
FTL Modula-2 Z80

Multi-tasking Kernel
The kernel gives you a means of running multi-tasking programs. In fact,
using the versions of some of the standard modules that are also supplied.
you can do this under CP /M and still use CP /M as well. However in order
to do this you need a timer interupt that you can 'hook' into reliably. Sadly
that are few CP /M systems that provide this.

The kernel is called Kernel. We were going to call it Saunter, since things
run slower because of the multi-tasking overhead, but we decided against
it.

The kernel uses a lot of ideas from operating systems principles. If you are
not familiar with these principles, it will be worthwhile getting hold of a
book on the subject. One book which I heartily recommend is:

Operating Systems, Design and Implementation. Andrew S
Tanenbaum.Prentice-Hall International ISBN 0-13-637331-3

All you really need from this book is chapter 2. There are probably other
books which go into the area of most interest in more detail but few of them
will be as elegantly written.

Here is a simple program which uses the multi-tasking executive. We shall
refer to this program in the text that follows:

FTL Z80 Kernel Page 1

l:MODULE TestKern;

2:

3: (*

4:

5:

6:

7: *)

8:

Kernel test module 1

This module tests simple things like message

passing and scheduling using semaphores

9:FROM Terminal IMPORT WriteString,WriteLn;

10:FROMKernel IMPORT LockSemaphore,UnlockSemaphore,

11: InitSemaphore,Semaphore,SendMessage,

12: ReceiveMessage,InitMailBox,MailBox,

13: StartTasking,AddTask,StartDosCall,EndDosCall,Wait;

14:PROCEDURE Taskl;

15:BEGIN

16: LOOP

17:

18:

WriteString(Taskl) ;WriteLn;

END;

19: END Taskl;

20:PROCEDURE Task2;

21:BEGIN

22: LOOP

23: WriteString(Task 2);WriteLn;

24: Wait(5);

25: END;

26: END Task2;

27:PROCEDURE Task3;

28:BEGIN

29: LOOP

30: WriteString(Task 3);WriteLn;

31: Wait(l0);

32: END;

33: END Task3;

34:BEGIN (*set up tasks*)

35: AddTask(Taskl,1,1000);

36: AddTask(Task2,l,1000);

37: AddTask(Task3,l,1000);

38: StartTasking;

39: END TestKern.

Page 2 FTLZ80 Kernel

Initialising the Tasks

To run a number of tasks, you must first define the tasks that are to be
executed. You then start the multi-tasking kernel with a call to

Start Tasking.

Each task is defined by a call to AddTask. AddTask takes as parameters,
a parameterless procedure, the priority of the task. and the amount of
space (in bytes) to allocate for the tasks work area.

The highest priority tasks run at priority one. The lowest priority task runs

at priority given by the constant PriorityLevels. There can be any
number of tasks at a given priority.

You should ensure that cpu intensive tasks run at the lowest priority since
otherwise they will hog the cpu and no lower priority task will ever execute.

In TestKern, the tasks are called Taskl, Task2 and Task3. They are set
up in lines 35 through 37. Line 38 actually starts the execution of the

tasks. Any code after the call to Start Tasking will not be executed until
the multi-tasking is terminated with a call to EndTasking.

The three tasks simply print out messages on the terminal. Before you link
this program, make sure you replace your standard Terminal with
Terminal .MTX. If you do not do this, the system will almost certainly hang
up.

Taskl runs continuously. Thus most lines contain the message Taskl.

Task2 and Task3 contain calls to the wait procedure. This procedure
delays the task for the given number of clock periods. It is called with one
parameter; the number of clock periods to wait.

Hence, you will see the message Task2 every 5 clock periods and the
message Task3 every ten clock periods.

FTL Z80 Kernel Page 3

Semaphores

Normally, you see one message per line. Sometimes, however, two
messages come out on one line and then you get a blank line. For example.
you might see:

Taskl

Task1Task2

Taskl

This happens if the scheduler time-slices from one task to another after

the first task has performed the WriteString but before it has performed
the following WriteLn.

We can prevent this from happening by using a semaphore. A semaphore
is a means of locking a resource so that one task has exclusive use of the
resource, in this case. the screen.

Here is a version of Testkern that overcomes the problem.

1:MODULE TestKern;

2:

3: (* Kernel test module 1

4:

5: This module tests simple things like message

6: passing and scheduling using semaphores

7: *)
8:
9:FROM Terminal IMPORT WriteString,WriteLn;

10:FROMKernel IMPORT LockSemaphore,UnlockSemaphore,

11: InitSemaphore,Semaphore,SendMessage,

12:

13:

ReceiveMessage,InitMailBox,MailBox,Wait,

StartTasking,AddTask,StartDosCall,EndDosCall

14:VAR ScreenSema:Semaphore;

Page4 FTL180 Kernel

14:PROCEDURE Taskl;

15:BEGIN

16: LOOP

17:

18:

19:

LockSemaphore(ScreenSema);

WriteString(' Taskl') ;WriteLn;

UnlockSemaphore(ScreenSema);

20: END;

21: END Taskl;

22:PROCEDURE Task2;

23:BEGIN

24: LOOP

25:

26:

27:

28:

29:

LockSemaphore(ScreenSema);

WriteString('Task 2');WriteLn;

UnlockSemaphore(ScreenSema);

Wait (5);

END;

30: END Task2;

31:PROCEDURE Task3;

32:BEGIN

33: LOOP

34:

35:

36:

31:

LockSemaphore(ScreenSema);

WriteString('Task 3');WriteLn;

UnlockSemaphore(ScreenSema);

Wait(lO);

32: END;

33: END Task3;

34:BEGIN (*set up tasks*)

35: InitSemaphore (ScreenSema, 1);

36: AddTask(Taskl,1,1000);

37: AddTask(Task2,l,1000);

39: AddTask(Task3,l,1000);

40: Start Tasking;

41: END TestKern.

Atline 35, we initialise the semaphore screens ema. The second parameter
is the number of users that can simultaneously use the resource. This is
usually one but it may be more than one.

FTL Z80 Kernel Pages

Sometimes. you may also want to initialise a semaphore with the value
zero. For example, if you were implementing a queue, you can initialise a

semaphore to zero and use UnlockSemaphore every time you add an item
to the list and LockSemaphore just before you remove an item from the list.
This will be clearer in a minute.

Lines 34 and 36 are calls to LockSemaphore and UnlockSemaphore. A
semaphore maintains a counter. This counter starts with the value you

pass as the second parameter to InitSemaphore. When you call
LockSemaphore, if the counter is greater than zero, it will be decremented
by one and your task will continue as if nothing had happened.

If, however, the counter was zero, then the task is queued on the
semaphore. The task stops executing and other tasks are scheduled.

When an UnlockSemaphore is executed, if there are no tasks queued on
the semaphore. the counter is incremented by one. Thus. in Task3, if the
counter was one when LockSemaphore was called, it will be set to zero
while the WriteString and WriteLn statements are executed and then
set back to one again, so that the value remains unchanged each time
around the loop.

If there was a task queued. the counter is incremented and the queued
task is re-scheduled. Once it regains control of the processor, the re
scheduled task will decrement the counter and will continue executing.

So. suppose that the time-slicer executes task 1 while task 3 is performing

its WriteString. The counter in the semaphore ScreenSema will be zero.
so task one will be queued and the kernel will look for another task to
execute.

Perhaps this will be task 3. In any case, sooner or later. task 3 will get some
CPU time.

Notice that task 1 will not be executed in the mean time because it is
queued on the semaphore. It has been removed from the list of tasks that
the time-slicer can execute.

Page6 FTL Z80 Kernel

Once task 3 has complete its WriteLn and has performed its
UnlockSemaphore, task 1 will be back on the ready queue and can now
be executed. Let us suppose that it gets some CPU time and performs its
LockSemaphore. Now, if either task 2 or task 3 also attempt to lock the
semaphore, they will be suspended until task 1 has finished executing its
critical region.

Hence, this semaphore allows us to implement mutual exclusion. Only

one task can be executing its WriteString; WriteLn pair at a time.

You can use a semaphore to protect any shared resource. For example, if
you are accessing a global variable and updating its value. you do not want
another task to be updating the same variable at the same time. A
semaphore can be used to ensure that this will not happen.

Semaphores can protect large areas of code. The alternative is to execute
the code with interrupts turned off. This alternative will run faster since
the kernel is not required to re-schedule tasks, but it can cause your
hardware to give spurious results. as often an interrupt must be acted
upon quickly.

Message Passing

One way to pass data between tasks is to use common variables. This is
fast since all that is needed is a few reads and writes of memory but it has
two limitations:

1) The tasks that communicate have to be written as a group. Each
task needs to know what the other does so that the passing of
information is kept under control. This increases the complexity
of programming.

2) It is difficult for a group of tasks to communicate with a single
task. This is required, for example, if you write a general purpose
task to do disk input-output.

The alternative is to use messages. The kernel supports message passing.

FTL Z80 Kernel Page 7

Messages are passed using mail boxes. A mail box is an address that is
know both to the sender of the message and to the receiver. Often, a
message will itself contain a mailbox so that the receiver can send a reply.
Here is a simple message passing program.

1:MODULE TestMess;

2:

3: (* Kernel test module 1

4:

5: This module tests simple things like message

6:passing and scheduling using semaphores

7:*)

8:

9:FROM Terminal IMPORT WriteString,WriteLn;

10:FROMKernel IMPORT LockSemaphore,UnlockSemaphore,

11: InitSemaphore,Semaphore,SendMessage,

12:

13:

14:VAR

15:

ReceiveMessage,InitMailBox,MailBox,Wait,

StartTasking,AddTask,StartDosCall,EndDosCall

Message,Messagel:ARRAY [0 .. 20] OF CHAR;

Box305:Mai1Box;

16: SentMessage:MailBox;

17:PROCEDURE Taskl;

18:BEGIN

19: LOOP

20: WriteString(' Taskl');WriteLn;

21: ReceiveMessage(Box305,Messagel);

22: WriteString(Messagel);WriteLn;

23: SendMessage(SentMessage,Messagel);

24: END;

25: END Taskl;

Page 8 FTL Z80 Kernel

26:PROCEDURE Task2;
27:VAR i:CARDINAL;

28: Durnmy:ARRAY[0 .. 20) OF CHAR;
29 :BEGIN

30: Message:='Message 0001';

31: LOOP

32:

33:

34:

35:

36:
37:

38:
39:

40:

41:

WriteString(' Task2') ;WriteLn;

SendMessage(Box305,Message);
i:=11;

WHILE Message[i]='9' DO

Message [i] :=' 0';
DEC(i)

END;

Message[i] :=CHR(ORD(Message[i])+l);

ReceiveMessage(SentMessage,Durnmy);
END;

42: END Task2;

43:BEGIN

44: InitMailBox (Box305);

45: InitMailBox (SentMessage);

46: AddTask(Taskl,1,1000);

47: AddTask(Task2,1,1000);

48: WriteString(' starting tasking ');WriteLn;

49: StartTasking;

50: END TestMess.

This looks not dissimilar to the previous examples. Note the addition of the

calls to InitMailBox at lines 44 and 45. We have initialized two mail
boxes. Box305 (if this number is not familiar, you haven't been paying
attention) and SentMessage.

Box305 is used to send messages. SentMessage is used to notify that a
message has been received.

Task 2 just keeps sending messages to Box3 o 5 (note, it is not sending them
to task 1). It then waits for a message to appear in SentMessage before
generating a new message and sending that.

FTL Z80 Kernel Page9

Task 1 just keeps reading messages from Box305 and then sending
messages to SentMessage.

If no message is available when a Rece i veMes sage is performed. the task
is suspended until a message becomes available. You can avoid this by
checking that a message is in the Mailbox using the call MessageCount

from Kernel.

Having a separate mail box for replies is fine in the above example because
there is only one task sending messages. If there is more than one task
sending messages this will not work because they could get each others
return messages. Each sender must have a separate mailbox for replies.

Usually, either a return mailbox, or a pointer to such a mail box is passed
with each message. Passing just the pointer saves having to initialise a
mailbox every time you send a message. It also allows the sender to send
messages to a number of places and process replies as they arrive.

In the above example, the message was a text string. The contents of the

string are totally undefined by Kernel. You can pass any form of data at
all.

Interrupt Processing

The procedure Doro is used for interrupts. You must use this procedure
rather than calling IOTRANSFER directly so that the kernel can perform
task scheduling while the interrupt is pending.

There is a potential problem with Doro if an interrupt occurs while you are
processing a previous interrupt from the same vector.

One way to overcome this is to attach two processes to the interrupt vector.
The second process only gets called if you get an unexpected interrupt. Of
course, you are still in trouble if you get two unexpected interrupts in rapid
succession.

Page 10 FTL Z80 Kernel

Procedure Index

Here is a complete list of the procedures and types in Kernel with their
uses.

AddTask(p:PROC;prio:CARDINAL;Work:CARDINAL)

Add a task to the list of tasks to be executed. This can be done at any time.
pis a parameterless procedure which is the start of the task. prio is the
priority (in the range 1 to PriorityLevel) at which the task is to run, with
1 being the highest priority. Work is the size of the required work area in
bytes.

DeleteTask(t:Task):BOOLEAN;

Delete a task. Returns TRUE if the task was successfully deleted. t is the
task descriptor for the task to delete. If it is Current Task (a variable
exported from Kernel). the task making the call is deleted and the call
never returns.

Wait(Time:CARDINAL);

Suspend the current task for a period of time. Time is the time to wait in
clock ticks.

Clock():CARDINAL;

Get the current time in clock ticks. Not very useful because it wraps
around every 65536 ticks.

StartTasking

Starts the multi-tasking executive. This procedure does not return until

after a call is made to EndTasking

EndTasking

End tasking. This procedure causes the termination of multi-tasking and

the continuation of the code after the call to Start Tasking. You can call
StartTasking again after a call to EndTasking. You should modify
EndTasking for your application by turning off any interrupts that are
pending and replacing the interrupt vectors with the default values.

FTL Z80 Kernel Page 11

StartoosCall

Locks the semaphore associated with DOS. DOS calls should only be made

between a call to StartDosCall and a call to EndDosCall. The module
Terminal .MTX has already been set up to do this.

EndDosCall

End a dos call or sequence of dos calls.

MailBox

The type to be used for a mail box for message passing.

lnitMailBox(V AR b:MailBox);

Initilaise a mailbox. Must be called before the mailbox is used for message
passing.

SendMessage(V AR b:MailBox;Message:ARRA y OF BYTE);

Send a message to the mailbox b. The message can be any data: the
structure is entirely defined by the application. A copy of the message is
made.

ReceiveMessage(VAR b:MailBox;VAR Message:ARRAY OF BYTE);

Receive a message from the mailbox b. If no message is available, the task
is suspended until a message becomes available. The message is removed
from the mailbox.

MessageCount(V AR b:MailBox):INTEGER;

Return the number of messages in a mailbox. Returns a negative value if
there are tasks waiting for messages.

Semaphore

A type used to enforce mutual exclusion.

lnitSemaphore(V AR s:Semaphore;SimUsers:CARDINAL);

Initilaise a semaphore. Simusers is the maximum number of tasks that
can use the critical region protected by this semaphore at any time.

Page 12 FTLZ80 Kernel

LockSemophore(V AR s:Semophore);

Lock the critical region. The task may be suspended until the critical
region is available. There may be a number of tasks waiting for a given
semaphore.

UnlockSemophore(VAR s:Semophore);

Unlock the critical region. If another task is suspended waiting for the
region, it is now re-scheduled.

Woiters(V AR s:Semophore):INTEGER;

return the number of tasks waiting for a semaphore. If the returned value
is negative, the semaphore is free.

CurrentTosk

The task descriptor for the currently executing task. Do not update this
variable. It should be treated as read-only.

IORecord

A record type used for passing input-output requests to the Do IO routine.
In the supplied version, the only value is the number of an interrupt vector
that the task wants to wait for.

DolO(IOlnfo:IORecord;VAR PreviousTask:Tosk);

Wait for an interrupt. Io Info contains the number of the interrupt to wait
for. Previous Task should be NIL the first time you call Do IO. It returns
the task descriptor of the task that was interrupted. If you do not set this

to NIL before calling Do IO for the next interrupt, that task will be started
up again. Otherwise, if it is set to NIL, a re-scheduling operation is
performed and the interrupted task may not regain control until later.

FTL Z80 Kernel Page 13

An Example System

In this section. I shall describe a simple process control system and show
its implementation using the kernel. This is a simplified version of a
system we once implemented. though that was done in Basic because it
was to run on an Hewlett Packard 80 series calculator. Needless to say, it
would have been much easier in Modula-2.

A loading bay consists of a conveyor belt from a stock-pile, an input
hopper, a weighing hopper and an exit chute. The system is used to weigh
a dry product into trucks. There is a position sensor that detects when a
truck is present.

The conveyor belt can be turned on and off under program control. Sensors
detect when the hopper is nearly empty and nearly full. There are gates
between the hopper and the weighing hopper and between the weighing
hopper and the truck.

The system clearly generates three interrupts; Hopper full, hopper empty
and truck present/ absent. Each interrupt needs a task to process it.

We shall assume that all devices as controlled by a single output address.
This is fairly typical since only one bit is needed for each gate and for the
conveyor belt motor. Because we can only write this register. not read it,
we need to keep a shadow value in memory which always reflects the value
in the external register. So that two tasks cannot access this shadow
register at once, we need to protect it by a semaphore. This is all handled

by the module ControlReg in the Example module.

The system is assumed to use three interrupts. one for changes in status
of each of the feed hopper, the weigh hopper and the truck. When a change
of status occurs the relevant task checks the new status and takes
appropriate action.

Page 14 FTLZ80 Kernel

MODULE Example;

FROM PortIO IMPORT In,Out;

FROM Kernel IMPORT Semaphore,LockSemaphore,

UnlockSemaphore,InitSemaphore,DoIO,Wait;

CONST HopperintNo=8;

HopperStatusReg=30h;

HopperControlReg=38h;

WeighintNo= l0h;

TruckintNo= l8h;

ConveyorBeltRunning=0;

HopperGateOpen:=l;

WeighGateOpen:=2;

(* status bits for gates etc *)

TruckPresent=0;

HopperFullFlag=l;

HopperEmptyFlag=2;

WeighHopperFullFlag=3;

WeighHopperEmptyFlag=4;

VAR WeighWaiting:BOOLEAN;

MODULE ControlReg;

IMPORT HopperControlReg,Semaphore,LockSemaphore,

UnlockSemaphore,InitSemaphore,Out;

EXPORT SetBit,ClearBit;

VAR Shadow:BITSET;

MutualExclusion:Semaphore;

PROCEDURE SetBit(i:CARDINAL);

BEGIN

LockSemaphore(MutualExclusion);

INCL(Shadow,i);

Out(HopperControlReg,Shadow);

UnlockSemaphore(MutualExclusion);

END SetBit;

FTLZ80 Kernel Pagel5

PROCEDURE ClearBit(i:CARDINAL);

BEGIN

LockSemaphore(MutualExclusion);

EXCL(Shadow,i);

Out(HopperControlReg,Shadow);

UnlockSemaphore(MutualExclusion);

END ClearBit;

BEGIN (*mainline of ControlReg module*)

Shadow:=BITSET(); (*hopper gate shut,

stopped *) weigh gate shut, motor

Out(HopperControlReg,Shadow);

InitSemaphore(MutualExclusion,1);

END ControlReg;

PROCEDURE HopperTask;

VAR io:IORecord;

p:Task;

b:BITSET;

BEGIN

LOOP

p:=NIL;

io. IntNo . = 8;

DoIO(io,p);

(* at this point, the status of the

hopper has changed. See if empty or full

and set controls accordingly *)

b: =In(HopperStatusReg);

IF HopperFullFlag IN b THEN

ClearBit(ConveyorBeltRunning);

ELSIF HopperEmptyFlag IN b THEN

SetBit(ConveyerBeltRunning) END;

END;

END HopperTask;

Page 16 FTLZ80 Kernel

PROCEDURE WeighTask;

VAR io:IORecord;

p:Task;

b:BITSET;

BEGIN

LOOP

p:=NIL;

io.IntNo:=WeighintNo;

DoIO(io,p);

(* at this point, the status of the

hopper has changed. See if empty or

full and set controls accordingly *)

b:=In(HopperStatusReg);

IF WeighFullFlag IN b THEN

ClearBit(HopperGateOpen);

Wait(l0); (*give chance to shut*)

IF TruckPresent IN b THEN

SetBit(WeighGateOpen);

ELSE

WeighWaiting:=TRUE

END;

ELSIF WeighEmptyFlag IN b THEN

ClearBit(WeighGateOpen);

Wait (10);

SetBit(HoppergateOpen);

END;

END;

END WeighTask;

FTL Z80 Kernel Page 17

PROCEDURE TruckTask;

VAR io:IORecord;

p:Task;

b:BITSET;

BEGIN

LOOP

p:=NIL;

io.IntNo:=TruckintNo;

DoIO(io,p);

(* at this point, the status of the

hopper has changed. See if empty or full

and set controls accordingly *)

b:=In(HopperStatusReg);

IF TruckPresent IN b THEN

ELSE

END;

IF WeighWaiting THEN

SetBit(WeighGateOpen);

WeighWaiting:=FALSE;

END;

ClearBit(WeighGateOpen);

END;

This example has been kept deliberately simple, because of this the code
as it stands does not take full advantage of the multi-tasking facilities.
However, there are several things it does not do. Consider how adding
these things is easier when building on this multi-tasking structure than
when using a simple program.

1) It does not check that actions requested have occured. For
example, in a real system. it would be necessary to have position
sensors on the gates and to check that requests to open and shut
a gate had been satisfied before proceeding to the next step.

Pagel8 FTL Z80 Kernel

2) A real system would weigh out known amounts. Several
weighings would be required for this (for example the truck
might take 20 tonnes while the hopper only holds 500 kilograms).
And a WeighTask would needed to control this.

3) A real system would have alarm conditions. such as
stuck gates and product hang-up which would require alarms
and operator intervention. The operator would typically have a
number of controls which would need an interface.

In addition, there is not a lot of inherent parallelism in this system. The
only parallelism is the ability to fill the supply hopper while the truck is
being filled. Hence the control of the conveyor and the control of the lower
gate on the weighing bin are totally separate. If you attempt to write a
single-tasking program to do the job, all things which can happen at once
need to be considered together and this produces a combinatorial
explosion in the size of your code.

FTLZ80 Kernel Page 19

HiSOft
High Quality Software

Page 20

The Old School, Greenfield,

Bedford, MK45 5DE

Tel: (0525) 718181

FTL Z80 Kernel

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020

