
FTL Modula-2 280 Advanced
Programmer's Kit

Introduction

This Advanced Programmer's Kit contains a number of items which
advanced programmers will find useful (i.e. advanced is intended to refer
to the users - not the kit!). These are:

i) A new linker which allows you to trim unwanted fat from modules
and to create overlayed programs.

iii) An Overlayer. This allows programs to have more code than will
easily fit into memory at once. Combined with the trimmer/
linker, this means that you can write much large Modula-2
programs.

iii) The source code to the trimmer and overlayer.

We also have available a multi-tasking kernel, which will not run on many
systems, since it requires regular clock interupts that the user's program
can trap. It will not work on the Amstrad CP /M systems because of the
memory map when interrupts occur. If you are designing an embedded
system and would like further details of this please contact us.

To use the new linker you must use ML. COM and M2APK. OVR from your
Advanced Programmer's Toolkit disk.

FTL Advanced Programmer's Toolkit - CP/M Pagel

The Overlayer
The overlayer consists of some features in the linker together with a stand

alone programMLOVLD and the overlay loader (OVERLAYE. REL). To produce
an overlayed program you link using a special from of command-line and

then run MLOVLD .

The source code to OVERLAYE and MLOVLD are supplied. The overlay
assembly routine (OVERLAYE. ASM) may need some changes to suit your
application. In particular, the version that is supplied makes the following
assumptions:

i) It is assumed that the overlays will not occupy more than 32K
bytes when loaded into the overlay file. To increase this, increase
the value of the equated constant extents near the beginning of

the assembly language source in OVERLAYE . ASM. You will also
need to add extra fcbs and add extra entries to the fcb pointer

table (at label fcbpnt). To create new fcbs, copy the existing fcb2,
change the label to fcb3, fcb4 etc and set the extent number in the

fcb to 3, 4 etc. Add new dw directives to the overlay pointer table
(fcbpnt).

You need an fcb for every 16K of overlays.

ii) The name of the overlay file is assumed to be OVERLAY. OVR. You
will probably want to change this to reflect the name of your
application. To do this, change the name in each fcb and also in
the file not found error message.

The routine must be called OVERLAYE. REL when the link is performed -
this name is hard coded into the linker. The over layer is not a conventional
module in that it has no entry points. Rather, control is always transferred
to it at the beginning of the module. Don't put any data at the beginning

of OVERLAYE. ASM, or it will be executed! You can, of course, put the data
elsewhere in the module.

Page 2 FTL Advanced Programmer's Toolkit - CP/M

In order to create overlays, you have to provide the linker with quite a lot
of information. While it would have been possible to have the linker
calculate this information itself, the resulting linker would have been
larger and might have imposed severe restrictions on transient program
area size.

To link an overlayed program. the following information is required:

i) The names of the modules that are to be placed in each overlay.

ii) The start address for the initialized data.

iii) The start address for the un-initialized data.

iv) The start address for the overlay area.

An overlayed program uses memory as shown in the following diagram:

(6)

Heap

hhhh

Uninitialised data

dddd

Overlayed Code Area

0000

Initialised data areas
Loaded with root segment
as part of .COM file

iiii

Root (always resident) Code
This is your COM file

100

FTL Advanced Programmer's Toolkit- CP/M Page3

The values hhhh, dddd etc are supplied by you to the linker. They are:

hhhh

dddd

0000

iiii

Start (bottom address) of heap

Start of uninitialized data

Start of overlay area

Start of initialized code area

The linker command line syntax looks like:

ML main/H:hhhh/D:dddd/I:iiii

(:oooo,ovllmodl,ovllmod2, ... lovl2modl,ov12mode2, ... I •.•)

For example:

ML Fred/H:8000/D:7a00/I:7000(init,optionslfinal)

The modules in the brackets are the modules to be loaded into overlays.
More than one module can be loaded into an overlay - the individual

overlays are separated by vertical bars (I) so that, in the example above,
init and options are loaded into overlay 1 while final is loaded into
overlay 2. Also, init and options are loaded together - they are not
alternatives to be loaded one at a time. That is, at any one instant, memory
looks like either:

Page4 FTL Advanced Programmer's Toolkit- CP/M

Heap Heap

Uninitialised data Uninitialised data

options & init final

Root Code Root Code

There are some restrictions on the placement of modules in overlays:

i) A module in one overlay cannot call a module in another overlay.
(The call will work but when you try to return to the caller. havoc
will reign because the overlay caller only interposes itself on the
calling side, not the return side) You could make this work by

modifying OVERLAYE • ASM. See below for some discussion of this
point.

ii) Any module that is part of an overlay must be referenced from a
module that is in the root segment. Actually, this is not too much
of a restriction since any module which is called inside an overlay
that has not already been loaded will be included in the overlay
automatically. The reason for this restriction is that the root
segment needs to know how many entry points exist in each
overlayed module so that the required linkage tables can be built.

In other words, you should only give the names of the modules that are to
be in overlays that can be called from the root segment.

FTL Advanced Programmer's Toolkit- CP/M Pages

If this is not obseIVed, you will get the error message

**ERROR - module modulename not imported into root segment

To fix the problem, just add an IMPORT modulename statement to a
module in the root segment. Note that the data for an overlay is not
overlayed. That is why you have to specify an area for the initialized data
- otherwise, if it was loaded as part of the module, it would be re-initialized
every time the module was called. (Actually, you can achieve this by not
giving the linker an address for the initialized data - this will cause it to be
loaded into the overlay file.)

How the overlayer works

The core of the overlay system is the assembly language module

OVERLAYE. ASM. This module is called whenever a routine in an overlay is
to be called. It is called with a group number in the A register and an
address in the HL register.

The group number is the number of the overlay that contains the routine

to be called. The address in HL is the address to jump to to enter the
routine. At the start of each overlay is a table of jumps.

At the end of the root segment, the linker builds the following structures:

i) The module OVERLAYE. ASM. This is the overlay handler. It

contains the file control blocks for the overlay file, and the code
to load and execute overlays.

ii) For each label in each overlayed module, a code stub is created

which sets up some parameters in the A and HL registers and then
hands control to the start of the OVERLAYE module. Whenever a
reference is made to this label, this code is executed. The code
takes the form:

Page6

ld a,ovlno

ld hl,offset

jp overlaye

FTL Advanced Programmer's Toolkit - CP/M

Where ovlno is the number of the overlay that contains the module and
off set is an offset from the start of the module to a jump to the actual label
in the overlay. That is, this is an index into the table that is built at the start
of the overlay, described next.

At the start of each overlay, the linker builds a table of jumps. Each jump
jumps to an entry point in a module loaded into the overlay. Hence, each
jump is three bytes in length.

Loading the overlay file

Before the program can be executed, the overlays must be loaded into a
single file using the program MLOVLD. To create the overlay file, run MLOVLD

and enter the name of the root segment of the program being overlayed.

Execution of main program parts

Modules in overlays can have main program parts. These are executed
when the program is loaded. They are not executed every time the overlay
is loaded.

The normal execution order of main program parts is not observed. Rather,
the main program parts in the overlays are always executed before the
main program parts in the modules in the root segment.

This means that if a module in an overlay calls a procedure in a module
in the root segment, that module may not have been initialized yet. Hence,
you may need to modify the modules to overcome this limitation.

FTL Advanced Programmer's Toolkit- CP/M Page 7

An example program

Here is a simple example of an overlayed program. The program has two
overlays which simply print a message.

MODULE TestOvl;

FROM Terminal IMPORT WriteString,WriteLn;

IMPORT Ovll,Ovl2;

BEGIN

WriteString('overlay test ') ;WriteLn;

WriteString(' calling ovll ');

Ovll.Fred;

WriteString(' calling ovl2 ');

Ovl2.Fred;

WriteString(' done');WriteLn;

END TestOvl.

DEFINITION MODULE Ovll;

PROCEDURE Fred;

END Ovll.

IMPLEMENTATION MODULE Ovll;

FROM Terminal IMPORT WriteString,WriteLn;

PROCEDURE Fred;

BEGIN

BEGIN

WriteString(' in ovll fred ') ;WriteLn;

END Fred;

WriteString(' in Ovll main line');

END Ovll.

DEFINITION MODULE Ovl2;

PROCEDURE Fred;

END Ovl2.

Page 8 FTL Advanced Programmer's Toolkit- CP/M

IMPLEMENTATION MODULE Ovl2;

FROM Terminal IMPORT WriteString,WriteLn;

PROCEDURE Fred;

BEGIN

BEGIN

WriteString(' in Ovl2 fred ');WriteLn;

END Fred;

WriteString(' in Ovl2 main line');

END Ovl2.

The first step is to compile all the modules in the usual way. Next, we link
them to produce the overlay structure.

ml testovl/d:8000(:4000,OvlllOvl2)

FTL Modula-2 APK Linker Vl.28 Copyright (C) Dave Moore

1986

creating TESTOVL.COM

TESTOVL 0103 TERMINAL 017e SYSTEM 04c7 CPM 08b8

OVERLAYE 8d9

main program linkage

TERMINAL 04aa TESTOVL 0103

Data Size : 008f

Code Size : 0b28

Data in Code: 0000

Top Address : 80a3

creating C:TESTOVL.000

OVLl 4009

FTL Advanced Programmer's Toolkit - CP/M Page 9

main program linkage

OVLl 401c

Data Size : 008f

Code Size : 4052

Data in Code: 0000

Top Address : 80a0

creating C:TESTOVL.001

OVL2 4009

main program linkage

OVL2 401c

Data Size : 008f

Code Size : 4052

Data in Code: 0000

Top Address : 80a0

link complete

This command loads the overlays at 4000h with the data at 8000h. The

next step is to load the overlays (TESTOVL. 001 and TESTOVL. 002) into the
overlay file:

A>mlovld

Overlay load program

Copyright (C) Dave Moore, FTL Modula-2 November 1987

Enter name of file being overlayed :testovl

Processing testovl.000 overlay number 1 Length 1

Processing testovl.001 overlay number 2 Length 1

Page 10 FTL Advanced Programmer's Toolkit- CP/M

We can now execute the program:

A>testovl

in Ovll main line

in Ovl2 main line

overlay test

calling Ovll

in Ovll fred

calling Ovl2

in Ovl2 fred

done

Of course, to run your completed program you only need TESTOVL. COM

and OVERLAYE. OVR.

The Trimmer

The trimmer allows you to link only those parts of modules which are

actually accessible. This results in a . COM file which is smaller than it
otherwise would be. For example, trimming un-used code out of the

Trimmer program described below reduces its size by thirty percent.

Producing a trimmed file requires three steps:

i) The linker is run with the gather flag(/ G). This produces a file with
the extension . LRL which contains lists of all the labels, by
module, that are referenced in the program. When the linker is

used with the / G flag, no . COM file is produced.

ii) The program Trimmer is run. This program takes as input, the
. LRL file produced by running the linker with the / G flag and
produces as output a file with the same base name but with the
extension . TRM This file contains, by module, a bitmap of all the
referenced labels.

FTL Advanced Programmer's Toolkit- CP/M Page 11

iii) The linker is run again, this time with the excise flag /E. This
produces a . COM file with only the required portions retained.

So, to link a trimmed version of the program ME, the following commands
would be issued:

ml me/g

trimmer

Enter name of program to trim:Me

(here. you see a variety of output from the trimmer. At the end is a list of
modules followed by the labels that are accessible in the modules)

ml me/e

Trimming Overlayed Programs

An overlayed program can be trimmed. To do this. use the / G flag as
normal and then use the / E flag during the overlay link. Do not specify the
overlay structure while performing the gather (the /G) link.

HiSOft
High Quality Software

Page 12

The Old School, Greenfield,

Bedford, MK45 5DE

Tel: (0525) 718181

FTL Advanced Programmer's Toolkit- CP/M

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012

