P1B3 P3 Bl P7 BO
1 D7 P2 B0 P4 B0 P8 BO
1 D6 P3 B0 P5 B0 P9 BO
1 D5 P2 B2 P6 BO P10 BO
1 D4 P3 B2 P7 B0 P11 B0
1 D3 P2 B1 P4 B1 P12 B0
1 D2 P3 Bl P5Bl1 P13 B0
1 D1 P2 B3 P6 Bl P14 BO
1 DO P3 B3 P7Bl1 P15 B0

Data for lines 0,8,16,24.. on the display are packed into the first 2K byte block of the
memory, lines 1,9,17,25.. are packed into the corresponding places of the next 2K
byte block of memory, with lines 7,15,23,31.. occupying the top 2K byte block of the
16k memory area.

The bottom 10 bits of the HD6845SP start address register define where within
these 2K blocks the screen starts. The offset from the start of the 2K byte block is
always even and is calculated as twice the register contents modulo 2K bytes. When
data has to be displayed from beyond the end of a 2K byte block wrap around occurs
to the begining of the same 2K byte block. See section 6.4 for a fuller description.

APP 122 AMSTRAD CPC464 FIRMWARE

D. AY-3-8912 Programmable Sound Generator.

The PSG is accessed using ports A and C of the uPD8255 device. Note that when
writing or loading address to the AY-3-8912 the maximum duration of the write or
load address command with BDIR high is 10 microseconds. The clock input to the
sound generator is exactly 1.00 MHz. The BCZ si gnal is tied permanently high, On
power-up the I/O port should be programmed to input mode.

The user is advised to use the firmware routine MC SOUND REGISTER to write to
the PSG.

E. HD6845S CRT Controller (HD6845S CRTC).

The character clock to the CRTC occurs for every two bytes fetched from memory,
i.e. every 1.0 microseconds. The first byte of a pair has an even address, the second
has an odd address. In normal operation the internal registers should be set up as

follows:

Register Function PAL SECAM NTSC
0 Horizontal Total 63 63 63

1 Horizontal Displayed 40 40 40

2 Horizontal Sync. Posn. 46 46 46

3 Vsync., Hsync. widths ~ #8E H8E #BE
4 Vertical Total 38 38 31

5 Vertical Total Adjust 0 0 6

6 Vertical Displayed 25 25 25

7 Vertical Sync. Posn. 30 30 27

8 Interlace and Skew 0 0 0

9 Max. Raster Address 7 7 7

10 Cursor Start Raster X X X

11 Cursor End Raster X X X

12 Start Address (H) 1.1 X X
13 Start Address (L) X X X
14 Cursor (H) X X X
15 Cursor (L) X X X

In the above table the numbers for PAL and SECAM standards are identical,

Note that X indicates that software may vary these numbers during device opera-
tion. The firmware only makes use of the start address register which is used to set

the screen base and offset.

APP 124 AMSTRAD CPC464 FIRMWARE

F. Video Gate Array.

The software must access this device in order to control the enabling and disabling
of ROMs, the mode of operation of the VDU and also to load colour information
for ‘inks’ into the palette memory. One /O channel is used for all commands, the top

two bits of data specifying the command type as follows:

Bit7 Bit6 Use

0 0 Load palette pointer register.

0 1 Load palette memory.

1 0 Load mode and ROM enable register.
1 1 Reserved.

MODE AND ROM ENABLE REGISTER
This write-only register controls the VDU mode and ROM enabling as follows:

Bit 7: 1

Bit 6: 0

Bit 5: ** Reserved ** (send 0)
Bit 4: Clear raster 52 divider.
Bit 3: Upper half ROM disable.
Bit 2: Lower half ROM disable.
Bit 1: VDU Mode control MC1.
Bit 0: VDU Mode control MCO.

Writing a 1 to bit 4 clears the top bit of the divide by 52 counter used for generating
periodic interrupts.

Modes are defined by the mode control pins as follows:

MC1 MCO Mode

Mode 0, 160 x 200 pixels in 16 colours
Mode 1, 320 x 200 pixels in 4 colours.
Mode 2, 640 x 200 pixels in 2 colours.
** Do not use **

Ll ol = =]
[==

The gate array hardware synchronises mode changing to the next horizontal fly-
back in order to aid software that requires different parts of the screen to be handled

in different modes.

On power-up and other system resets, the mode and ROM enable register is set to
zero, enabling both halves of the ROM.

AMSTRAD CPC464 FIRMWARE APP 12.5

PALETTE POINTER REGISTER
This write-only register controls the loading of the VDU colour palette as follows:

Bit 7: 0

Bit 6: 0

Bit 5: ** Reserved ** (send 0)
Bit 4: Palette pointer bit PR4.
Bit 3: Palette pointer bit PR3.
Bit 2: Palette pointer bit PR2.
Bit 1: Palette pointer bit PR1.
Bit 0: Palette pointer bit PRO.

Bits PRO to PR3 select which ink is to have its colour loaded, providing bit PR4 is
low. If bit PR4 is high then bits PRO to PR3 are ignored and the border ink colour is
loaded.

PALETTE MEMORY

This write-only memory controls the VDU colour palette as follows:

Bit 7: 0

Bit 6: 1

Bit 5: ** Reserved ** (send 0)
Bit 4: Colour data bit CD4.
Bit 3: Colour data bit CD3.
Bit 2: Colour data it CD2.
Bit 1: Colour data bit CD1.
Bit 0: Colour data bit CDO.

The ink entry pointed at by the palette pointer register is loaded with the colour
sent on this channel. The number of colours that need to be loaded ranges from 2
colours in mode 2 to 16 colours in mode 0. In addition to loading the colours an extra
colour data byte must be sent to this channel to define the border colour. On
power-up and other system resets the contents of the palette are undefined, but the
border colour is set to BLACK, to avoid unsightly effects on power-up.

The 32 colour codes are decoded to drive the RGB signals, producing 27 different
colours. The hardware colours are listed in Appendix V.

APP 126 AMSTRAD CPC464 FIRMWARE

G. uPD8255 Parallel Peripheral Interface.

The PPI as well as the 8 port pins on the PSG are used to interface to the keyboard
and to control and sense miscellaneous signals on the processor board. Port A must
be programmed either to input or to output in mode 0 since this port is used for
reading and writing to the PSG. Port B must be programmed to input in mode 0.
Port C must be programmed to output in mode 0 on both halves.

Circuitry is provided around the PPI to reset it during system reset. For details of
the operation of the pPD8255 see the NEC product specification.

CHANNEL A (Input or Output)

Bit 7: Data/Address DA7 connected to AY-3-8912.
Bit 6: Data/Address DA6 connected to AY-3-8912,
Bit 5: Data/Address DA5 connected to AY-3-8912.
Bit 4: Data/Address DA4 connected to AY-3-8912.
Bit 3: Data/Address DA3 connected to AY-3-8912.
Bit 2: Data/Address DA2 connected to AY-3-8912,
Bit 1: Data/Address DA1 connected to AY-3-8912,
Bit 0: Data/Address DAO connected to AY-3-8912.

CHANNEL B (Input Only)

Bit 7: Datacorder cassette read data.
Bit 6: Centronics busy signal.

Bit 5: Not expansion port active signal.
Bit 4: Not option link LK4.

Bit 3: Not option link LK3.

Bit 2: Not option link LKZ2.

Bit 1: Not option link LK1.

Bit 0: Frame flyback pulse.

The option links, LK1..LK4 are factory set. LK4 is fitted for 60 Hz T.V. standards
and omitted for 50 Hz standards.

CHANNEL C (Output Only)

Bit 7: AY-3-8912 BDIR signal.

Bit 6: AY-3-8912 BC1 signal.

Bit 5: Datacorder cassette write data
Bit 4: Datacorder cassette motor on.
Bit 3: Keyboard row select KR3.

Bit 2: Keyboard row select KR2.

Bit 1: Keyboard row select KR1.

Bit O: Keyboard row select KRO.

AMSTRAD CPC464 FIRMWARE APP 12.7

H. Centronics Port Latch.

This latch is loaded with data by output commands to the correct I/O channel. It
cannot be read. Note that the timing requirements on Centronics interfaces
generally specify that the data must be present on the seven data lines at least 1
microsecond before the strobe is made active and must remain valid for at least 1
microsecond after the strobe returns inactive. The duration of the strobe must be
between 1 and 500 microseconds. The busy signal can be inspected as soon as the
strobe is inactive in order to determine when more data can be sent.

Bit7: Centronics strobe signal (1 = active).
Bit 6: Data 7 to Centronics port,
Bit 5: Data 6 to Centronics port,
Bit 4: Data 5 to Centronics port.
Bit 3: Data 4 to Centronics port.
Bit 2: Data 3 to Centronics port.
Bit 1: Data 2 to Centronics port.
Bit 0: Data 1 to Centronics port.

On power-up and other system resets the outputs of this latch are all cleared.

I. Keyboard and Joysticks.

The keyboard and joystick switches are sensed by selecting one of ten rows using
the four control bits on channel C of the PPl and reading the data from the PSG

parallel port using port A of the PPI.

The keyboard and joystick switches are arranged in a 10 by 8 matrix. One of ten
rows 1s selected using the code on KR0..KR3 and the eight bits of data are then read
in parallel on a parallel port as described above. A switch is active (closed) if the
corresponding data bit isa logic 0.

The key number associated with each key (see Appendix I) is constructed as follows:

Bit: ¥ 6 5 4 3 2 1 0

0 Row number Bit number

Thus the key that is associated with bit 5 in row 4 has key number 37 (4 *8+5).

APP 128 AMSTRAD CPC464 FIRMWARE

	CPC 464 Firmware
	Preface
	Contents
	1. The Firmware
	2. ROMs, RAM and the Restart Instructions
	3. The Keyboard
	4. The Text VDU
	5. The Graphics VDU
	6. Ths Screen Pack
	7. The Sound Manager
	8. Cassette Manager
	10. Interrupts
	11. Events
	12. Machine Pack
	13. Firmware Jumplocks
	Main Jumpblock
	Firmware Indirections

	14. The Main Firmware Jumpblock
	KM Orders
	0. KM Initialise
	1. KM Reset
	2. KM Wait Char
	3. KM Read Char
	4. KM Char Return
	5. KM Set Expand
	6. KM Get Expand
	7. KM Exp Buffer
	8. KM Wait Key
	9. KM Read Key
	10. KM Test Key
	11. KM Get State
	12. KM Get Joystick
	13. KM Set Translate
	14. KM Get Translate
	15. KM Set Shift
	16. KM Get Shift
	17. KM Set Control
	18. KM Get Control
	19. KM Set Repeat
	20. KM Get Repeat
	21. KM Set Delay
	22. KM Get Delay
	23. KM Arm Breaks
	24. KM Disarm break
	25. KM Break event

	TXT Orders
	26. TXT initialise
	27. TXT reset
	28. TXT VDU enable
	29. TXT VDU disable
	30. TXT output
	31. TXT WR Char
	32. TXT RD Char
	33. TXT Set Graphic
	34. TXT Win enable
	35. TXT Get Window
	36. TXT Clear Window
	37. TXT Set Column
	38. TXT Set Row
	39. TXT Set Cursor
	40. TXT Get Cursor
	41. TXT Cur Enable
	42. TXT Cur Disable
	43. TXT Cur On
	44. TXT Cur Off
	45. TXT Validate
	46. TXT Place Cursor
	47. TXT Remove Cursor
	48. TXT Set Pen
	49. TXT Get Pen
	50. TXT Set Paper
	51. TXT Get Paper
	52. TXT Inverse
	53. TXT Set Back
	54. TXT Get Back
	55. TXT Get Matrix
	56. TXT Set Matrix
	57. TXT Set M Table
	58. TXT Get M Table
	59. TXT Get Controls
	60. TXT STR Select
	61. TXT Swap Streams

	GRA Orders
	62. GRA Initialise
	63. GRA Reset
	64. GRA Move Absolute
	65. GRA Move Relative
	66. GRA Ask Cursor
	67. GRA Set Origin
	68. GRA Get Origin
	69. GRA Win Width
	70. GRA Win Height
	71. GRA Get W Width
	72. GRA Get W Height
	73. GRA Clear Window
	74. GRA Set Pen
	75. GRA Get Pen
	76. GRA Set Paper
	77. GRA Get Paper
	78. GRA Plot Absolute
	79. GRA Plot Relative
	80. GRA Test Absolute
	81. GRA Test Relative
	82. GRA Line Absolute
	83. GRA Line Relative
	84. GRA WR Char

	SCR Orders
	85. SCR Initialise
	86. SCR Reset
	87. SCR Set Offset
	88. SCR Set Base
	89. SCR Get Location
	90. SCR Set Mode
	91. SCR Get Mode
	92. SCR Clear
	93. SCR Char Limits
	94. SCR Char Position
	95. SCR Dot Position
	96. SCR Next Byte
	97. SCR Prev Byte
	98. SCR Next Line
	99. SCR Prev Line
	100. SCR Ink Encode
	101. SCR Ink Decode
	102. SCR Set Ink
	103. SCR Get Ink
	104. SCR Set Border
	106. SCR Set Flashing
	107. SCR Get Flashing
	108. SCR Fill Box
	109. SCR Flood Box
	110. SCR Char Invert
	111. SCR HW Roll
	112. SCR SW Roll
	113. SCR Unpack
	114. SCR Repack
	115. SCR Access
	116. SCR Pixels
	117. SCR Horizontal
	118. SCR Vertical

	CAS Orders
	119. CAS Initialise
	120. CAS Set Speed
	121. CAS Noisy
	122. CAS Start Motor
	123. CAS Stop Motor
	124. CAS Restore Motor
	125. CAS In Open
	126. CAS In Close
	127. CAS In Abandon
	128. CAS In Char
	134. CAS Out Abandon
	135. CAS Out Char
	136. CAS Out Direct
	137. CAS Catalog
	138. CAS Write
	139. CAS Read
	140. CAS Check

	Sound
	141. Sound Reset
	142. Sound Queue
	143. Sound Check
	144. Sound Arm Event
	145. Sound Release
	146. Sound Hold
	147. Sound Continue
	148. Sound Ampl Envelope
	149. Sound Tone Envelope
	150. Sound A Address
	151. Sound T Address

	KL
	152. KL Choke Off
	153. KL Rom Walk
	154. KL Init Back
	155. KL Log Ext
	156. KL Find Command
	157. KL New Frame Fly
	158. KL Add Frame Fly
	159. KL Del Frame Fly
	160. KL New Fast Ticker
	161. KL Add Fast Ticker
	162. KL Del Fast Ticker
	163. KL Add Ticker
	164. KL Del Ticker
	165. KL Init Event
	166. KL Event
	167. KL Sync Reset
	168. KL Del Synchronous
	169. KL Next Sync
	170. KL Do Sync
	171. KL Done Sync
	172. KL Event Disable
	173. KL Event Enable
	174. KL Disarm Event
	175. KL Time Please
	176. KL Time Set

	MC
	177. MC Boot Program
	178. MC Start Program
	179. MC Wait Flyback
	180. MC Set Mode
	181. MC Screen Offset
	182. MC Clear Inks
	183. MC Set Inks
	184. MC Reset Printer
	185. MC Print Char
	186. MC Busy Printer
	187. MC Send Printer
	188. MC Sound Register

	189. Jump Restore

	15. The Firmware Indirections
	IND Txt Draw Cursor
	IND Txt Undraw Cursor
	IND Txt Write Char
	IND Txt Unwrite
	IND Txt Out Action
	IND Gra Plot
	IND Gra Test
	IND Gra Line
	IND Scr Read
	IND Scr Write
	IND Scr Mode Clear
	IND KM Test Break
	IND MC Wait Printer

	16. The High Kernel Jumpblock
	HI KL U Rom Enable
	HI KL U Rom Disable
	HI KL L Rom Enable
	HI KL L Rom Disable
	HI KL Rom Restore
	HI KL Rom Select
	HI KL Curr Selection
	HI KL Probe Rom
	HI KL Rom Deselect
	HI KL LDDR
	HI KL LDIR
	HI KL Poll Synchronous

	17. The Low Kernel Jumpblock
	Low Reset Entry
	Low Low Jump
	Low KL Low PCHL
	Low PCBC Instruction
	Low Side Call
	Low KL Side PCHL
	Low PCDE Instruction
	Low Far Call
	Low KL Far PCHL
	Low PCHL Instruction
	Low Ram Lam
	Low KL Far Icall
	Low Firm Jump
	Low User Restart
	Low Interrupt Entry
	Low Ext Interrupt

	Appendix I - Key Numbering
	Appendix II - Key Transalation Tables
	Appendix III - Repeating Keys
	Appendix IV - Function Keys & Expansion Strings
	Appendix V - Inks and Colours
	Appendix VI - Displayed Character Set
	Appendix VII - Text VDU Control Codes
	Appendix VIII - Notes & Tones Periods
	Appendix IX - The Programmable Sound Generator
	Appendix X - Kernel Block Layouts
	Appendix XI - The Alternate Register Set
	Appendix XII - The Hardware

