

TO THE READER

To the best of our knowledge, this manual is technically correct at the
time of going to press. However, if you notice any mistakes or have
any criticisms or suggestions then we would be grateful to receive
them.

Yours Sincerely

Richard Paul Jones (Producer)

COPYRIGHT

FIG-FORTH the program and the contents of the FIG-FORTH
manual are copyrighted and all rights are reserved by Interceptor
Micro’s, Lindon House, The Green, Tadley, Hants.

All rights of the producer, and the owner, of the work being
produced, are reserved. Unauthorised copying, hiring, lending,
public performance and broadcasting of this program is prohibited.
The publisher assumes no responsibility for errors, liability for
damage arising from its use.

WRITTEN BY BRIAN PERRY
PRODUCED BY RICHARD PAUL JONES

FOREWORD

This version of FORTH for the Amstrad computer is a complete and extended version of the
FIG-FORTH standard as defined by the FORTH Interest Group. The extensions are in the form of
WORDS not defined in FIG-FORTH but never the less regarded as 'y require tothel
and special extensions to cover the special facilities offered by the AMSTRAD computer.

The manual is divided into several sections. Sections 1 and 2 are common to all users, whereas section 3
caters for the user who has had previous exposure to the FORTH language. Section 4 is an introductory
guide to FORTH for the user with no previous experience in the use of the language. This section is not
intended to be a full tutorial on the subject. It is intended to give an overview of FORTH and to allow the
user to begin using the system as quickly as possible. For a complete indoctrination on the subject there are
many excellent books available and appendix 5 should be consulted for recommended reading on this.

At all times the assumption is made where required, that the user is familiar with the operational
aspects of the AMSTRAD and its BASIC language.

CONTENTS

1 INTRODUGCTION o .tittneennteanerinsrnaeennasesontaanssatesiseoiaeasaaneraneensss 3
2 LOADING FORTH . i\ttitttitiiieiitianeraa et ettt sttt ins s anaaoaee s 4
3. USING FORTH oittittianeetenenneneaneaaonetatesiatetoeenteteatsieanoisesonanssns 4
3.1 FORTH ENVIRONMENTottt ittt it aaae e 4
3.2 KEYBOARD INPUT ..ottt ittt iiiat it eataanaeens 5
3.3 THE STACKS ittt te ettt iaiscataaetaaceannaatsias it sansanaanaeens 5
TN % (. 21 1 (o R 6
35 MACHINE CODE . 1uttttiiit it i saiaee it eaaenaea ittt taaneancnanes 6
3.6 RECURSION L\t itttittrnteret it itesttaaatanaaasceann s titsonsanneeananns 6
3.7 DICTIONARY FORMAT ...ttt it iii i iaaanes 7
FR PRINTER .ot itetittteienteessttensantatsssanneseenuteessaanoneaaatssssananes 7
3.9 SCREEN EDITOR .. tiintttieiitisitaatnantnrieaats s raestiatasnnaneaons 7
3.10 GRAPHICS AND EXTENSIONS ...ttt iiiiaaii e 11
3.11 ARRAYS AND TEXT STRINGS ...ttt e 12
3.12 SOUND GENERATION
313 ASSEMBLER .ottt tttit it e
3.14 DOER/MAKE or VECTORED EXECUTIONc.coiiiiiiiiiiiiiiaiiiniinns 19
3.15 SUPPORT SCREENS ...ttt it a s aaneene 19
4. INTRODUCING FORTH ..ottt ittt iaee et 20
4.1 WHAT IS FORTH ..iitti ittt naieeaannaar e ataneernauaeeraansnes 20
4.2 THE DICTIONARY .ottt ittt eaannatesaainsetesnietnanannaess 20
4.3 KEYBOARD INTERPRETERottt i 20
4.4 THE STACKS vt vttt ittt et iaaaan i e it eit e aaseannes 21
4.5 THE DISC ittt ittt et a st a et ettt it aees 23
4.6 NUMBERS AND ARITHMETIC ... oottt re s 23
4.7 MAKING DECISIONS .1ttt ie et a e enaanees 24
4.8 REPETITION .. ttttttteaettiiieaanateeniiitetaanatestoaniaeesionnenss 25
4.9 INPUT/OUTPUT o \tiitttee et ittaitraaaae et aas it aaaannes 27
4.10 VARIABLES AND CONSTANTS ...ttt 28
APPENDICES
1. ERROR CODES .ttt irteatteensaatans e ease e ettt aata e oars s ieeens 29
2. COLD START PARAMETERS ...ttt ittt aaees 29
3. FIG-FORTH EXTENSIONS ...ttt ettt ieasanencasens 30
4. FIG-FORTH GLOSSARY .. .tttttititatateetaitnt ettt rataieeoaens 35
5. FURTHER READING .. .ttttntiatieintinat sttt iitat it aaan e 51
6. FIG-FORTH VOCABULARY ...ttt ittt aenoeais 52
7. SUPPORT SCREENS .ttt it ettt ean e enas 52

INTRODUCTION

FORTH is not a new language. It was originally developed in the late sixties by Charles H. Moore,
working on an IBM 1130 a "third generation” computer. The results he believed to be so powerful that he
considered it a “fourth generation” computer language. The computer however would only allow five
character identifiers so FOURTH became FORTH.

Since that time FORTH has grown in popularity both in the professional environment and in the area
of the computer hobbyist.

Many so called “computer-buffs” shy away at the very mention of the word FORTH uttering crys of
"REVERSE POLISH NOTATION”, "LACK OF ERROR TRAPPING”, "STACKS", “COME BACK
BASIC, ALL IS FORGIVEN" etc. In essence, their problem is they have either never used FORTH or they
will not use it because of fear of its unusual dialect. What still remains however is the undisputable fact that
FORTH users are on the increase both in industry and in the home.

The author was introduced to FORTH some two years ago while reading an article on the subject, His
interest grew after seeing a demonstration of FORTH being used to control a robot arm. The speed and
flexibility of FORTH showed it to be an ideal language for the kind of work he was involved in (control
engineering). Since that time he has used FORTH extensively in many projects that involved real time
control.

FORTH is an unusual language. It casts aside many of the golden rules of programming. However as
you begin to use it you will more than likely begin to see its power, and beauty. Be warned however, few
people who learn FORTH ever go back to conventional languages.

LOADING FORTH
To load and run FORTH follow these simple steps.
i) Reset the computer by pressing the CTRL/SHIFT and ESC keys in that order.
ii) Insert side 1 of the system disc into the disc drive. (drive 0 if you have a two drive system)
iii) Type in RUN "FLOAD” and press the enter key.

After a few seconds you should see the sign on message ~Amstrad Fig-Forth Version 2.2” indicating that the
system has loaded successfully.

Now insert side 2 of the system disc into the disc drive. This contains the Screen Editor, Assembler and other
utilities that will be needed when using the FORTH program. These utilities are fully explained in later sections.

It is suggested that you make a working backup of both sides of the system disc for general use and keep the
master in a safe place.

This can easily be done using the disc copying facilities supplied with the CPM master disc (refer to your
computer manual).
FORMATTING SCREEN DISCS

It may be desirable to dedicate 1 disc to screen storage only (particularly if you have a 2 drive system). Todo this
a blank disc must first be formatted in DATA mode using the C/PM utilities of your master disc (refer to your
disc user manual). When this is complete load and run FORTH, insert the newly formatted disc into the drive
and type in the FORTH word FORMAT. This word fills the disc sectors with spaces allowing the system to
access the screens. This procedure should be repeated for both sides of the disc.
Screens 4 & 5 of the system master disc should be copied to both sides of the newly formatted disc as these
contain the error messages used by the system. To do this load in the system master disc (side 2) and type:
§ BLOCK UPDATE 9 BLOCK UPDATE (enter)
10 BLOCK UPDATE 11 BLOCK UPDATE (enter)
Now insert the newly formatted disc and type:

FLUSH (enter)

This will save the error message screens onto the new disc.

USING FORTH
3.1 THE FORTH ENVIRONMENT.

FORTH on the AMSTRAD occupies some 34K of memory. Fig la shows a memory map of

the system. FORTH starts at 4000 hex, the immediate area above this contains the jump vectors for the
COLD and WARM start operations and also the cold start parameters (see appendix II). Next is the
precompiled or kernel vocabulary. This occupies around 10K bytes of memory and contains all FIG-
FORTH words and extensions. The end of the dictionary contains a dummy word TASK which is purely to
indicate the end of the precompiled portion. The free dictionary area begins immediately above TASK, the
actual address can be found from the FORTH system variable HERE, although this value will change as
new definitions are added to the vocabulary.

At a fixed 44 byte offset from HERE is the pad. This is a temporary text storage area for use by the
system and the user. The start address for pad can be found by using the system variable PAD. Around 8K of
free dictionary space is allocated in the initial system, which is more than enough for even the most intrepid
programmer.

Address 7F00 hex sees the beginning of the terminal input buffer and the Parameter or Data stack. The
parameter stack moves down towards HERE while the Terminal input buffer moves up towards high
memory. The addresses of these can be found using the system variables TIB and SO respectively. Aftera
cold start these values will be the same.

Above the Terminal input buffer is the return stack and user variable area.
There are 40 hex bytes allocated for the user variables of which 30 hex bytes have been used. New user

variables may be declared using an offset beginning with 32 hex, two bytes being used for each user variable
defined.

Beginning at 7FEQ hex are eight block buffers, each buffer being made up of 2 header bytes, 128 data
bytes and two tail bytes. These buffers are used in the reading and writing of data to and from the virtual
memory disc system. The beginning and end address of the buffers can be found from the system constants
FIRST and LIMIT respectively.

4

#9000 LIMIT

BLOCK BUFFERS

8 % 128 BYTE BUFFERS
+2 HEADER+ 2 TAIL

TFEO FIRST
USER VARIABLES
TFAO RO
RETURN STACK
£
74
TERMINAL INPUT BUFFER TIB
7TFOO S0
PARAMETER STACK
l PAD AREA PAD
44 BYTE
OFFSET
FREE DICTIONARY SPACE HERE
FORTH DICTIONARY
(PRECOMPILED)
ORIGIN

FIG 1.a FORTH MEMORY MAP

3.2 KEYBOARD INPUT.

All precompiled words in the FORTH dictionary have all been defined in upper-case characters,
therefore ensure that the keyboard has upper-case selected before using the system. Any new definitions that
are entered may be in upper or lower-case to suit the user.

All input from the keyboard is directed to the terminal input buffer prior to processing. A carriage
return terminates entry from the keyboard and allows the inner interpreter to process the text held in the
terminal input buffer. The buffer itself is 128 bytes long, its base address being found from the FORTH
variable TIB.

The only editing facility available in the immediate mode is the left cursor key. Should you make a
typing error, backspace with the cursor key to the point where the error was made then retype the remainder
of the line terminating of course with the enter key.

If you intend to type in a substantial amount of text then the screen editor should be used, which is fully
described in section 3.8

3.3 THE STACKS.

Forth uses two stacks in its operation, the data stack and the parameter stack. Both of these stacks
operate on 16 bit values and are of the "last in first out variety”. The parameter stack is realised by using the
software stack of the Z80 processor and is used primarily for passing parameters between FORTH words.
The return stack is software implemented and it is used mainly to temporarily store values during loop and
branch operations and also by the inner interpreter to control program flow.

3.4 ARITHMETIC

The FORTH dictionary contains a complete integer arithmetic package for operation on 16 bit (single
numbers) and 32 bit (double numbers). As with all FORTH systems arithmetic is handled using REVERSE
POLISH or POST FIX NOTATION i.c. the operands follow the operator. To illustrate the point adding the
two numbers 123 and 456 in FORTH would be achieved by typing in :-

123 456 + . (ENTER)
This would print the result 579 on the computer screen.

The number base for all arithmetic operations is set to decimal when FORTH is loaded from cassette or
after a cold start. The number base can be changed to binary or hex by the use of the FORTH words
BINARY or HEX respectively. All subsequent arithmetic operations will be calculated and displayed in the
relevant number base. Alternatively any number base in the range 1-255 may be set up by storing the
appropriate value in the system user variable BASE e.g.

8 BASE ! (enter)
sets the number base to OCTAL (base 8).

The number range allowed in FORTH is:-
Single (16 bit) numbers -32768 to +32767
Double (32 bit) numbers -2,147,483,648, to +2,147,483,647

3.5 MACHINE CODE

It is relatively easy to define new words in FORTH which are primitives i.e. words written purely in
machine code. This has the advantage of being able to create specific time critical sections of code which will
run at the full speed of the Z80 microprocessor.

The casiest way to illustrate the method is with an example as shown below.

HEX (Set number base to hexadecimal)

CREATE 1+ (Create new definition with the name 1+)
E1C, (POP HL - Get value off top of stack into HL)
23C, (INC HL - HL = HL +1)

E5 C, (PUSH HL - Put new value onto top of stack)
FD C, E9 C, (JP (IY) - Forces jump to inner interpreter)
SMUDGE (Allows new word to be "found”)

This example creates a primitive of the FORTH word 1+ which adds one to the value on the top of the data
stack. The FORTH word C, encloses the byte preceeding it into the dictionary. When creating primitives in
this way a few simple rules must be obeyed i.e.

a) If your routine uses the BC register pair save the contents before your routine is executed
and retrieve them afterwards

b) Do not use the Z80 alternate register set. This may conflict with the AMSTRAD CPC-464
operating system.

¢) Do not use the IY register, It is used by the system to point to the inner interpreter routine.
d) Always end your machine code with the JP (1Y) instruction followed by SMUDGE.
3.6 RECURSION

Recursion is a technique by which a routine actually calls itself, a test usually being included in the
routine to exit it. Recursion is not defined in Fig-Forth however this implementation supports it.

Usually in FORTH if a definition attempts to call itself it results in an error being generated. In this
implementation the problem is removed by defining the word MYSELF which compiles the code field
address of the word currently being defined into the definition. A good example of recursion is the
calculation for the factorial function. This example calls itself repeatedly to calculate the factorial of a
number in the range 0 to 7.

DECIMAL

: FACTORIAL (Calculates factorial of n. Result to T.O.S.)
DUPO(OVER7)ORIF ."Invalid number” QUIT THEN
DUP 0=
IF DROP 1
ELSE DUP 1 - MYSELF =
THEN;

3.7 DICTIONARY FORMAT
The format of compiled definitions stored in the dictionary is as follows:-
Length of name with bit 7 set (1 byte) NFA

Characters in name. Last (n bytes)
character has bit 7 set

Link to previous definition (2 bytes) LFA
Pointer to execution code (2 bytes) CFA
List of code addresses or (n bytes) PFA
machine code if primitive (n bytes)
Address of inner interpreter (2 bytes)

The name field address (NFA) is made up in the following way:-

4 Bit 7 set (msb)
——® Precedence bit. 1 = immediate
I —® Smudge bit. | = smudged

l I] —$» Name count. Max 31
X X X X X X X X
|— MSB | |

3.8 PRINTER

Under normal conditions all output is directed to the screen display. However using the FORTH word
PRINTER will force all output to the centronics interface and thus the printer, Before using this word ensure
that you have connected the printer and that it is on line. To revert back to normal screen mode the FORTH
word SCREEN can be used to redirect all output back to the display.

The example below will dump the dictionary to the printer and return to screen output.

PRINTER VLIST SCREEN (enter)

L LSB

3.9 SCREENS & THE EDITOR

FORTH by convention stores data and source programs on disc as "Screens” of 1024 bytes. These screens
when listed or edited appear on the computer screen as 16 lines of 64 characters.

Reading and writing the screens from and to disc utilises random access techniques the net result being that
the disc system appears as an extension to user memory (or a virtual memory system). A total of 179 1K byte
screens are available per side of a disc, giving tremendous scope for program and data storage.

Screens are stored on disc, sector by sector as continuous 1K byte segments. Each screen consists of two 512
byte "blocks” corresponding to the physical disc sector the data is stored in. The screen to disc sector
relationship is shown over the page in fig. 3a.

Fig 3a SCREEN TO DISK SECTOR RELATIONSHIP BLocKo

,,,,,, SCREEN ot acanlsble
BLOCK T

BLOCK2
SCREENT

Note that screen 0 is not available for storage as the FORTH
system treats this as the keyboard input buffer area and is i

permanently reSIdent ln R'A'M‘ S12BY ME BLOCKS - FDISC SEC H)R‘L - - 7”5":"‘ — SCRFIND
When screens are loaded into memory from disc (via the ' ——

LOAD or LIST command) they are stored into areasof ~ _____| SRS 3178
R.AM. known as the Block-buffers. There are 8 buffers

available each holding 1 "block” or512 bytes allowing up to 4 BLOCK 350

—————— o serrn

screens to co-exist in memory at any one time. The process of WLock 130
allocating these buffers to "blocks” is done transparently to I
the user by the FORTH system.

Individual "blocks” may be loaded into the buffers from disc by using the FORTH word BLOCK. This word
places on the stack the buffer address of where the BLOCK was stored when loaded in from disc e.g.

8 BLOCK (enter)

will load in block 8 (first block of screen 4) from disc and place its buffer address on top of the stack. Subsequent
use of 8 BLOCK will not reload from disc (as the block is already present in a buffer) but will still place the
buffer address on the stack.

Typing the following
8 BLOCK 512 TYPE (enter)

will print on the screen the contents of block 8 which should be some of the error messages. If you are using the
system disc.

If the contents of any block-buffer have been modified or edited they may be marked as such by using the
FORTH word UPDATE. Subsequently if all the buffers are being used and a request is made to load another
block or screen from disc, any updated buffers will be saved back to disc before their contents are overwritten by
the newly loaded blocks. This action may be forced by the user by the FORTH word FLUSH which saves ALL
updated buffers back to disc immediatety.

The FORTH word EMPTY-BUFFERS will mark all buffers as empty even those previously updated.

The above facilities in FORTH allow the user great flexibility in the use of the disc for data and file handling as
well as for the storage of source code.

THE EDITOR

FORTH contains both a comprehensive line and screen editor which are held on side 2 of the system disc on
screens 164 to 174 inclusive. For obvious reasons you must ensure that you do not overwrite this (or any of the
other utilities provided on disc).

To help prevent this, screen 1 if listed will show which screens are used by the FORTH system.

To load the editor ensure that side 2 of the system disc is being accessed and type in 164 LOAD. As the editor
screens are loaded and compiled two error messages will appear, these are not errors in this particular case and

may be ignored. After the editor has been compiled into the dictionary the ok prompt will return and we are
ready to begin our editing session.

Typing n EDIT where n is in the range 1 to 179 will load screen n into the block-buffers and display the relevant
screen in mode 2 with the cursor at the beginning of line 0. Text may now be entered as required, any existing
text at the cursor position being overwritten.
The commands available in the screen editor are outlined below.
n EDIT - ENTERS EDITOR AT SCREEN n

= - MOVES CURSOR RIGHT

-f= - MOVES CURSOR LEFT

’ - MOVES CURSOR UP

*- MOVES CURSOR DOWN

CTRL/I -
INSERTS TEXT FROM PAD TO THE CURRENT LINE MOVING SUBSEQUENT LINES
INCLUDING THE CURRENT LINE DOWN. ANY TEXT ON LINE 15 IS LOST (SEE CTRL/P).

CTRL/N -
BLANKS THE CURRENT SCREEN TO SPACES (NEW SCREEN).

CTRL/O -
OPENS UP A NEW LINE AT THE CURRENT LINE MOVING SUBSEQUENT LINES INCLUDING
THE CURRENT LINE DOWN. ANY TEXT ON LINE 15 IS LOST.

CTRL/P -
INSERTS TEXT FROM CURRENT LINE INTO PAD (SEE CTRL/I and CTRL/R).

CTRL/R -
INSERTS TEXT FROM PAD TO THE CURRENT LINE ERASING EXISTING TEXT ON THE
CURRENT LINE,

CTRL/T -
HOMES THE CURSOR TO THE TOP LEFT OF THE EDIT SCREEN.

CTRL/W -
WIPES OUT THE CURRENT LINE MOVING SUBSEQUENT TEXT BELOW UPILINE.LINEI5SIS
FILLED WITH BLANKS. THE DELETED LINE IS HELD IN PAD.

CTRL/Z -
ERASES THE CURRENT LINE FILLING IT WITH BLANKS. NO OTHER LINES AREAFFECTED.

CTRL/ - =P
MOVES TO THE NEXT HIGHER EDITING SCREEN.

CTRL/ - <=
MOVES TO THE NEXT LOWER EDITING SCREEN.

DEL -
DELETES CHARACTER TO THE LEFT OF THE CURSOR MOVING SUBSEQUENT TEXT LEFT.

ENTER -
MOVES CURSOR TO START OF NEXT LINE.

CTRL/E - (SUB EDIT MODE)

THIS ALLOWS TEXT TO BE INSERTED AT THE CURRENT CURSOR POSITION EXISTING
TEXT BEING MOVED RIGHT. THE SUB EDIT MODE IS EXITED BY PRESSING THE ENTER
KEY.

CTRL/Q -
QUITS THE EDITOR RETURNING TO NORMAL INPUT MODE.,

Some people may find the continual use of the mode 2 screen editor on a colour monitor a strain on eyesight,
therefore a line editor is available which may be used in mode 1,
To use the line editor type 1 MODE to change the screen mode and then EDITOR to enter the editor
vocabulary. The required screen must be initially listed using n LIST where nis the required screen number.
Now typing L and pressing enter will relist the screen with the current line and cursor position being
indicated at the bottom, note the cursor is now replaced by a * (caret sign).
As with the screen editor a number of edit commands are available in this mode. These are described below.
Most of these commands are single letter commands and usually require a number preceding them. Where
this is the case the letter n will precede the command.

L-
DISPLAYS THE CURRENT SCREEN WITH THE CURRENT LINE AND CURSOR POSITION
INDICATED BELOW THE SCREEN LISTING.

n H-

COPIES THE nth LINE TO PAD.

n S-

SPREADS THE nth LINE WITH BLANKS DOWNSHIFTING THE ORIGINAL AND ALL
SUBSEQUENT LINES. ANY TEXT ON LINE 15 IS LOST.

n D-

DELETES THE nth LINE MOVING SUBSEQUENT LINES UP. LINE 15 IS PADDED WITH
BLANKS. THE DELETED LINE IS HELD IN PAD.

9

n E-
ERASES nth LINE TO BLANKS.

n R-
REPLACES nth LINE WITH TEXT IN PAD.

nl-
INSERTS TEXT FROM PAD TO nth LINE, MOVING ORIGINAL LINE AND ALL SUBSEQUENT
LINES DOWN. ANY TEXT ON LINE 15 IS LOST.

n P-
PUTS THE FOLLOWING TEXT INTO LINE n e.g 3 P"HELLO THERE” PUTS THE TEXT”HELLO
THERE” ONTO LINE 3 OF CURRENT SCREEN,

n M-
MOVES CURSOR BY n CHARACTERS.

n T-
TYPES THE nth LINE ON THE SCREEN.

F-
FINDS THE OCCURRENCE OF THE INLINE STRING e.g ” F HELLO THERE ” WILL FIND THE
FIRST OCCURRENCE OF THE STRING ” HELLO THERE " FROM THE CURRENT CURSOR
POSITION TO THE END OF THE SCREEN. THE TEXT STRING IS HELD IN PAD. SEE N

B-
BACKS THE CURSOR TO THE BEGINNING OF THE STRING JUST FOUND.

N -
FIND THE NEXT OCCURRENCE OF THE STRING HELD IN PAD ON THE CURRENT SCREEN.

X -
DELETE THE FOLLOWING IN LINE TEXT FROM THE CURRENT LINE e.g“ X HELLO THERE“.

C-
INSERT THE FOLLOWING IN LINE TEXT INTO THE CURRENT LINE MOVING SUBSEQUENT
TEXT RIGHT. TEXT IS INSERTED AT THE CURRENT CURSOR POSITION.,

n DFLETE -
DELETE n CHARACTERS IN FRONT OF THE CURSOR ON THE CURRENT LINE.

n CLEAR -
CLEAR SCREEN n TO ALL SPACES.

TILL -
DELETE ALL TEXT FROM THE CURSOR TO THE END OF THE FOLLOWING IN LINE TEXT
STRING e.g —

When editing of screens is completed using the line editor typing the word FLUSH will ensure that the
updated contents of the last screens edited are stored back to disc. The word FORTH should then be typed
to return to the normal operating environment. The editor may now be removed from memory by typing
FORGET EDITOR.

Screens may be moved around by use of the word COPY
eg 10 12 COPY
will copy screen 10 to screen 12, overwriting the current contents of screen 12 in the process. The contents of
screen 10 are not affected.
LOADING SCREENS

Screens may be compiled from disc using the FORTH word n LOAD where n is a valid screen number. If
more than 1 screen requires compiling the word —->(pronounced "next screen”) may be included as the last
characters of an edit screen. The FORTH word ;S will, when encountered by the compiler, stop compilation
of a screen and return to normal input mode.

If during compilation any errors are detected, compilation will cease and an error message will be printed.
Providing the editor is still resident in memory the FORTH word WHERE can be used to re-enter the editor
automatically with the cursor placed at the position on the screen where compilation failed. All normal
editing facilities are then available.

10

3.10 GRAPHICS AND EXTENSIONS

Many extensions are included in FORTH to cater for the colour and graphics facilities of the AMSTRAD
CPC-464. Wherever possible the FORTH word used, has been chosen to be equivalent to its BASIC
counterpart.

DRAWING & PLOTTING

The words provided for drawing and plotting are DRAW, DRAWR, PLOT and PLOTR. These are direct
equivalents to the BASIC commands of the same name but require their X and Y parameters on the data
stack prior to execution ¢.g:

: DRAW-LINE CLG 599 399 DRAW ;

will draw a line from the bottom left to the top right of the VDU screen in the current graphics pen. The
graphics pen may be changed by using the FORTH word GPEN which again requires its parameter on the
stack.

Here is an example which incorporates many of the graphics words available. It selects mode 1 and draws
random lines an the screen in different colours. The inks are then changed at random to produce a pulsating
picture. The program may be aborted by pressing the CTRL/Q keys.

: X1 599 RANDOM; : X2 599 RANDOM ;

: Y1 399 RANDOM; : Y2 399 RANDOM ;

: LINE X1 Y1 MOVE X2 Y2 DRAW ;

: 4-LINES 4 0 DO I GPEN LINE ;

: DRAW-LINES 50 0 DO 4-LINES LOOP ;

: DELAY 500 0 DO LOOP ;

: INK-CHANGE 500 0 DO 26 RANDOM DUP 4 RANDOM INK DELAY LOOP ;
: RESTORE 13 130INK 00 1 INK 1 PEN 0 PAPER ;

: PATTERN RESTORE 1 MODE DRAW-LINES INK-CHANGE RESTORE ;
Typing the word PATTERN will run the routine.

WINDOWS
Up to 8 streams may be specified each with its own window characteristics. The following example sets up a
window on stream 3. The co-ordinates specified are in the order TOP, BOTTOM, LEFT, and RIGHT.

3 STREAM (selects text screen)

10 20 15 60 WINDOW (Set up window).

VLIST (Shows extent of window).

0 STREAM (RETURN TO DEFAULT SCREEN)

USER DEFINED CHARACTERS
FORTH provides two words for creating user defined characters. The first symbol is equivalent to BASICS
SYMBOL AFTER COMMAND e.g.

128 SYMBOL
will allow all characters including and after 128 to be defined. The word CHARACTER allows the re-
definement e.g.

HEX
OF 03 05 09 10 20 40 80 A8 CHARACTER

will redefine character A8 (decimal 168) from the !/, symbol to a diagonal arrow.
In order to print this character, and indeed any character with an ascii value greater than 127, the FORTH
word (EMIT) must be used i.e.

HEX A8 (EMIT) to print the above example.

PENS AND INKS
Pens and Inks may be changed within the constraints of the current screen mode as shown below.

1 MODE (Select mode 1)

3 PEN (Select pen 3 ie red in defualt)

13 13 0 INK (Change pen 0 to ink 13)

16 9 1 INK (Change pen 1 to inks 16 and 9 i.e Flashing).

GRAPHICS TESTING
Graphics points may be tested with the TEST and TESTR commands. These return to the top to the stack

11

the pen number at the X and Y co-ordinates supplied as parameters e.g.

CLG 100 100 PLOT (PLOTS POINT IN CURRENT GPEN)

100 100 TEST (RETURNS PEN TO TOP OF STACK)

JOYSTICKS

Two commands ie JOY0, JOY returns the value of the joystick as the second stack entry with a true flag as

the top. If the joysticks are not active a false flag is placed on the top of the stack only.
The values returned for an active joystick are shown below.

FIREBUTTON = 16

JOYSTICK
p——— ——
¢ MOVEMENT 8

TIMER
One timing facility is available in FORTH. The word 0TIME will reset the timer to zero and begin the count
sequence. The word 7TIME will put the current timer value onto the stack as a double number. The timer is

incremented in steps of /4 of a second. The timer may be used amongst other things for timing sections of
code e.g.

OTIME .” HELLO” 7TIME D.

Will print the number 12 indicating that the print statement took 12 X !/, seconds i.e. approximately 0.04
seconds.

3.11 ARRAYS AND TEXT STRINGS

Single and double dimension arrays may be created using the defining word 1-ARRAY and 2-ARRAY
respectively e.g.

10 1-ARRAY FRED

will create a single dimension array of 10 elements called FRED. Note that there are in fact 11 elements in the
array as they range from 0-10 (this is the same as the BASIC version of arrays). Below is an example which
creates a two dimension array of 3 rows by 4 columns with the name of BILL.

3 4 2-ARRAY BILL

To write a value into for example, the array BILL, we specify first the number to store, then the row and
column numbers and then the array name followed by the FORTH word ! which stores the number e.g.

23514 BILL !
will store the number 235 at row 1 column 4 of the array BILL.

Reading from the array is very similar. We specify first the row and column numbers then the array name
then the FORTH word @ (FETCH) e.g.

12

14BILL @
will read row 1 column 4 of the array BILL and store the value on the top of the stack.

Although the examples shown are for double dimension arrays the same format applies to single dimension
arrays. Note however that no tests are performed by FORTH to check that you are accessing a valid array
location therefore unpredictable results may occur if this situation arises.

TEXT STRINGS

Inaddition to the normal text handling words provided in FORTH, two special words have been provided to
help in text string handling.
The first word is STRING and is a defining word used in the form as shown in the example below.

20 STRING NAME

This creates a dictionary entry called NAME and allocates space for up to 20 text characters. Executing the
word NAME after compilation places the address of the string stored in NAME onto the stack where it may
be printed by the FORTH word TYPE.

The word INPUTS allows a string to be entered from the keyboard terminated by a carriage return and
stores the string at the address preceding the word. The example below shows how the words STRING and
INPUTS$ are used.

30 STRING SURNAME (creates header called SURNAME and allocates 30 spaces)

: ASK-NAME
CLS CR .” WHAT IS YOUR SURNAME PLEASE"
SURNAME INPUTS (Read characters from keyboard and store at SURNAME)
” YOUR SURNAME IS " SURNAME TYPE CR ; (Print surname on screen)

3.12 SOUND GENERATION

The approach to sound generation using FORTH is somewhat different to that employed by BASIC. The
method adopted is to create named sound data blocks which hold the various parameters required for sound
generation. These data block can be played using the FORTH word PLAY. The defining word used to
create the data blocks is called SOUND and the general form of SOUND is as shown below.

478 1 SOUND BEEP

This creates a sound name BEEP with a tone period of 478 and to be executed on channel A of the sound
generator. Typing the following will cause the sound to be played.

BEEP PLAY

The word PLAY tries to add the referenced sound to the sound queues of of the relevant channel (there are
five queues per channel). If an attempt to add a sound to the queues failed an error message is given and the
program aborts.

The layout of the sound data blocks is shown below. Their exact usage being fully described in the CPC-464
OPERATING SYSTEM FIRMWARE SPECIFICATION (SOFT 158).

BYTE 0 Channels to use and rendezvous requirements.
BYTE | Amplitude envelope (default 0)

BYTE 2 Tone envelope (default 0)

BYTE 3 Tone envelope (default 0)

BYTES 3-4 Tone period in the range 0-4095 (0 is no sound)
BYTE 5 Noise period in the range 0-31 (0 is no sound)
BYTE 6 Initial amplitude (default 4)

BYTES 7-8 Duration or envelope repeat count (default 20)

The tone periods and their corresponding musical notes can be determined from the table provided in
Appendix VII of the CPC-464 user instructions. The channels to use A, B and C are represented by the
numbers 1, 2 and 4 respectively.

13

The parameters of the sound block may easily be modified to build up a complex sound. The words provided
to enable this to be carried out are:-

1). CHANNEL
Used in the form 2 BEEP CHANNEL now assigns the sound BEEP to Channel 2. A
number 3 would assign it to sound channels I and 2 simultaneously etc.

2). AMP-ENV
Use in the form (n) BEEP AMP-ENV will assign a predefined amplitude envelope where
(n) is in the range 1-15 (see later).

3). TONE-ENV
Used as per AMP-ENYV but specifying a tone envelope (see later).

4). PERIOD
Used in the form 239 BEEP PERIOD will change the note played from a middle C to a C
one octave higher on the musical scale. The number supplied must be in the range 1 to
4095. Again refer to the CPC-464 user instruction manual for the period to musical note
relationship.

5). NOISE
A value supplied in the form (n) BEEP NOISE will add noise in the sound of BEEP.
The number (n) must lie in the range 0-31 where 0 represents no noise.

6). VOLUME
Used in the form (n) BEEP VOLUME will set the volume level to the value (n). The value
n must lie in the range 0 to 15 where 0 is no volume and 15 is maximium.

7). DURATION
Used in the form (n) BEEP DURATION where (n) is in the range -32768 to +32767. If (n)
is a positive number then that represents the duration of the note in 1/100ths second.
Where the number is negative, the positive value of this number represents the number
of times the volume envelope (if specified) should be repeated. A value of 0 causes the
duration to be governed by the amplitude envelope supplied.

8). SHOLD
This when used in the form BEEP SHOLD will prevent that sound from running until
released (see RELEASE).

9). SFLUSH
This is used in the form BEEP SFLUSH and sets the flush bit of the sound block. This
forces the sound queues to abandon any current sound enabling the referenced sound to play
immediately.

10). RELEASE
This is used in the form (n) RELEASE and will release a sound on channel (n) which was
previously held using SHOLD.

11). FREEZE
This will stop all sounds in mid-flight.

12). CONTINUE
Releases sounds which have been stopped using FREEZE.

13). RESET
This re-initialises the sound manager and sound chip and clears all queues
14). SWAIT

Used in the form (n) SWAIT will cause the program to wait until there is room on a
sound queue of channel (n) before adding any more sounds to the queue.

15). SQ
Used in the form (n) SQ will return to the top of the data stack the status of sound
channel (n). The number returned is encoded a follows.

14

Bits 0.2 Number of free slots in the sound queue.

Bits 3 Channel is waiting to rendezvous with channel A,
Bit 4 Channel is waiting to rendezvous with channel B.
Bit 5 Channel is waiting to rendezvous with channel C.

Bit 6 The channel is held.

Bit 7 The channel is producing a sound.

ENVELOPES

Both named amplitude and tone envelopes may be created with the FORTH words ENV and ENT. The
envelopes are of a similar construction to those used in BASIC, each envelope having up to five sections of
three parameters, the main difference being that the parameters are all in reverse order to that specified by

BASIC,

The example below shows the creation of an amplitude envelope of the general form shown in Fig 3a.

The main point to note is that the envelope parameters are reversed i.c. the last envelope section is declared
first. The order for each section of the envelope is pause time, step size and step count. The number 4 before

the word ENV is to indicate the number of sections in the envelope.

The above method for creating amplitude applies in exactly the same way to tone envelopes using the ENT

word.

:l-l 10

DECIMAL

Fig 3a waveform for SHAPE

1-110 1501 2-15 I354ENV SHAPE (create envelope)

I SHAPE

100 1 SOUND GONG
0 GONG DURATION
0 GONG VOLUME

I GONG AMP-ENV
GONG PLAY

(assign SHAPE to envelope number 1)
(create sound name GONG)

(allow envelope to control length)

(Allow envelope to control volume)

(Assign envelope 1 to GONG)

(Play it)

15

3.13 ASSEMBLER

The assembler is provided as a support package on side 2 of the system disc. It occupies screens 175 to 179
and may be compiled using 175 LOAD.

A FORTH Assembler is very different to the standard assembler most of us are used to. It is designed to
allow easy creation of new FORTH machine code primitives using easy to understand mnemonics. The
target memory for the assembled code is the free dictionary area (designated by the FORTH word HERE).
No symbol table is used by the assembler, instead all branch or jump references are handled by high level
structures via the stack.

The actual mnemonics used are in fact a mixture of Z80 AND 8080 mnemonics (the 8080 is the forefather of
the Z80) the reason for using the 8080 mnemonics being that they tend to resolve some of the addressing
problems that occur in similarly named Z80 instructions e.g. several forms of addressing modes for the Z80
LD instruction.

One last point which must be pointed out before we examine the assembler in detail is that the normal
FORTH post fix notation still applies between opcodes and operands used in the code (see later).
INSTRUCTION SET.

The mnemonic instruction set supported by the FORTH assembler is given below together with a brief
description of their functions. For a full description it is suggested that the user consult one of the many
books available relating to the Z80 microprocessor.

a). ARITHMETIC AND LOGIC GROUP.

ADD Adds contents of Acc to reg or (HL).

ADC Adds with carry contents of Acc to reg or (HL).
SUB Subtracts contents of Acc from reg or (HL).
SBC Subtracts with carry contents of Acc from reg or (HL).
ADI Adds immediate byte to contents of Acc.

ACI Adds with carry immediate byte to contents of Acc.
SUI Subtracts immediate byte from contents of Acc.
SBI Subtracts with carry immediate byte from contents of Acc.
DAD Add HL register pair to reg-pair.

DAA Decimal adjust the accumulator.

CPL Compliment the contents of the accumulator.
INC Increments contents of reg of (HL) by one.
INX Increments contents of reg-pair by one.

DEC Decrements contents of reg or (HL) by one.
DCX Decrements contents of reg-pair by one.

OR Logical OR accumlator with reg or (HL)

ORI Logical OR immediate byte with accumulator.
XOR Exclusive or accumulator with reg or (HL).
XRI Exclusive or accumulator with immediate byte.
AND accumulator with reg or (HL)

ANI AND accumulator with immediate byte.

Cp Compare accumulator with reg or (HL).

CPI Compare accumulator with immediate byte.
SCF Set carry flag.

CCF Clear carry flag.

b). LOAD AND STORE GROUP

STAX Load D (BC) or (DE) from accumulator.

LDA Load accumulator from (addr).

LDAX Load accumulator from (BC) or (DE).

LHLD Load HL from (addr).

XCHG Exchange contents of DE and HL.

XTHL Exchange (SP) and HL.

STA Load (addr) from accumulator

SHLD Load (addr) from HL.

SPHL Load SP from HL.

LXI Load reg-pair with 16 bit immediate data.
MOV Load reg or (HL) from reg or (HL)

Note that (HL) in the FORTH assembler is designated by the word M.,

16

c). CALL AND RETURN GROUP.

RET-C Return if carry flag set.

RET-NC Return if carry not set.

RET-Z Return if result zero.

RET-NZ Return if result not zero.

RET-P Return if result positive.

RET-M Return if result negative.

RET-PO Return if parity odd.

RET-PE Return if parity even.

CALL Call subroutine at addr.

JP Jump to address.

d). ROTATE AND SHIFT GROUP.

RLA Rotate accumulator left through carry.
RRA Rotate accumulator right through carry.
RLCA Rotate accumulator left circular.
RRCA Rotate accumulator right circular.

e). MISCELLANEOUS,

PUSH Push reg-pair to stack.

POP Pop reg-pair from stack.

ouT Output accumulator to port.

IN Input from port to accumulator.

EI Enable interrupts.

DI Disable interrupts.

HALT Halt processor until reset or interrupt.
NOP No operation.

RST Call a restart operation.

f). STRUCTURES

BEGIN — AGAIN

BEGIN — UNTIL

BEGIN --- WHILE — REPEAT
IF — ELSE - THEN

g). CONDITIONALS

0= Tests for the zero flag being set.

Cs Tests for the carry flag being set.

PE Tests for even parity.

0(Test for sign flag being set i.e. (minus)
NOT Negates the above conditionals.
USING THE ASSEMBLER

The assembler is invoked by using the FORTH word CODE which creates a
dictionary entry with the name following CODE and then assembles the mnemonics
following. The example given below shows the use of the assembler in its simplest
form.
CODE ADD (n! n2 —n3 assumof nl + n2)

HL POP (Get st number from stack)

DE POP (Get 2nd number from stack)

DE DAD (Add HL and DE result in HL)

HL PUSH (Put result ot top of stack)

NEXT (Jump to inner interpreter)
END-CODE (End of definition return to FORTH }

In the above example the word CODE creates a new dictionary header with the name
ADD. Note that the mnemonics that follow have their operands preceding the opcode
which is the reverse of a standard assembler. The word NEXT compiles the JP (IY)
instruction into the definition which forces a jump to the inner interpreter, THIS
MUST ALWAYS BE INCLUDED AS THE LAST WORD OF A DEFINITION.
The last word END-CODE completes the assembly process and returns to normal
input mode. If the definition was created using the screen editor it may now be
compiled using LOAD, and tested.

The second example shown below takes two numbers from the stack and logically
OR’s them, the result being placed on the stack.

17

CODE ORR (nl n2 — n3 as logical OR of n! and n2)
HL POP (Get Ist number)

DE POP (Get 2nd number)

L A MOV (Load A from L)

E OR (OR accumulator with E)

AL MOV (Put resultin L)

H A MOV (Load A from H)

D OR (OR accumulator with D)

A H MOV (Put result in H)

HL PUSH (Put 16 bit result to stack)
NEXT (Jump to inner interpreter)
END-CODE (End definition)

Notf: the_ register useage with 8 bit loads i.e. the source register is first, followed by the
destination register e.g. L A MOV where L is the source and A is the destination.

The last example shows the use of the built in structures which are available as
standard in the assembler. These are the BEGIN — WHILE — UNTIL --- etc, and the
IF — ELSE — THEN. These structures take care of any relative jumps that would
normally be written in assembly code. To aid using them a number of conditional tests
are provided these having already been detailed above. The example below defines a
word named NEWFILL which fills an area of memory with a specified byte.

CODE NEWFILL (addrn b —)
C L MOV (Save IP into HL)
B H MOV
DE POP (Get byte to fill which)
BC POP (Get count of bytes)
XTHL (Exchange (SP) and HL)
XCHG (Exchange DE and HL)
BEGIN (Start of NEWFILL loop)
B A MOV C OR (Check for count zero)
0= NOT (Test for zero flag not set)
WHILE (While flag is not zero)
L A MOV DE STAX (Store byte into address)
DE INX BC DCX (Increment address and decrement count)
REPEAT (Go back to begin)
BC POP (Restore IP from stack)
NEXT END-CODE (Jump to inner interpreter and exit assembler)

Subroutines may be defined if required (although in FORTH this is not really
necessary) using the word LABEL in the form :-

LABEL name (code mnemonics)

and may be called using the assembler CALL instructions e.g.

name CALL
Note that the ASSEMBLER vocabulary must be selected to use LABEL.
It may be desirable to use the assembler to create specific routines and then have the assembler linked out
freeing memory for other uses.
This can be achieved by forcing the assembler to be compiled in an area of memory other than the free
dictionary area. Routines created via the assembler would still be linked to the normal dictionary space.
When the routines have been created the assembler can be forced out of the system leaving extra memory for
other uses.
Before we do this we must note the name of the last word that has been defined, we will assume that it is the
word TASK, which on an empty system indicates the end of the precompiled dictionary.

HERE (note current dictionary location)

1024 DP ! (link dictionary to free R.A.M.)

175 LOAD (compile assembler to free area)

DP! (restore original dictionary pointer)
The application code can now be created as previously described. If the first word in the application was for
instance WORK we can link out the assembler with:

‘ TASK NFA * WORK LFA !

The assembler will now have disappeared from the dictionary leaving only the application code.
18

3.14 DOER/MAKE or VECTORED EXECUTION

The DOER/MAKE construct is not a normal FORTH STRUCTURE. It was "invented” by Leo Brodie, and
is fully described in his book "Thinking Forth” (see appendix 5). The source code is in the public domain and
is included on screen 161.

DOER/MAKE allows the user to easily create words which may be re-vectored to execute different
functions.

The word where execution is to be made vectorable is defined using the word DOER. For example, imagine
we are writing an Adventure program and we wish to present the player with a complete description when he
enters a room for the first time and with only a brief description of the room on any future occasion.

Initially we define a word using DOER e.g
DOER NORTH
When defined this new word NORTH does nothing. We can now use the word MAKE to change what
NORTH will do.
: FIRST-TIME MAKE NORTH CR

" You are in a large throne room. Velvet ” CR
.” drapes hang loosely from the walls * CR
." A large golden throne lies on its side.”

MAKE NORTH

." You are in the throne room ” CR
If we now type in, FIRST-TIME NORTH, we will see the large message printed. Subsequent use of the word

NORTH will print out the short message. To reset the message we retype FIRST-TIME and the sequence
will repeat.

The word ;AND can be used to allow "continuation” of the making definition e.g.
DOER REPLY
: PROMPT MAKE REPLY .” VERY WELL THANK YOU ” ;AND .” HOW ARE YOU ” ;
TYPING PROMPT and then REPLY will show how this works.
Finally the word UNDO disconnects the doer-named word making it safe to execute.

3.15 SUPPORT SCREENS

The support screens are supplied on side 2 of the system disc. They contain various utilities which can be
used by the programmer to aid the development of software.

This section contains a summary of the facilities available, for further information consult the relevent
sections of the manual.

SCREEN 1

This contains information as to which screens contain the various utilities. This is provided for information
only.

SCREENS 4 & 5
These screens contain the error messages which are displayed when FORTH encounters an error. They may
be modified or added to as required by the user.

SCREEN 161

The DOER/MAKE construct source code is provided on this screen. It is a very powerful utility which
allows the user to re-vector words to execute different routines. A full explanation of its use is given in
section 3.14.

SCREEN 162

This contains named notes for use with the sound facilities on the AMSTRAD Computer. Three octaves are
covered, I octave below middle ¢, middle c and 1 above middle. These may easily be extended by the user as
required.

SCREEN 163

This screen contains named ink colours and may be used with the PEN & INK commands to replace ink
numbers.

19

SCREENS 164-174
These contain the Editor facilities which are fully described in section 3.9

SCREENS 175-179
These screens contain the FORTH assembler which is fully covered in section 3.13

If any of the screens should inadvertently be corrupted or erased the complete source listings for all the
utility screens are given in APPENDIX 7.

INTRODUCING FORTH.
4.1 WHAT IS FORTH

FORTH is a somewhat unique language. It has been described by its creator as an operating system,
high level language, a set of development tools and a software design philosophy.

FORTH is fast when compared to interpreted languages such as BASIC, on average running ten to
twenty times faster. It is a very transportable language in that it adheres to well defined standards. A
FORTH program which was designed to run on one type of computer can usually be tansferred to a totally
different machine with very little modification, unlike BASIC which has many different dialects.

To write a program in FORTH you define new commands, or to give them their correct title WORDS,
in terms of WORDS which exist in the main core or VOCABULARY of the language. This approach gives
FORTH the advantage in that rather than actually writing a program you are in fact extending the language.
Using this approach you can create new control structures to add to, for instance the compiler.

FORTH can be considered to consist of four main parts:-

a). The dictionary.

b). The keyboard interpreter.
c). The stacks

d). The disc.

4.2 THE DICTIONARY.

With the FORTH system up and running (see section 2) type in the FORTH word VLIST and pressthe
enter key (from now on denoted by (enter)). Ensure that the characters you type in are in upper case only as
FORTH wiil not understand them in lower case. You should see the screen fill up with many strange words.
These words make up the FORTH dictionary. Each of the words can be thought of as a command which
when typed in executes a speci