Microsoft
Utility Software
Package”

for CP/M*-80

Reference Manual

Microsoft® MACRO Assembler
Microsoft® LINK Linking Loader
Microsoft® CREF Cross-Reference Facility
Microsoft® LIB Library Manager

Microsoft Corporation

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The
software described in this document is furnished under a license agreement
or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy
the Microsoft* Utility Software Package on magnetic tape, disk, or any
other medium for any purpose other than purchaser’s personal use.

Copyright Microsoft Corporation, 1981, 1982

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building

10700 Northup Way
Bellevue, Washington 98004

Microsoft Utility oftware Package. Microsoft MACRO Assembler,
Microsoft LINK Linking Loader. Microsoft CREF Cross-Reference Facility,
Microsoft LIB Library Manager. Microsoft COBOL Compiler. and

Microsoft is a registered trademark of Microsoft Corporation.
MS is a trademark of Microsoft Corporation.

CP/M-80 is a registered trademark of Digital Research. Inc.
TEKDOS is a registered trademark of Tektronix, Inc.

7380 is a registered trademark of Zilog, Inc.

Intel is a registered trademark of Intel Corporation.

Document No. 8401-343-04
Part No. 00F16USP

Contents

Contents

1 Introduction 1

1.1 Contents of the

Microsoft Utility Software Package 3
System Requirements 3

Whom Is the

Microsoft Utility Software Package For?

Pt ek
W o

1.4 How to Use This Manual 4
1.5 Syntax Notation 5
1.6 Overview 5

2 Features of the
Microsoft Utility Software Package

3 Programming With the
Microsoft Utility Software Package

3.1 Source File Organization 23
3.2 Symbols 24

3.3 Opcodes and Pseudo-ops 29
3.4 Arguments: Expressions 30

4 Assembler Features 39

4.1 Single-Function Pseudo-ops 41
4.2 Macro Facility 71
4.3 Conditional Assembly Facility Pseudo-ops

2.1 What Is a Utility Software Package? 17
2.2 Two Assembly Languages 17

2.3 Relocatability 17

2.4 Macro Facility 18

2.5 Conditional Assembly 18

2.6 Utility Programs 19

15

21

84

Contents

5 Running Microsoft MACRO Assembler 87

5.1 Invoking MS-MACRO Assembler 89

5.2 MS-MACRO Assembler Command Line 90

5.3 MS-MACRO Assembler Listing File Formats 100
5.4 Error Codes and Messages 102

6 Microsoft LINK Linking Loader 107

6.1 Invoking MS-LINK Linking Loader 109
6.2 MS-LINK Linking Loader Commands 110
6.3 Error Messages 126

7 Microsoft CREF
Cross-Reference Facility 131

7.1 Creating an MS-CREF Listing 133
7.2 MS-CREF Listing Control Pseudo-ops 136
8 Microsoft LIB Library Manager 137

8.1 Sample MS-LIB Session 140
8.2 LIB-80 Commands 141

Appendices 149
A Compatibility With Other Assemblers 151

B The Microsoft Utility Software Package
With TEKDOS 153

C ASCII Character Codes 157

D Format of MS-LINK Linking

Loader-Compatible Object Files 159
E MS-MACRO Pseudo-op Table 163
F Opcode Table 167

Index 173

Chapter 1

Introduction
1.1 Contents of the
Microsoft Utility Software Package 3
1.2 System Requirements 3
1.3 Whom Is the Microsoft
Utility Software Package For? 4
Books on
Assembly Language Programming
1.4 How to Use This Manual 4
1.5 Syntax Notation 5
1.6 Overview 5

Introduction

Welcome to the world of Microsoft” Utility Software Package™
programming. During the course of this manual, we will learn what
the Microsoft Utility Software Package is, why you use it, and how
to use it.

1.1 Contents of the
Microsoft Utility Software Package

One disk with the following files:

M8&0.COM —MS-MACRO Assembler program

L80.COM —MS-LINK Linking Loader program
CREF80.COM —MS-CREF Cross-Reference Facility program
LIB.COM —MS-LIB Library Manager program

One manual, the Microsoft Utility Software Package Reference
Manual

Important

Always make backup copies of your disks before using them.

1.2 System Requirements

MS-MACRO requires about 19K of memory, plus about 4K for
buffers. MS-LINK requires about 14K of memory. MS-CREF
requires about 6K of memory. MS-LIB requires about 5K of memory.
The operating system usually requires about 6K of memory. So a
minimum system requirement for the Microsoft Utility Software
Yackage is 29K bytes of memory. While it is possible to run Microsoft
Utility Software Package programs with only one disk drive, we
recommend strongly that you have two disk drives available.

Utility Software Package Reference Manual

1.3 Whom Is the
Microsoft Utility Software Package For?

The Microsoft Utility Software Package is a complete assembly
language development system with powerful features that support
advanced assembly language programming skills. This manual
describes the Utility Software Package thoroughly, but the
descriptions assume that the reader understands assembly language
programming and has experience with an assembler.

If you have never programmed in assembly language, we suggest
that you gain some experience on a simpler assembler.

Books on Assembly Language Programming

We can also recommend the foliowing books for basic instruction in
assembly language programming:

Leventhal, Lance A. 8080A/8085 Assembly Language Pro-
gramming. Berkelev: Osborne/McGraw-Hill, 1978.

Leventhal, Lance A. Z80 Assembly Language Programming.
Berkeley: Osborne/McGraw-Hill, 1979.

Zaks, Rodnay. Programming the Z80. Second edition. Berkeley:
Sybex, 1980.

1.4 How to Use This Manual

Each chapter begins with a contents page that expands the entries
on the contents page at the beginning of the manual. Chapter 1
gives introductory, background, and overview information about
the Microsoft Utility Software Package. Chapters 2-8 describe the
use and operation of the Microsoft Utility Software Package
programs. The manual concludes with several appendices which
contain some helpful reference information.

Introduction

1.5 Syntax Notation

The following notation is used throughout this manual in descrip-
tions of command and statement syntax:

] Square brackets indicate that the enclosed entry is
optional.

Angle bracketsindicate user entered data. When the
angle brackets enclose lowercase text. the user must
type in an entry defined by the text: for example,

filename . When the angle brackets enclose upper-
case text, the user must press the key named by the
text; for example, << RETURN .

1 Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the entries
are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs. must be entered exactly as shown.

1.6 Overview

The Microsoft Utility Software Package is an assembly language
programming system that parallels the design and programming
power of assemblers and related software on big computers. Con-
sequently, the design and use of the Microsoft Utility Software
Package involves traits and methods that may be new to you.’As
explained earlier, we assume that you have some experience in
assembly language programming. Your knowledge of when and
why to use particular operation codes and pseudo-operations is the
base on which vou can build vour knowledge of the Utility Software
Package.

Utility Software Package Reference Manual

One word of caution: Some terms used in this manual may be
familiar to you from other sources. Be sure to notice especially how
familiar terms are used in the Microsoft Utility Software Package
Reference Manual so that you are not confused or misled.

Microsoft Utility Software Package programming relies on two
important software programs—an assembler and a linking loader.
To develop an assembly language program that runs on vour
computer, you must use both the assembler and the linking loader.
The whole process is shown in Figure 1. The numbers on the figure
correspond to the numbers in the explanations below.

1. You create an assembly language source program using
some editor.

2. You assemble your source program using MS-MACRO
Assembler. The result is a file that contains intermediate
object code. This intermediate code is closer to machine
code than your source code, but cannot be executed.

3. You link and load separately assembled file(s) into a single
program file using MS-LINK Linking Loader. MS-LINK
converts the file(s) of intermediate code into a single file of
true machine code which can be executed from the operating
system.

These are only the basics of the whole process. The three-step
process of converting a source file to an executable program allows
you to manipulate your programs to save you time and to extend
your programs’ usefulness in the following ways.

Introduction

1. Editor

source file
2. [MS-MACRO

assembled file
3. | MS-LINK

executable file

Figure 1. Developing Assembly Language Programs

Utility Software Package Reference Manual

First, you can break your program into convenient parts called
modules. You can manipulate these modules at will. You can assemble
the modules individually. You fix only those that do not work right
and reassemble them. This saves you time.

Second, you can manipulate the placement of modules in memory,
subject to certain restrictions; or allow MS-LINK to place modules
for you. (This trait is described below under the fourth trait.)

Third, you can use assembled modules in other programs or in
variations of the original program because there is no permanent
connection among the modules. This saves you recoding time if a
part of a program performs some useful, often-repeated task.

Whenever you want to combine assembled modules into an exe-
cutable program, you use the MS-LINK Linking Loader. If you
simply tell MS-LLINK the modules you want combined, it loads
them end-to-end in memory. But you have an additional choice. You
can set up a direct connection between a statement in one module
and a statement inside another module. This direct connection (or
“link”) means that a value (usually a program address) in one
module can be used in another module exactly at the point required.

MS-LINK creates the links between modules. You give MS-LINK
the signals it needs to create these links. The signals are called
symbols, specifically external symbols and public symbols. An
external symbol signals MS-LINK that you want it to link a value
from another module into this point in the program. The value to be
linked-in is defined by a public symbol, which is a signal that directs
MS-LINK to the correct module and statement line. MS-LINK
then links the public symbol’s value to the external symbol, then
continues loading the module with the external symbol. Figure 2
suggests this process.

loading a module with
an EXTERNAL symbol

EXTERNAL here MS-LINK looks for
the PUBLIC symbol
PUBLIC and links its value
then MS-LINK

continues to load
the module with an
EXTERNAL symbo!

Figure 2. PUBLIC Symbol Linked into Module at EXTERNAL

8

Introduction

Fourth, modules can be assembled into different modes, even within
a single module. The four modes are absolute, data relative, code
relative, and common relative. The absolute mode is similar to the
code produced by most small system assemblers. The code is
assembled at fixed addressesin memory. The other three modes are
very different and are the reason you can place modules anywhere
in memory. Each of the threerelative modes assembles to a separate
segment. The addresses within each segment are relative addresses.
This means the first instruction byte of a segment is given a relative
address of 0, the second byte is given a relative address of 1, and so
on. When MS-LINK loads the module, it changes the relative
addresses in the segments to fixed addresses in memory. The
relative addresses are offsets from some fixedaddressthat MS-LINK
uses. For the first module loaded, this address is 103H under the
CP/M-80 operating system. Thus, relative addresses in the first
module are offsets from 103H. The second module is loaded at the
end of the first, and the relative addresses are offsets from the last
address in the first module. Subsequent modules are loaded (and
offset) similarly. You can change the default start address for the
first module at link time. Then, the relative addresses become
offsets from the fixed address you specify.

relative fixed
address address
0 103H start address
. |MOD1
100 l 203H
end MOD1, begin MOD2
0 | MOD2 204H
250 i 454H
end of MOD2

Figure 3. Loading Changes Relative Addresses to Fixed

One effect of this relative addressing method is that ORG statements
become very different creatures. For the relative segments, the
ORG statement specifies an offset rather than a fixed address (as

Utility Software Package Reference Manual

most assemblers do—ORG specifies a fixed address in the absolute
segment). Thus, a relative segment with an ORG statement would
skip over a specified number of addresses before beginning to load
the rest of the code in that segment.

relative fixed
address address
0 103H start address
MOD1
100 ; 203H
end MOD1. begin MOD2
0 [MOD2 204H
50 |ORGS0 254H skips 50 addresses
300 i 504H
end MOD2

Figure 4. ORG Statement in Relative Modes Is an Offset

You should read carefully the description of the ORG statement
found in Section 4.1.3.

The ability to manipulate the placement of modules in memory,
with some restrictions (see Chapter 6), derives from the assembler
giving relative addresses instead of absolute addresses. This ability
to manipulate module placement in memory is called relocatability.
The modules are relocatable; the intermediate code produced by the
assembler for the three relative segments is called relocatable code.
That is why assembled modules are given the filename extension
.REL, and these assembled files are called REL files.

10

Introduction

Each mode serves a different purpose. The absolute mode contains
code you want placed in specific memory addresses. Each relative
mode is loaded into memory as a separate segment. The data
relativesegment containsdata items and any code that may change
often and should only be placed in RAM. The code relative segment
contains code that will not change and therefore is suitable for
ROM and PROM. The common relative segment contains data
items that can be shared by more than one module.

Source statements in these modes take on the traits of their mode.
The symbols and expressions in statements are evaluated by the
assembler according to the mode in which they are found and the
typeof data and otherentries that define the symbol or make up the
parts of an expression. The mode traits attributed to a symbol or
expression are called, appropriately, its mode; that is, a symbol or
expression is absolute, data relative, code relative, or common
relative. This concept of mode is important because it is the source
of both flexibility and complexity. If all source statements are
assembled in absolute mode, symbols and expressions always have
absolute values, and using absolute symbols and expressions is not
complex. The problem with absolute mode is that relocatability is
possible only through the most complex and time-consuming of
techniques. Absolute mode effectively reduces your ability to reuse
code in a new program.

The relative modes (data, code, and common) are the basis of
relocatability and, therefore, of the flexibility to manipulate modules.
The complexity is that relative symbols and relative expressions
are much more difficult to evaluate. In fact, the assembler must
pass through the source statements twice to assemble a module.
During the first pass, the assembler evaluates the statements and
expands macro call statements, calculates the amount of code it will
generate, and builds a symbol table where all symbols and macros
are assigned values. During the second pass, the assembler fills in
the symbol and expression values from the symbol table, expands
macro call statements, and emits the intermediate code intoa REL
file.

Utility Software Package Reference Manual

When the REL files are given to MS-LINK, the segments are linked
together and loaded into fixed memory addresses. The relative
addresses are converted to absolute addresses. The fixed addresses
are assigned to the relative segments in the order: common relative
and data relative, then code relative. The relative segments are
loaded relative to default address 103H under CP/M-80. (The
addresses 100H-102H are used for a jump to the start address of the
first program instruction, which is normally the first address
following the common and data area.)

When MS-LINK is finished linking modules together and assigning
addresses, the result can be saved in a file that is executable from
the operating system. Executing the program is then as simple as
entering an operating system command, so theselinked and loaded
files are called command files.

This short overview should give you a general idea of the workings
and processes of the Utility Software Package. Short descriptions
of all the Microsoft Utility Software Package programs are given in
Chapter 2. Detailed descriptions are given in the rest of this manual.
Therefore, theinformation contained in this overview will be repeated
in fuller detail elsewhere in this manual.

As an aid to the descriptions in Chapter 2 and the rest of this
manual, Figure 5is an expanded version of Figure 1. Figure 5 shows
the relationships among all the programs in the Microsoft Utility
Software Package.

12

MS-LIB

CP/M
Editor

l

source
fite

MS-MACRO

Introduction

listing
file

CRF |—| MS-CREF
file

I

— assembled -
filte contains

||

MS-LINK

Cross
references

DDT

executable
file

CP/M-800.5

Figure 5. Relationships Among Programs

13

Chapter 2

Features of the Microsoft
Utility Software Package

2.1 What Is a Utility Software Package? 17
2.2 Two Assembly Languages 17

2.3 Relocatability 17

2.4 Macro Facility 18

2.5 Conditional Assembly 18

2.6 Utility Programs 19

2.6.1 MS-LINK Linking Loader 19

2.6.2 MS-CREF Cross-Reference Facility 20
2.6.3 MS-LIB Library Manager 20

15

Features

The Microsoft Utility Software Package is an assembly language
development system that assembles relocatable code from two
assembly languages, supports a macro facility and conditional
assembly, and provides several utility programs that enhance
program development.

2.1 What Is a Utility Software Package?

A utility software package is more than an assembler. A utility
software package is a series of related utility programming tools:
For assembling an assembly language source file
For linking several assembled modules into one program
For creating library files of subroutines (also assembled modules)
For creating cross-reference listings of program symbols
F(l)r testing and debugging binary (machine-executable) program
iles

Microsoft Utility Software Package provides versions of these tools
that make the Utility Software Package extremely powerful and
useful as a program development system. Each tool in the Microsoft
Utility Software Package is described in detail in its own chapter.

2.2 Two Assembly Languages

The assembler in your Microsoft Utility Software Package supports
two assembly languages. MS-MACRO Assembler supports both
8080 and Z80 mnemonics.

2.3 Relocatability

MS-MACRO can produce modules of relocatable code. Also, like
many assemblers, the MS-MACRO Assembler can produce absolute
code. The key advantage of relocatability is that programs can be

17

Utility Software Package Reference Manual

assembled in modules. Then, within certain restrictions described
in Chapter 6, “Microsoft LINK Linking Loader,” the modules can
then be located almost anywhere in memory.

Relocatable modules also offer the advantages of easier coding and
fastertesting,debugging, and modifying. In addition, it is possible
to specify segments of assembled code that will later be loaded into
RAM or into ROM/PROM.

Relocatability will be discussed further in Section 3.2, *Symbols.”

2.4 Macro Facility

MS-MACRO supports a complete, Intel*-standard macro facility.
The macro facility allows a programmer to write blocks of code for a
set of instructions used frequently. The need for recoding these
instructions is eliminated.

The programmer gives this block of code a name, called a macro.
The instructions are the macro definition. Each time the set of
instructions is needed, instead of recoding the set of instructions,
the programmer simply “calls” the macro. MS-MACRO expands
the macro call by assembling the block of instructions into the
program automatically. The macro call also passes parameters to
the assembler for use during macro expansion. The use of macros
reduces the size of a source module because the macro definitions
are stored in disk files and come into the module only when needed
during assembly.

Macros can be nested, that is, a macro can be called from inside
another macro. Nesting of macros is limited only by memory.

2.5 Conditional Assembly

MS-MACRO also supports conditional assembly. The programmer
can determine a condition under which portions of the program are
either assembled or not assembled. Conditional assembly capability

Features

isenhanced by a complete set of conditional pseudo-operations that
include testing of assembly pass, symbol definition, and parameters
to macros. Conditionals may be nested up to 255 levels.

2.6 Utility Programs

Three utility programs provide the additional support needed
to develop powerful and useful assembly language programs:
MS-LINK Linking Loader, MS-LIB Library Manager, and MS-
CREF Cross-Reference Facility.

2.6.1 MS-LINK Linking Loader

MS-LINK Linking Loader is used to convert the assembled module
(REL file) into an executable module (COM file). The REL fileisnot
an executable file.

MS-LINK can also be used to:

Load, link, and run one or more modules
Load relocatable programs at user-specified locations

Load program areas and data areas into separate memory
locations

While performing these tasks, MS-LINK resolves external references
between modules (that is, any program that calls an external value,
something defined in a different program or module, will have the
outside references filled at link time by MS-LINK), and saves the
executable object (COM) file on disk, so it can be run from the
operating system.

These load capabilities mean that the assembled program can be
linked with the user’s library to add routines to one of the high-level
language runtime libraries. Assembled programs can be linked to
high-level language programs— Microsoft* COBOL Compiler and
Microsoft* FORTRAN Compiler, for example —as well as to MS-
MACRO programs.

19

Utility Software Package Reference Manual

2.6.2 MS-CREF Cross-Reference Facility

The CREF-80 Cross-Reference Facility processes a cross-reference
file generated by MS-MACRO. The result is a cross-referencelisting
that can aid in the debugging of your program.

2.6.3 MS-LIB Library Manager

MS-LIB is designed as a runtime library manager for CP/M-80
versions of the Microsoft Utility Software Package. MS-LIB can
also be used to create your own library of assembly language
subroutines.

MS-LIB creates runtime libraries from assembly language programs
that are subroutines to MS-COBOL Compiler, MS-FORTRAN
Compiler, and other assembly language programs. The programs
collected by MS-LIB may be special modules created by the
programmer or modules from an existing library. With MS-LIB,
you can create specialized runtime libraries for whatever execution
requirements you design.

20

Chapter 3

Programming With the
Microsoft Utility Software Package

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4
3.4.1

3.4.2

Source File Organization 23
File Organization 23
Statement Line Format 23

Comments 24
Symbols 24
Label 25
Public 26
External 26
Modes 28

Opcodes and Pseudo-ops 29
Arguments: Expressions 30
Operands 31

Numbers 31

ASCII Strings 32

Character Constants 32
Symbols in Expressions 33
Current Program Counter Symbol
8080 Opcodes As Operands 34

Operators 35

34

21

Programming

This chapter describes what the user needs to know to create
MS-MACRO Assembler source files. Source files are created using
a text editor, such as CP/M-80 ED. The Microsoft Utility Software
Package does not include a text editor program.

Sourece files are assembled using the proceduresdescribed in Chapter
5 “Running Microsoft MACRO Assembler.”

3.1 Source File Organization

3.1.1 File Organization

An MS-MACRO Assembler source file is a series of lines written in
assembly language. The last line of the file must be an END
statement. Matching statements (such as IF...ENDIF) must be
entered in the proper sequence. Otherwise, lines may appear in any
order the programmer designs.

3.1.2 Statement Line Format

Source files input to MS-MACRO Assembler consist of statement
lines divided into parts or “fields.”

BUF: DS 1000H .create a buffer
T 1 1
Symbol Operation Argument Comment
Symbol This field contains one of the three types of

symbols (Label, Public, and External), followed
by a colon unless it is part of a SET, EQU, or
MACRO statement.

Operation This field contains an opcode, a pseudo-op, a
macro name, Or an expression.

Argument This field contains expressions (specific values,
variables, register names, operands and opera-
tors).

Comment This field containscomment text always preceded
by a semicolon.

23

Utility Software Package Reference Manual

All fields are optional. You may enter a completely blank line.

Statement lines may begin in any column. Multiple blanks or tabs
may be inserted between fields to improve readability, but at least
one space or tab is required between each field.

3.1.3 Comments

An MS-MACRO Assembler source line is basically an operation
and its argument. Therefore, the MS-MACRO Assembler requires
that a comment always begin with a semicolon. A comment ends
with a carriage return.

For long comments, you may want to use the .COMMENT pseudo-
op to avoid entering a semicolon for every line. See Section 4.1.4,
“File Related Pseudo-ops,” for the description of . COMMENT.

3.2 Symbols

Symbols are simply names for particular functions or values. Symbol
names are created and defined by the programmer.

Symbolsin the Microsoft Utility Software Package belong to one of
three types, according to their function. The three types are label,
public, and external. All three types of symbols have a mode
attribute that corresponds to the segment of memory the symbol
represents. Refer to Section 3.2.4, “Modes.”

All three types of symbols have the following characteristics:

1. Symbols may be any length, but the number of significant
characters passed to the linker varies with the type of
symbol:

a. For labels, only the first sixteen characters are sig-
nificant.

b. For public and external symbols, only the first six
characters are passed to the linker.

Additional characters are truncated internally.

Programming

2. A legal symbol name may contain the characters:
AZ 09 $. ? @
3. A symbol may not start with a digit or an underline.

When a symbol is read, lowercase is translated into upper-
case, so you can enter the name using either case or both.

3.2.1 Label

A label is a reference point for statements inside the program
module where the label appears. A label sets the value of the symbol
label to the address of the data that follows. For example, in the
statement

BUF: DS 1000H
BUF: equals the first address of the 1000H bytes of reserved space.

Once a label is defined, the label can be used as an entry in the
argument field. A statement with a label in its argument loops to
the statement line with that label in its symbol field, which is where
the label is defined. The label’s definition replaces the label used in
an argument field. For example,

STA BUF

sends the value in the accumulator to the area in memory represented
by the label BUF.

A label may be any legal symbol name, up to sixteen characters
long.

If vou want to define a label, it must be the first item in the
statement line. 8080 and Z80 labels must be followed immediately
by a single colon (no space), unless the label is part of a SET or EQU
statement. (If two colons are entered, the “label” becomes a public
symbol. See Section 3.2.2 “Public.”)

25

Utility Software Package Reference Manual

3.2.2 Public

A public symbol is defined much like a label. The difference is that a
public symbol is available as a reference point for statements in
other program modules, too.

A symbol is declared public by one of two methods:
1. Two colons (::) following the name. For example,
FOO: RET

2. One of the pseudo-ops PUBLIC, ENTRY, or GLOBAL. For
example,

PUBLIC FOO

See Section 4.1.2, “Data Definition and Symbol Definition
Pseudo-ops,” for descriptions of how to use these pseudo-ops.

The result of both methods of declaration is the same. Therefore.
FOO:: RET
is equivalent to:

PUBLIC FOO
FOO: RET

3.2.3 External

An external symbol is defined outside the program module where it
appears. An external symbol is defined as a public symbol in
another, separate program module. At link time (when the MS-LINK
Linking Loader is used), the external symbol is given the value of
the public symbol in the other program module. For example:

MOD1

FOO:: 0B 7 :PUBLICFOO =7
MOD2

BYTE EXT FOO ;EXTERNAL FOO

26

Programming

At link time, MS-LINK goes to the address of PUBLIC FOO and
uses the value there (7) for EXTERNAL FOO.

A symbol is declared external by:

1. Two pound signs (##) following a reference to a symbol
name. For example,

CALL FOO##

declares FOO as a two-byte symbol defined in another
program module.

2. One of the pseudo-ops EXT, EXTRN, or EXTERNAL for
two-byte values. For example,

EXT FOO

declares FOO as atwo-byte valuedefinedin another program
module.

3. One of the pseudo-ops BYTE EXT, BYTE EXTRN, or
BYTE EXTERNAL for one-byte values. For example,

BYTE EXT FOO

declares FOO as aone-byte valuedefined in another program
module.

See Section 4.1.2, “Data Definition and Symbol Definition
Pseudo-ops,” for descriptions of how to use these pseudo-ops.

As for public symbols, the result of both methods of declaration is
the same. Therefore,

CALL FOO##
is equivalent to

EXT FOO
CALL FOO

27

Utility Software Package Reference Manual

3.2.4 Modes

A symbol is referenced by entering its name in the argument field of
a statement line. When a symbol is referenced, the value of the
symbol (derived from the instruction which defines the symbol) is
substituted for the symbol name and used in the operation.

The value of a symbol is evaluated according to its program counter
(PC)mode. The PC mode determines whether a section of a program
will be loaded into memory at addresses predetermined by the
programmer (absolute mode), or at relative addresses that change
depending on the size and number of programs (code relative mode)
and amount of data (data relative mode), or at addresses shared
with another program module (common relative mode). The default
mode is code relative.

Absolute Mode

Absolute mode assembles nonrelocatable code. A programmer
selectsabsolute mode when a block of program code is to be loaded
each time into specific addresses, regardless of what else is loaded
concurrently.

Data Relative Mode

Data relative mode assembles code for a section of a program that
may change and therefore must be loaded into RAM. This applies
to program data areas especially. Symbols in data relative mode are
relocatable.

Code Relative Mode

Code (program) relative mode assembles code for sections of
programs that will not be changed and therefore can be loaded into
ROM/PROM. Symbols in code relative mode are relocatable.

Common Relative Mode

Common relative mode assembles code that is loaded into a defined
common data area. This allows program modules to share a block of
memory and common values.

Programming

To change mode, use a PC mode pseudo-op in a statement line. The
PC mode pseudo-ops are:

ASEG Absolute mode
DSEG Data relative mode
CSEG Code relative mode (default mode)

COMMON Common relative mode

These pseudo-ops are described in detail in Section 4.1.3, *PC Mode
Pseudo-ops.”

This PC mode capability in the MS-MACRO Assembler allows a
programmer to develop assembly language programs that can be
relocated. Many assemblylanguage programmers may have learned
always to set an origin statement at the beginning of every module,
subroutine, or main assembly language program. Under MS-
MACRO this mode of addressing is called absolute mode because
hard tor actual) addresses are specified beginning, especially, with
the origin statement.

MS-MACRO has two other, “relative” modes of addressing available,
called code (program) relative and data relative. Segments of code
written in these two modes are relocatable. Relocatable means the
program module can be loaded starting at any address in available

memory, using the /P and /D switches (special commands) in
MS-LINK.

3.3 Opcodes and Pseudo-ops

Opcodes are the mnemonic names for the machine instructions.
Pseudo-ops are directions to the assembler, not the microprocessor.

MS-MACRO supports two instruction sets: 8080 and Z80. A list of
the opcodes with brief summaries of their functions is included as
Appendix F. To program with the opcodes of the different languages,
the user must first enter the pseudo-op which tells the assembler
which language is being coded. Refer to Section 4.1.1, “Instruction
Set Selection Pseudo-ops,™ for details.

29

Ultility Software Package Reference Manual

MS-MACRO also supports a large variety of pseudo-ops that direct
the assembler to perform many different functions. The pseudo-ops
are described extensively in Chapter 4 and are summarized in
Appendix E.

Opcodes and pseudo-ops are (usually) entered in the operation field
of a statement line. (A program statement line usually has an entry
in the operation field, unless the line is a comment line only. The
operation field will be the first field filled if no label is entered.) An
operation can be any 8080 or Z80 mnemonic, or an MS-MACRO
Assembler pseudo-op, macro call, or expression.

The operation field entries are evaluated in the following order:

1. Macro call
2. Opcode/Pseudo-op

3. Expressions

MS-MACRO compares the entry in the operation field to an internal
list of macro names. If the entry is found, the macro is expanded. If
theentry is not amacro, MS-MACRO tries to evaluate the entry as
an opcode. If the entry is not an opcode, MS-MACRO tries to
evaluate the entry as a pseudo-op. If the entry is not a pseudo-op,
MS-MACRO evaluates the entry as an expression. If an expression
is entered as a statement line without an opcode, pseudo-op. or
macro name in front of it, the MS-MACRO Assembler does not
return an error. Rather, the assembler assumes that a define byte
pseudo-op belongs in front of the expression and assembles the line.

Because of the order of evaluation, a macro name that is the same as
an opcode prevents you from using the opcode again, except as a
macro call. For example, if you give a block of macro code the name
ADD in your program, you cannot use ADD as an opcode in that
program.

3.4 Arguments: Expressions

Arguments for the opcodes and pseudo-ops are usually called
expressions because they resemble mathematical expressions, such
as 5+4+3. Theparts of an expression are called operands (5, 4, and 3

30

Programming

in the mathematical expression) and operators (the + and * are
examples). Expressions can contain one operand or more than one.
One-operand expressions are probably the form most commonly
used as arguments. If the expression contains more than one
operand, the operands are related to each other by an operator. For
example,

5+4 6-3 7+2 8/7 9 8

and so on. In MS-MACRO, operands are numeric valuesrepresented
by numbers, characters, symbols, or 8080 opcodes. Operators may
be arithmetic or logical.

You are probably familiar with the various forms of expressions
that can be used as arguments, but you may want to review the
details given below for characteristics unique to MS-MACRO.

The following sections define the forms of operands and operators
MS-MACRO supports.

3.4.1 Operands

Operands can be numbers, characters, symbols, or 8080 opcodes.

Numbers

The default base for numbers is decimal. The base can be changed
by the .RADIX pseudo-op. Any base from 2 (binary) to 16 (hexa-
decimal) may be selected. When the radix is greater than 10, A-F
are used for the digits following Y. If the first digit of a number is
not numeric, the number must be preceded by a zero.

A number is always evaluated in the current radix unless one of the
following special notations is used:

nnnnB Binary
nnnnD Decimal
nnnnO Octai

nnnnH Hexadecimal

X'nnnn’ Hexadecimal
Numbers are 16-bit unsigned binary quantities. Overflow of a

number beyond two bytes (16 bits—that is, 65535 decimal) is
ignored, and the resuit is the low-order 16 bits.

31

Utility Software Package Reference Manual

ASCII Strings

A string is composed of zero or more characters delimited by
quotation marks. Either single () or double (") quotation marks can
be used as string delimiters. When a quoted string is entered as an
argument, the values of the characters are stored in memory one
after the other. For example,

DB "ABC”

stores the ASCII value of A at the first address, B at the second
address, and C at the third.

The delimiter quotation marks can be used as characters if they
appear twice for every character occurrence desired. For example,
the statement

"l am ""great”" today”
stores the string
| am “great” today

If no characters are placed between the quotation marks, the string
is evaluated as a null string.

Character Constants

Like strings, character constants are composed of zero, one, or two
ASCII characters, delimited by quotation marks. Either single or
double quotation marks may be used as delimiters. The delimiter
quotation marks can be used as characters if they appear twice for
every character occurrence desired.

The differences between character constants and strings are:

A character constant is only zero, one, or two characters.

2. Quoted characters are a character constant only if the
expression has more than one operand. If the characters are
entered as the only operand, they are evaluated and stored
as a string. For example,

‘A’+1 is a character constant, but

‘A’ is a string.

Programming

3. The value of a character constant is calculated, and the
result is stored with the low byte in the first address and the
high byte in the second. For example,

bW ‘AB'+0

evaluates to 4142H and stores 42 in the first address and 41
in the second.

A character constant comprised of one character has asits value the
ASCII value of that character. That is, the high-order byte of the
value is zero, and the low-order byte is the ASCII value of the
character. For example, the value of the constant ‘A’ is 41H.

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high-order
bvte and the ASCII value of the second character in the low-
order byte. For example, the value of the character constant
‘AB'+0is 41H+*256+42H+0.

The ASCII decimal and hexadecimal values for characters are
listed in Appendix C.

Symbols in Expressions

A symbol may be used as an operand in an expression. The symbol
is evaluated, and the value is substituted for the symbol. The
operation is performed using the symbol’s value.

The benefit of using symbols as operands is that the programmer
need not remember the exact value each time it is needed; rather,
the symbol name can be vused. The name is usually easier to
remember, especially if the symbol name is made mnemonic. The
use of symbols as operands becomes more attractive, of course, as
the number of symbols in a program increases.

Rules Governing the Use of Externals in Expressions

1. External symbols may be used in expressions with the
following operators only:

+ - « / MOD HIGH LOW

33

Utility Software Package Reference Manual

2. If an external symbol is used in an expression, the result of
the expression is always external.

Mode Rules Affecting Symbols in Expressions

1. Inany operation, except AND, OR, or XOR, the operands
may be any mode.

2. For AND, OR, XOR, SHL, and SHR, both operands must
be absolute and internal.

3. When an expression contains an absolute operand and an
operand in another mode, the result of the expression will
be in the other (not absolute) mode.

4. When subtracting two operands in different modes, the
result will be in absolute mode. Otherwise, the result will be
in the mode of the operands.

5. When adding a data relative symbol and a code relative sym-
bol, the result will be unknown, and MS-MACRO passes the
expression to MS-LINK as an unknown. which MS-LINK
resolves.

Current Program Counter Symbol

One additional symbol for the argument field only must be noted:
the current program counter symbol. The current program counter
is the address of the next instruction to be assembled. The current
program counter is often a convenient reference point for calculating-
new addresses. Instead of remembering or calculating the current
program address, the programmer uses a symbol that tells the
assembler to use the value of the current program address.

The current program counter symbol is $.

8080 Opcodes As Operands

8080 opcodes are valid one-byte operands in 8080 mode only. During
assembly, the opcode is evaluated to its hexadecimal value.

To use 8080 opcodes as operands, first set the .8080 pseudo-op. See

Section 4.1.3, “PC Mode Pseudo-ops,” for a description of how to
use the .8080 pseudo-op.

34

Programming

Only the first byte is a valid operand. Use parentheses to direct the
assembler to gencrate one byte for opcodes that normally generate
more than one. For example:

MVI A(JMP)
ADI (CPI)
MVI B,(RNZ)
CPl (INXH)
ACl (LXIB)

MVI C(MQOV A .B)

The assembler returns an error if more than one byte is included in
the operand (inside the parentheses)—such as (CPI 5j, (LXI
B.LABEL1), or (JMP LABEL2).

Opcodes that generate one byte normally can be used as operands
without being enclosed in parentheses.

3.4.2 Operators

MS-MACRO allows both arithmetic and logical operators. Operators
which return true or false conditions return true if the result is any
nonzero value and false if the result is zero.

The following arithmetic and logical operators are allowed in
expressions.

Operator Definition

NUL Returns true if the argument (a parameter) is
null. The remainder of the line after NUL is
taken as the argument to NUL. The condi-
tional

IF NUL ~argument -

is false if the first character of the argument is
anything other than a semicolon or carriage
return. Note that IFB and IFNB perform the
same functions but are simpler to use. (Refer
to "Conditional Listing Control Pseudo-ops.”
in Section 4.1.5.)

35

Utility Software Packuge Reference Manual

TYPE

LOW

36

The TYPE operator returns a byte that de-
scribes two characteristics of its argument:
{1) the mode, and (2) whether it is external or
not. The argument to TYPE can be any ex-
pression (string, numeric, logical). If the ex-
pression is invalid, TYPE returns zero.

The byte that is returned is configured as
follows:

The lower two bits are the mode. If the lower
two bits are:

0 the mode is absolute

1 the mode is program relative
2 the mode is data relative

3 the mode is common relative

The high bit (80H) is the external bit. If the
high bit is on, the expression contains an
external. If the high bit is off, the expression
is local (not external).

The defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
expression is undefined or external. If neither
bit is on, the expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make
a decision regarding program flow; for ex-
ample, when conditional assembly is involved.

Example
FOO MACRO X
LOCAL z
Z SET TYPE X
IF A

TYPE tests the mode and type of X. De-
pending on the evaluation of X, the block of
code beginning with IF Z... may be assembled
or omitted.

Isolates the low-order 8 bits of an absolute
16-bit value.

HIGH

MOD

SHR

SHL

- (Unary Minus)

+

EQ
NE
LT

LE

Programming

Isolates the high-order 8 bits of an absolute
16-bit value.

Multiply.
Divide.
Modulo. Divides the left operand by the right

operand and returns the value of the remainder
{modulo).

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be right-shifted.

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be left-shifted.

Indicates that following value is negative, as
in a negative integer.

Add.

Subtracts the right operand from the left
operand.

Equal. Returns true if the operands equal each
other.

Not Equal. Returns true if the operands are
not equal to each other.

Less Than. Returns true if the left operand is
less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right
operand.

Greater Than. Returns true if the left operand
is greater than the right operand.

Greater than or Equal. Returns true if the left
operand is greater than or equal to the right
operand.

Logical NOT. Returns true if the left operand
is true and the right is false or if the right is
true and the left is false. Returns false if both
are true or both are false.

37

Utility Software Package Reference Manual

AND

OR

XOR

Logical AND. Returns true if both operators
are true. Returns false if either operator is
false or if both are false. Both operands must
be absolute values.

Logical OR. Returns true if either operator is
true or if both are true. Returns false if both
operators are false. Both operands must be
absolute values.

Exclusive OR. Returns true if either operator
is true and the other is false. Returns false if
both operators are true or if both operators
are false. Both operands must be absolute
values.

The order of precedence for the operators is:

NUL, TYPE
LOW, HIGH

*,/, MOD, SHR, SHL

Unary Minus
+,-

EQ, NE, LT, LE, GT, GE

NOT
AND
OR, XOR

Subexpressions involving operators of higher precedence than an
expression are computed first. The order of precedence can be
altered by using parentheses around portions of an expression you
wish to give higher precedence.

All operators except +, -, *, and / must be separated from their
operands by at least one space.

The byte isolation operators (HIGH and LOW) isolate the high- or
low-order 8 bits of a 16-bit value.

38

Chapter 4

Assembler Features

4.1
4.1.1
4.1.2

4.1.3
4.1.4
4.1.5

4.2
4.2.1

4.2.2
4.2.3
4.2.4
4.2.5
4.3

Single-Function Pseudo-ops 41
Instruction Set Selection Pseudo-ops

Data Definition and
Symbol Definition Pseudo-ops 42

PC Mode Pseudo-ops 51
File-Related Pseudo-ops)
Listing Pseudo-ops 63
Format Control Pseudo-ops 63
General Listing Control Pseudo-ops

Conditional Listing Control
Pseudo-ops 68

Macro Expansion Listing Control
Pseudo-ops 69

CREF Listing Control Pseudo-ops 70
Macro Facility 7

Macro Definition Pseudo-op 72

Calling a Macro 73

Repeat Pseudo-ops 7%

Termination Pseudo-ops 79

Macro Symbol Pseudo-op 81

Special Macro Operators 82
Conditional Assembly Facility Pseudo-ops

41

66

84

39

Assembler Features

Microsoft MACRO Assembler features three general facilities:
single-function pseudo-ops, a macro facility, and a conditional
assembly facility.

4.1 Single-Function Pseudo-ops

Single-function pseudo-ops involve only their own statement line
and direct the assembler to perform only one function. (Macros and
conditionals involve more than one line of code, so they may be
thought of as block pseudo-ops.)

The single-function pseudo-ops are divided into five types: in-
struction set selection, data definition and symbol definition, PC
mode, file related, and listing control.

4.1.1 Instruction Set Selection Pseudo-ops

The defauit instruction set mode is 8080. If the correct instruction
set selection pseudo-op is not given, the assembler will return fatal
errors for opcodes that are not valid for the current instruction set
selection mode. That is, .Z80 assembles Z80 opcodes only; .8080
assembles 8080 opcodes only. Therefore, if you have written any
assembly language programs for Z80, you need to insert the .Z80
instruction set pseudo-op at the beginning of the program file.

Note that all the pseudo-ops listed in this chapter will assemble in
both instruction set modes.

41

Utility Software Package Reference Manual

280

.Z80 takes no arguments. .Z80 directs MS-MACRO to assemble
780 opcodes.

.8080

.8080 takes no arguments. .8080 directs MS-MACRO to assemble
8080 opcodes (default).

All opcodes entered following an instruction set selection pseudo-op
will be assembled as that type of code until a different instruction
set selection pseudo-op is encountered.

If you enter an opcode not belonging to the selected instruction set,
MS-MACRO will return an “Objectionable Syntax” error (letter O).

4.1.2 Data Definiticn and
Symbol Definition Pseudo-ops

All of the data definition and symbol definition pseudo-ops are
supported in both instruction set modes. (The one notableexception
is SET, which is illegal in .Z80 mode.) For your information, the
following notation has been placed before the pseudo-op syntax to
indicate which microprocessor the pseudo-op is usually associated
with:

+ Indicates a Z80 pseudo-op.
No asterisk indicates an Intel 8080 pseudo-op.

Assembler Features

Define Byte

DB <exp>(<exp>..]
*+ DEFB<exp>[<exp>..]
DB <string>[,<string>...]
* DEFM <string>[,<string>...]

The arguments to DB are either expressions or strings. The
arguments to DEFB are expressions. The arguments to DEFM are
strings. Strings must be enclosed in quotation marks, either single
or double.

Note

DB is used throughout the following explanation to represent
all the define byte pseudo-ops.

DB is used to store a value (string or numeric) in a memory location,
beginning with the current location counter.

Expressions must evaluate to one byte. (If the high byte of the
result is 0 or 255, no error is given; otherwise, an A error results.)

Strings of three or more characters cannot be used in expressions
(i.e., they must be immediately followed by a comma or the end of
the line). The charactérs in an 8080 or Z80 string are stored in the
order of appearance, each as a one-byte value with the high-order
bit set to zero.

Example:
DB ‘AB’
DB ‘AB" AND OFFH
DB ‘ABC’
assembles as:
0000 41 42 DB ‘AB’
0002 42 DB ‘AB' AND OFFH
0003 41 42 43 DB ‘ABC’

43

Utility Software Package Reference Manual

Define Character

DC «<string.>
DC stores the characters in <string > in successive memory locations
beginning with the current location counter. As with DB, characters
are stored in order of appearance, each as a one-byte value with the
high-order bit set to zero. However, DC stores the last character of

the string with the high-order bit set to one. An error will result if
the argument to DC is a null string.

Example:
FOO: DC ABC”
assembles as:

0000 4142C3 FOO: DC "ABC”

44

Assembler Features

Define Space

DS <exp>-[.<val:>>)
+ DEFS <exp>[,<val>)

The define space pseudo-ops reserve an area of memory. The value
of <exp:> gives the number of bytes to be reserved.

To initialize the reserved space, set <val> to the value desired. If
<val> is nul (that is, omitted), the reserved space is left as is
(uninitialized); the reserved block of memory is not automatically
initialized to zeros. As an alternative to setting <val>>to zero, when
vou want the define space block initialized to zeros, you can use the
/M switch at assembly time. See Section 5.2.4, “Switches,” for a
description of the /M switch.

All names used in <exp>> must be previously defined (i.e., all names
known at that point on pass 1). Otherwise, a V" error is generated
during pass 1, and a “U" error may be generated during pass 2. If a
“U"error is not generated during pass 2, a phase error will probably
be generated because the define space pseudo-op generated no code
on pass 1.

Example
DS 100H

reserves 100H bytes of memory, uninitialized (whatever values
were in those bytes before the program was loaded will still be
there). Use the /M switch at assembly time to initialize the 100H
bvtes to zero, if you want. Or, use the following statement to
initialize a reserved space to zero or any other value.

DS 100H,2

reserves 100H bytes, each initialized to a value of 2.

45

Ulility Software Package Reference Manual

Define Word

DW -.exp *[,~exp ~...]
+ DEFW <exp>[.<exp-...]

The define word pseudo-ops store the values of the expressions in
successive memory locations beginning with the current location
counter. Expressions are evaluated as 2-byte (word) values. Values
are stored low-order byte first, then high-order byte.

Contrast with DB.

Example
FOO: DW 1234H
assembles as:

0000 1234 FOO: oW 1234H

Note

The bytes are shown on the listing in the order entered. not the
order stored.

46

Assembler Features

Equate

<name - EQU <exp--
EQU assigns the value of <exp - to <<name->. The <name> may be
a label, a symbol, or a variable, and may be used subsequently in

expressions. <name-> may not be followed by colon(s).

If <exp:>isexternal, an error is generated. If <name> already has a
value other than <exp -, an “M" error is generated.

If you will want to redefine <name > later in the program, use the
SET or ASET pseudo-op instead of EQU.

Contrast with SET.

Example

BUF EQU OF3H

47

UlLility Software Package Relference Manual

External Symbol

EXT: name -[,- name ...}
EXTRN < name.:[,”name>-...]

+ EXTERNAL <.name -[,<<name.-...]
BYTE EXT < symbol -
BYTE EXTRN < symbol.~
BYTE EXTERNAL <:symbol:»

The external symbol pseudo-ops declare that the name(s) in the list
are external (i.e., defined in a different module). If any item in the
list refers to a name that is defined in the current program, an *M"”
error results. A reference to a name where the name is followed
immediately by two pound signs (e.g., NAME##) also declares the
name as external.

Externals may evaluate to either one or two bytes. For all external
symbol names, only the first six characters are passed to the linker.
Additional characters are truncated internally.

Example
EXTRN ITRAN :tranf init rtn

MS-MACRO will generate no code for this statement when this
module is assembled. When ITRAN is used as an argument to a
CALL statement, the CALL ITRAN statement generates the code
for CALL but a zero value (0000+) for ITRAN. At link time,
MS-LINK will search all modules loaded for a PUBLIC ITRAN
statement and use the definition of ITRAN found in that module to
define ITRAN in the CALL ITRAN statement.

48

Assembler Features

Public Symbol

ENTRY <name>[,.<name>...)
GLOBAL <name>[,<name>...)
PUBLIC <name>[,<name>...]

The public symbol pseudo-ops declare each name in the list as
internal and therefore available for use by this program and other
programs to be loaded concurrently and linked with MS-LINK. All
of the names in the list must be defined in the current program, or a
“U" error results. An “M" error is generated if the name is an
external name or a common block name.

Only the first six characters of a public symbol name are passed to
the linker. Additional characters are truncated internally.

Example

PUBLIC ITRAN :tranfinitrtn

ITRAN: LD HL.PASSA :store addr of
.reg pass area

MS-MACRO assembles the LD statement as usual but generates
no code for the PUBLIC ITRAN statement. When MS-LINK sees
EXTRN ITRAN in another module, it knows to search until it sees
this PUBLIC ITRAN statement. Then, MS-LINK links the value
of ITRAN: LI HL.PASSA statement to the CALL ITRAN state-
ment in the other module(s).

49

Ultility Software Package Reference Manual

Set

<name> SET <exp> (Not in .Z80 mode)
* <name> DEFL <exp>
<name> ASET <exp>

The set pseudo-ops assign the value of <exp> to <name>. The
<name> may be a label, a symbol, or a variable, and may be used
subsequently in expressions. <name> may not be followed by
colon(s). If <exp> is external, an error is generated.

The SET pseudo-op may not be used in .Z80 mode because SET is a
780 opcode. Both ASET and DEFL may be used in both instruction
set modes.

Use one of the SET pseudo-ops instead of EQU to define and
redefine <name>s you may want to redefine later. <name> may
be redefined with any of the set pseudo-ops. regardless of which

pseudo-op was used to define <name> originally (the prohibition
against SET in .Z80 mode still applies, however).

Contrast with EQU.

Example

FOO ASET BAZ+1000H
Whenever FOO is used as an expression (operand), the assembler
will evaluate BAZ+1000H and substitute the value for FOO. Later.
if you want FOO to represent a different value, simply reenter the
FOO ASET statement with a different expression.

FOO ASET BAZ+1000H
FOO ASET 3000H

FOO DEFL 6CDEH

Assembler Features

4.1.3 PC Mode Pseudo-ops

Many of the pseudo-ops operate on or from the current location
counter, also known as the program counter or PC. The current PC
is the address of the next byte to be generated.

In MS-MACRO, the PC has a mode, which gives symbols and
expressions their modes. (Refer again to Section 1.6, “Overview"”
and Section 3.2, "Symbols,” if necessary.) Each mode is given a
segment of memory by MS-LINK for the instructions assembled to
each mode.

The four modes are absolute, data relative, code relative, and
common relative.

If the PC mode is absolute, the PC is an absolute address. If the PC
mode is relative, the PC is a relative address and may be considered
an offset from the absolute address where the beginning of that
relative segment will be loaded by MS-LINK.

The PC mode pseudo-ops are used to specify in which PC mode a
segment of a program will be assembled.

Absolute Segment

ASEG
ASEG never has operands. ASEG generates nonrelocatable code.
ASEG sets the location counter to an absolute segment (actual
address) of memory. The ASEG will default to 0, which could cause
the module to write over part of the operating system. We recommend

that cach ASEG be followed with an ORG statement set at 103H or
higher.

51

Utility Software Package Reference Manual

Code Segment
CSEG

CSEG never has an operand. Code assembled in code relative mode
can be loaded into ROM/PROM.

CSEG resets the location counter to the code relative segment of
memory. The location will be that of the last CSEG (default is 0),
unless an ORG statement follows the CSEG to change the location.

Note, however, that the ORG statement does not set a hard
(absolute) address under CSEG mode. An ORG statement under
CSEG causes the assembler to add the number of bytes specified by
the <exp> argument in the ORG statement to the last CSEG
addressloaded. If, for example, ORG 50 is given, MS-MACRO will
add 50 bytes to the current CSEG location, then begin loading the
CSEG. The clearing effect of the ORG statement following CSEG
(and DSEG as well) can be used to give the module an offset. The
rationale for not allowing ORG to set an absolute address for CSEG
is to keep the CSEG relocatable.

To set an absolute address for the CSEG, use the /P switch in
MS-LINK.

CSEG is the default mode of the assembler. Assembly begins with a
CSEG automatically executed, and the location counter in the code
relative mode pointing to location 0 in the code relative segment of
memory. All subsequent instructions will be assembled into the
code relative segment of memory until an ASEG, DSEG, or
COMMON pseudo-op is executed. CSEG is then entered to return
the assembler to code relative mode, at which point the location
counterreturns to the next freelocationin the code relative segment.

52

Assembler Features

Data Segment
DSEG

The DSEG pseudo-op never has operands. DSEG specifies segments
of assembled relocatable code that will later be loaded into RAM
only.

DSEG sets the location counter to the data relative segment of
memory. The location of thedata relative counter will be that of the
last DSEG (default is 0), unless an ORG statement follows the
DSEG to change the location.

Note. however, that the ORG statement does not set a hard
(absolute) address under DSEG mode. An ORG statement under
DSEG causes the assembler to add the number of bytes specified
by the <exp> argument in the ORG statement to the last DSEG
address loaded. If, for example, ORG 50 is given, MS-MACRO will
add 50 bytes to the last DSEG address loaded, then begin loading
the DSEG. The clearing effect of the ORG statement following
DSEG (and CSEG as well) can be used to give the module an offset.
The rationale for not allowing ORG to set an absolute address for
DSEG is to'keep the DSEG relocatable.

To set an absolute address for the DSEG, use the /D switch in
MS-LINK.

Utility Software Package Reference Manual

Common Block
COMMON /<block name>/

The argument to COMMON is the common block name. COMMON
creates a common data area for every common block that is named
in the program. If <block name> is omitted or consists of spaces,
the block is considered to be blank common.

Common statements are nonexecutable, storage-allocating state-
ments. COMMON assigns variables, arrays. and data to a storage
area called common storage. This allows various program modules
to share the same storage area. Statements entered following the
COMMON statement are assembled to the common area under the
<block name>. The length of a common area is the number of bvtes
required to contain the variables, arrays, and data declared in the
common block, which ends when another PC mode pseudo-op is
encountered. Common blocks of the same name may be different
lengths. If the lengths differ, then the program module with the
longest common block must be loaded first (that is, must be
the first module name given in the MS-LINK command line. See
Chapter 6, “Microsoft LINK Linking Loader,” for the description
of MS-LINK).

COMMON sets the location counter to the selected common block
in memory. The location is always the beginning of the area so
that compatibility with the FORTRAN COMMON statement is
maintained.

Example
COMMON /DATABIN/
ANVIL EQU 100H
DB OFFH
bW 1234H
DCI ‘FORGE’
CSEG

54

Assembler Features

Set Origin
ORG <exp>

At any time, the value of a location counter can be changed by use
of ORG. Under the ASEG PC mode, the location counter is set to
the value of <exp>, and the assembler assigns generated code
starting with that value. Under the CSEG, DSEG, and COMMON
PC modes, the location counter for the segment is incremented by
the value of <exp>, and the assembler assigns generated code
starting with the value of that last segment address loaded plus the
value of <exp>. All names used in <exp> must be known on pass 1,
and the value must either be absolute or in the same area as the
location counter.

Example

DSEG
ORG 50

sets the data relative location counter to 50, relative to the start of
thedatarelativesegment of memory. Thismeansthat the first 50H
addresses will be filled with 0's. This method provides relocatability.
The ORG <exp> statement does not specify a fixed address in
CSEG or DSEG mode; rather, MS-LINK loads the segment at a
flexible address appropriate to the modules being loaded together.

On the other hand, a program that begins with the statements

ASEG
ORG 800H

and isassembled entirely in absolute mode will always load beginning
at 800H, unless the ORG statement is changed in the source file.
That is, ORG <exp> following ASEG originates the segment at a
fixed (i.e., absolute) address specified by <exp>. However, the
same program, assembled in code relative mode with no ORG
statement, may be loaded at any specified address by appending
the /P:<address> switch to the MS-LINK command string. (For
details, see “Switches,” Section 6.2.2.)

55

Ultility Software Package Reference Manual

Relocate

.PHASE <exp>

.DEPHASE

.PHASE allows code to be located in one area, but executed only at
a different area with a start address specified by <exp>. The <exp>
must be an absolute value. DEPHASE is used to indicate the end
of the relocated block of code.

The PC mode within a .PHASE block is absolute, the same as the
mode of the <exp>in the .PHASE statement. The code, however,
is loaded in the area in effect when the .PHASE statement is
encountered. The code within the block is later moved to the address
specified by <exp> for execution.

Example
.PHASE 100H
FOO: CALL BAZ
JMP Z00
BAZ: RET
.DEPHASE
Z00: JMP 5

assembles as:

.PHASE 100H

0100 CD 0106 FOO: CALL BAZ
0103 C3 o007 JMP 200
0106 Co BAZ: RET
.DEPHASE
0007’ C3 0005 ZOO: JMP 5
END

.PHASE....DEPHASE blocks are a way to execute a block of code
at a specific absolute address.

56

Assembler Features

4.1.4 File-Related Pseudo-ops

The file-related pseudo-ops insert long comments in the program,
give the module a name, end the module, or move other files into the
current program.

Comment

.COMMENT <delim><text><delim>

The first nonblank character encountered after .COMMENT is
taken as the delimiter. The <text> following the delimiter becomes
a comment block which continues until the next occurrence of
<delimiter>.

Use the COMMENT pseudo-op to make long comments. It is not
necessary to enter the semicolon toindicate acomment. Indeed, the
main reason for using . COMMENT is to eliminate the need to begin

each comment line with a semicolon. During assembly, COMMENT
blocks are ignored and not assembled.

Example

.COMMENT = any amount of text
entered here

.+ return to normal assembly

57

Utility Software Package Reference Manual

End of Program
END [<exp>}

The END statement specifies the end of the module. If the END
statement is not included, a “%No END statement™ warning error
message results.

The <exp> may be a label, symbol, number. or any other legal
argument that MS-LINK can load as the starting point into the
first address to be loaded. If <exp>is present, MS-LINK will place
an 8080 JMP instruction at 0100H to the address of <exp>. If
<exp>is not present, then no start address is passed to MS-LINK
for that program, and execution begins at the first module loaded.
(Also, if <exp> is not specified, the MS-LINK /G switch will not
work for the module.)

The <exp> tells MS-LINK that the program is a main program.
Without <exp>, MS-LINK takes assembly language programs as
subroutines. If you link only assembly language programs and
none contains an END statement with <exp>, MS-LINK will ask
for a main program. If you link two or more programs with END
<exp> statements, MS-LINK cannot distinguish which should be
the main program.

If you want to link two or more main programs, use the /G :Name or
/E:Name switches in MS-LINK (see Section 6.2.2, “Switches™).
The “Name” will be the <exp> of the END statement for the
program you want to serve as the main program.

If any high-level language programis loaded with assembly language
modules, MS-LLINK takes the high-level language program as the
main program automatically. Therefore, if you want an assembly
language module executed before the high-level language program,
use the /G:Name or /E:Name switch in MS-LINK to set the
assembly language module at the beginning of the program.

As an alternative, we recommend that you place a CALL or
INCLUDE statement at the beginning of the high-level language
program, and call in the assembly language program for execution
prior to execution of the high-level language program.

58

Assembler Features

Include

INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>

All three pseudo-ops are synonymous.

These include pseudo-ops insert source code from an alternate
assembly language source file into the current source file during
assembly. Use of an include pseudo-op eliminates the need to repeat
an often-used sequence of statements in the current source file.

The <filename> is any valid file specification for the operating
system. If the filename extension and/or device designation are
other than the default, source filename specifications must include
them. The default filename extension for source files is .MAC. The
default device designation is the currently logged drive or device.

The included file is opened and assembled into the current source
file immediately following the include pseudo-op statement. When
end-of-file is reached, assembly resumes with the next statement
following the include pseudo-op.

Nested includes are not allowed. If encountered, they will result in
an objectionable syntax error, *O."

The file specified in the operand field must exist. If the file is not
found, the error “V" (value error) is returned, and the include is
ignored. The “V" error is also returned if the include filename
extension is not .MAC.

On an MS-MACRO listing, the letter C is printed between the
assembled code and the source line on each line assembled from an
included file. See *“MS-MACRO Assembler Listing File Formats,”
Section 5.3, for a description of listing file formats.

59

Utility Software Package Reference Manual

Name Module

NAME (‘modname’)
Name defines a name for the module. The parentheses and quotation
marks around modname are required. Only the first six characters
are significant in a module name.
A module name may also be defined with the TITLE pseudo-op. In

the absence of both the NAME and TITLE pseudo-ops, the module
name is created from the source filename.

60

Assembler Features

Radix
.RADIX <exp>

The <exp> in a .RADIX statement is always a decimal numeric
constant, regardless of the current radix.

The default input radix (or base) for all constants is decimal. The
.RADIX pseudo-op allows you to change the input radix to any
base in the range 2 to 16.

.RADIX does not change the radix of the listing; rather, it allows
vou to input numeric values in the radix you choose without special
notation. (Values in other radices still require the special notations
described in “Operands,” Section 3.4.1.) Values in the generated
code remain in hexadecimal radix.

Example

DEC: DB 20
.RADIX 2

BIN: DB 00011110
.RADIX 16

HEX: DB OCF
.RADIX8

OCT: DB 73
.RADIX10

DECI: DB 16

HEXA: DB OCH

assembles as:

0000 14 DEC: DB 20

0002 .RADIX 2

0001 1E BIN: DB 00011110
0010 .RADIX 16

0002° CF HEX: D8 OCF

0008 .RADIX8

0003 3B OCT: DB 73

OOO0A .RADIX10

0004° 10 DECI: DB 16
0005 0OC HEXA: DB OCH

61

Utility Software Package Reference Manual

Request
.REQUEST <filename>[<tilename>...]

When you run MS-LINK, .REQUEST sends a request to the
MS-LINK Linking Loader to search the filenames in the list for
undefined external symbols. If MS-LINK finds any undefined
external symbols (external symbols for which a corresponding
public symbol is not currently loaded), you will know that you need
to load one or more additional modules to complete linking.

The filenames in the list should be in the form of legal symbols.
<filename> should not include a filename extension or device

designation. MS-LINK assumes the default extension (.REL) and
the currently logged disk drive.

Example
REQUEST SUBRT

MS-LINK will search SUBR1 for external symbols which do not
have corresponding public symbol definitions declared among the
currently loaded modules.

62

Assembler Features

4.1.5 Listing Pseudo-ops

Listing pseudo-ops perform two general functions: format control
and listing control. Format control pseudo-ops allow the programmer
to insert page breaks and direct page headings. Listing control
pseudo-ops turn on and off{ the listing of all or part of the assembled
file.

Format Control Pseudo-ops

These pseudo-ops allow you to direct page breaks, titles, and sub-
titles on your program listings.

Form Feed

*+ *EJECT [<exp>]

PAGE [<exp>]

$EJECT
The form feed pseudo-ops cause the assembler to start a new output
page. The assembler puts a form feed character in the listing file at
the end of the page.
The value of <exp>, if included, becomes the new page size
(measured in lines per page) and must be in the range 10 to 255. The
default page size is 50 lines per page.

*EJECT must begin in column 1.
Example

*EJECT 58

The assembler causes the printer to start a new page every time 58
lines of program have been printed.

63

Ultility Software Package Reference Manual

Title

TITLE <text>
TITLE specifies a title to be listed on the first line of ¢cach page. If
more than one TITLE is given, a “Q” error results. The first six
characters of the title are used as the module name, unlessa NAME

pseudo-op is used. (If neither a TITLE nor a NAME pseudo-op is
used, the module name is created from the source filename.)

Example

TITLE PROG1

The module name is now PROG1. The module may be called by this
name, which will be printed at the top of every listing page.

64

Assembler Features

Subtitle

SUBTTL <text>
STITLE (‘<text>')

SUBTTL specifies a subtitle to be listed in each page heading on
the line after the title. The <text>is truncated after 60 characters.

Any number of SUBTTL pseudo-ops may be given in a program.
Each time the assembler encounters SUBTTL, it replaces the
<text>from the previous SUBTTL with the <_text> from the most
recently encountered SUBTTL. To turn off SUBTTL for part of the
output, enter a SUBTTL with a null string for <text>.

Example

SUBTTL SPECIAL I/0 ROUTINE

SUBTTL

The first SUBTTL causes the subtitle SPECIAL IO ROUTINE to
be printed at the top of every page. The second SUBTTL turns off
the subtitle (the subtitle line on the listing is left blank).

65

Utility Software Package Relerence Manual

General Listing Control Pseudo-ops

.LIST lists all lines with their code
XLIST suppresses all listing

.LIST is the default condition. If you specify a listing file in the
command line, the file will be listed.

When .XLIST is encountered in the source file, source and object
code will not be listed. .XLIST remains in effect until a .LIST is
encountered.

.XLIST overrides all other listing control pseudo-ops. So, nothing

will be listed, even if another listing pseudo-op (other than .LIST) is
encountered.

Example

.XLIST ;listing suspended here

.LiST listing resumes here

66

Assembler Features

Print at Terminal
PRINTX <delim><text><delim>

The first nonblank character encountered after .PRINTX is the
delimiter. The following text is listed on the terminal during
assembly until another occurrence of the delimiter is encountered.
.PRINTX is useful for displaying progress through a long assembly
or for displaying the value of conditional assembly switches.

.PRINTX will output on both passes. If only one printout is desired,
use the IF1 or IF2 pseudo-op, depending on which pass you want
displayed. See “Conditional Assembly Facility Pseudo-ops” in
Section 4.3 for IF1 and IF2.

Example
PRINTX *Assembly half done*

The assembler will send this message to the terminal screen when
encountered.

1F1
.PRINTX *Pass 1 done* ;pass 1 message only
ENDIF

IF2
.PRINTX *Pass 2 done* ;pass 2 message only
ENDIF

67

Utility Software Packuge Reference Manual

Conditional Listing Control Pseudo-ops
The three conditional listing control pseudo-ops are used to specify
whether or not you wish statements contained within a false

conditional block to appear on the listing. See also the description
of the /X switch in “Switches,” Section 5.2.4.

Suppress False Conditionals
.SFCOND

.SFCOND suppresses the portion of the listing that contains
conditional expressions that evaluate as false.

List False Conditionals
LFCOND

.LFCOND assures the listing of conditional expressions that
evaluate as false.

Toggle False Listing Conditionals
.TFECOND

.TFCOND toggles the current setting. . TFCOND operates inde-
pendently from .LFCOND and .SFCOND. .TFCOND toggles the
default setting, which is set by the presence or absence of the /X
switch in the assembler command line. When /X is present,
.TFCOND will cause false conditionals to list. When /X is not
given, .TFCOND will suppress false conditionals.

68

Assembler Features

Macro Expansion Listing Control Pseudo-ops
Expansion listing control pseudo-ops control the listing of lines

inside macro and repeat pseudo-op (REPT, IRP, IRPC) blocks, and
may be used only inside a macro or repeat block.

Exclude Noncode Macro Lines
XALL
.XALL is the default.

.XALL lists source code and object code produced by a macro, but
source lines which do not generate code are not listed.

List Macro Text
LALL

.LALL lists the complete macro text for all expansions, including
lines that do not generate code.

Suppress Macro Listing
SALL

.SALL suppresses listing of all text and object code produced
by macros.

69

Utility Software Package Reference Manual

CREF Listing Control Pseudo-ops

You may want the option of generating a cross-reference listing for
part of a program but not all of it. To control the listing or
suppressing of cross-references, use the cross-reference listing control
pseudo-ops, .CREF and .XCREF, in the source file for MS-MACRO.
These two pseudo-ops can be entered at any point in the program in
the operator field. Like the other listing control pseudo-ops, .CREF
and .XCREF support no arguments.

Suppress Cross-References
XCREF

.XCREF turns off the .CREF (default) pseudo-op. . XCREF remains
in effect until MS-MACRO encounters .CREF. Use .XCREF to
suppress the creation of cross-references ir: selected portions of the
file. Because neither .CREF nor .XCREF takes effect until the /C
switch is set in the MS-MACRO command line, there is no need to
use .XCREF if you want the usual list file (one without cross-
references); simply omit /C from the assembler command line.

List Cross-References
.CREF

.CREF is the default condition. Use .CREF to restart the creation
of a cross-reference file after using the . XCREF pseudo-op. .CREF
remains in effect until MS-MACRO encounters .XCREF. Note,
however, that .CREF has no effect until the /C switch is set in the
MS-MACRO command line.

70

Assembler Features

4.2 Macro Facility

The macro facility allows you to write blocks of code which can be
repeated without recoding. The blocks of code begin with either the
macro definition pseudo-op or one of the repetition pseudo-ops and
end with the ENDM pseudo-op. All of the macro pseudo-ops may be
used inside a macro block. In fact, nesting of macros is limited only
by memory.

The macro facility of the MS-MACRO Assembler includes pseudo-
ops for:

macro definition:
MACRO

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

The macro facility also supports some special macro operators:

&

!

%

71

Utility Software Package Reference Manual

4.2.1 Macro Definition Pseudo-op

<name>MACRO <dummy>[.<dummy>...]

ENDM

The block of statements from the MACRO statement line to the
ENDM statement line comprises the body of the macro, or the
macro’s definition.

<name> is like a label and conforms to the rules for forming
symbols. Note that <name> may be any length, but only the first
16 characters are passed to the linker. After the macro has been
defined, <name> is used to invoke the macro.

A <dummy> is a place holder that is replaced by a parameter in a
one-for-one text substitution when the macro block is used. Each
<dummy>may be up to 32 characters long. The number of dummies
is limited only by the length of a line. If you specify more than one
dummy, they must be separated by commas. MS-MACRO interprets
all characters between commas as a single dummy.

Note

A dummy is always recognized exclusively as a dummy. Even
if a register name (such as A or B) is used as a dummy, it will be
replaced by a parameter during expansion.

A macro block is not assembled when it is encountered. Rather,
when you call a macro, the assembler “expands™ the macro call
statement by bringing in and assembling the appropriate macro
block.

If you want to use the TITLE, SUBTTL, or NAME pseudo-ops for
the portion of your program where a macro block appears, you
should be careful about the form of the statement. if, for example,
you enter SUBTTL MACRO DEFINITIONS, MS-MACRO will
assemble the statement as a macro definition with SUBTTL as
the macro name and DEFINITIONS as the dummy. To avoid
this problem, alter the word MACRO in some way; for example,
-MACRO, MACROS, and so on.

72

Assembler Features

Calling a Macro
To use a macro, enter a macro call statement:
<name> <parameter>>[,<parameter>...]

<name>is the<<name™ of the macro block. A <parameter>replaces
a <dummy> on a one-for-one basis. The number of parameters is
limited only by the length of a line. If you enter more than one
parameter, they must be separated by commas. If you place angle
brackets around parameters separated by commas, the assembler
will pass all the items inside the angle brackets as a single parameter.
For example,

FOO 12345

passes five parameters to the macro, but,
FOO <1.2.3.4,5>

passes only one.

The number of parameters in the macro call statement need not be
the same as the number of dummies in the macro definition. If there
are more parameters than dummies, the extras are ignored. If there
are fewer, the extra dummies will be made null. The assembled code
will include the macro block after each macro call statement.

Example

EXCHNG MACRO X
PUSH X
PUSH Y
POP X
POP Y
ENDM

73

Utility Software Package Reference Manual

If you then enter as part of a program some code and a macro call
statement,

LDA 2FH
MOV HLA
LDA 3FH
MOV DE.A

EXCHNG HL.DE

assembly generates the code:

0000" 3A 002F LDA 2FH
0003 67 MOV HLA
0004 3A O0O3F LDA 3FH
0007" &7 MOV DE.A
EXCHNG HL,DE

0008 ES5 + PUSH HL
0009 Ds + PUSH DE
OOOA" E1 + POP HL
0008’ D1 + POP DE

74

Assembler Features

4.2.2 Repeat Pseudo-ops

The pseudo-ops in this group allow the operations in a block of
code to be repeated for the number of times you specify. The
major differences between the repeat pseudo-ops and MACRO
pseudo-op are:

1. MACRO gives the block a name by which to call in the code
wherever and whenever needed; the macro block can be
used in many different programs by simply entering a
macro call statement.

2. MACRO allows parameters to be passed to the macro block
when a macro is called: hence, parameters can be changed.

Repeat pseudo-op parameters must be assigned as a part of the code
block. If the parameters are known in advance and will not change,
and if the repetition is to be performed for every program execution,
then repeat pseudo-ops are convenient. With the macro pseudo-op,
you must call in the macro each time it is needed.

Note that each repeat pseudo-op must be matched with the ENDM
pseudo-op to terminate the repeat block.

75

Utility Software Package Reference Manual

Repeat

REPT <exp>

ENDM

Repeat block of statements between REPT and ENDM <exp>
times. <exp> is evaluated as a 16-bit unsigned number. If <exp>
contains an external symbol or undefined operands, an error is
generated.

Example
X SET 0
REPT 10 .generatesDB 1 - DB
10
X SET X+1
DB X
ENDM
assembles as:
0000 X SET 0
REPT 10 ;generates DB 1 - DB
10
X SET X+1
DB X
ENDM
0000 01 + DB X
0001" 02 + DB X
0002° 03 + DB X
0003 04 + DB X
0004 05 + DB X
0005 06 + DB X
0006 07 + DB X
0007 08 + DB X
o008 09 + DB X
0009 OA + DB X
END

76

Assembler Features

Indefinite Repeat

IRP <dummy> <parameters inside angle brackets>

ENDM

Parameters must be enclosed in angle brackets. Parameters may be
any legal symbol, string, numeric, or character constant. The block
of statements is repeated for each parameter. Each repetition
substitutes the next parameter for every occurrence of <dummy >
in the block. If a parameter is null (i.e., <>), the block is processed
once with a null parameter.

Example

IRP X,<12,3,4,56,7,89,10>
DB X
ENDM

This example generates the same bytes (DB 1—DB 10) as the
REPT example.

When IRP is used inside a macro definition block, angle brackets
around parameters in the macro call statement are removed before
the parameters are passed to the macro block. An example, which
generates the same code as above, illustrates the removal of one
level of brackets from the parameters:

FOO MACRO X

IRP Y<X>
DB Y
ENDM

ENDM

When the macro call statement
FO0<1,23.456,7.89,10>

is assembled, the macro expansion becomes:
IRP ¥<123456,789,10>
DB Y
ENDM

The angle brackets around the parameters are removed, and all
items are passed as a single parameter.

77

Utility Software Package Reference Manual

Indefinite Repeat Character

IRPC <dummy><string>

ENDM

The statements in the block are repeated once for each character in
the string. Each repetition substitutes the next character in the
string for every occurrence of <dummy> in the block.

Example
IRPC X,0123456789
DB X+1
ENDM

This example generates the same code (DB 1-DB 10) as the two
previous examples.

78

Assembler Features .

4.2.3 Termination Pseudo-ops

End Macro

ENDM
ENDM tells the assembler that the macro or repeat block is ended.
Every MACRO, REPT, IRP, and IRPC must be terminated with
the ENDM pseudo-op. Otherwise, the “Unterminated REPT/IRP/
IRPC/MACRO” message is generated at the end of each pass. An
unmatched ENDM causes an “O” error.

If you wish to be able to exit from a macro or repeat block before
expansion is completed, use EXITM.

79

Utility Software Package Reference Manual

Exit Macro
EXITM

The EXITM pseudo-op is used inside a macro or repeat block to
terminate an expansion when some condition makes the remaining
expansion unnecessary or undesirable. Usually EXITM is used in
conjunction with a conditional pseudo-op.

When an EXITM is assembled, the expansionis exited immediately.
Any remaining expansion or repetition is not generated. If the
block containing the EXITM is nested within another block, the
outer level continues to be expanded.

Example

FOO MACRO X

Y SET 0
REPT X

Y SET Y+1
IFE Y-OFFH ;testY
EXITM ;if true, exit REPT
ENDIF
OB Y
ENDM
ENDM

80

Assembler Features

4.2.4 Macro Symbol Pseudo-op
LOCAL <dummy>[,.<dummy>...]

The LOCAL pseudo-op is allowed only inside a macro definition
block. When LOCAL is executed, the assembler creates a unique
symbol for each <dummy> and substitutes that symbol for each
occurrence of the<dummy> in the expansion. These unique symbols
are usually used to define a label within a macro, thus eliminating
multiple-defined labels on successive expansions of the macro. The
svmbols created by the assembler range from ..0001 to ..FFFF.
Users should avoid the form ..nnnn for their own symbols. A
LOCAL statement must precede all other types of statements in
the macro definition.

Example

FOO MACRO NUM)Y
LOCAL ABCD.E

A: DB 7

B: DB 8

G DB Y

D: DB Y+1

E: bW NUM+1
JMP A
ENDM
FOO OCOOH,0BEH
END

generates the following code (notice that MS-MACRO has substituted
label names in the form ..nnnn for the instances of the dummy symbols):

FOO MACRO NUM)Y
LOCAL AB.CDE

A: DB 7
B: DB 8
C: DB Y
D: DB Y+1
E: bDw NUM+1
JMP A
ENDM
FOO OCOOH,0BEH
0000° 07 +..0000: DB 7
0001" 08 +..0001: DB 8
0002° BE +..0002: DB OBEH
0003° BF +..0003: DB OBEH+1
0004° 0CoO1 +..0004: DW OCOOH+1
0006' C3 0000 + JMP ..0000
END

81

Utility Software Package Reference Manual

4.2.5 Special Macro Operators

Several special operators can be used in a macro block to select
additional assembly functions.

"2

& Ampersand concatenates text or symbols. (The & may not

be used in a macro call statement.) A dummy parameter in
a quoted string will not be substituted in expansion unless
preceded immediately by &. To form a symbol from text
and a dummy, put & between them.

Example:

ERRGEN MACRO X
ERROR&X: PUSH B8

MVI B, &X
JMP ERROR
ENDM

The call ERRGEN A will then generate:

ERRORA: PUSH B8
MVi B8 A
JMP ERROR

In a block operation, a comment preceded by two semicolons
is not saved as a part of the expansion (i.e., it will not
appear on the listing even under .LALL). A comment
preceded by only one semicolon, however, will be preserved
and appear in the expansion.

An exclamation point may be entered in an argument to
indicate that the next character is to be taken literally.
Therefore, !; is equivalent to <;>.

Assembler Features

% The percent sign is used only in a macro argument to

convert the expression that follows it (usually a symbol) to
a number in the current radix (set by the .RADIX pseudo-
op). During macro expansion, the number derived from
converting the expression is substituted for the dummy.
Using the % special operator allows a macro call by value.
{Usually, a macro call is a call by reference with the text of
the macro argument substituting exactly for the dummy.)

The expression following the % must conform to the same
rules as expressions for the DS (define space) pseudo-op.
That is, a valid expression that evaluates to an absolute
(nonrelocatable) constant is required.

Example

PRINTE MACRO MSGN
.PRINTX =MSG.N *

ENDM
SYM1 EQU 100
SYM2 EQU 200

PRINTE~SYM1 + SYM2 = >%(SYM1 + SYM2)

Normally, the macro call statement would cause the string
(SYM1 + SYM2) to be substituted for the dummy N. The result
would be:

.PRINTX = SYM1 + SYM2 = (SYM1 + SYM2) *

When the % is placed in front of the parameter, the assembler
generates:

PRINTX * SYM1 + SYM2 = 300 *

83

Utility Software Package Reference Manual

4.3 Conditional Assembly Facility Pseudo-ops

Conditional pseudo-ops allow users to design blocks of code which
test for specific conditions and then proceed accordingly.

All conditionals follow the format:

IFxxxx [argument] COND [argument]

(ELSE {ELSE

1 N
ENDIF ENDC
Each 1Fxxxx must have a matching ENDIF to terminate the
conditional. Each COND must haveamatching ENDC to terminate
the conditional. Otherwise, an “Unterminated conditional” message

is generated at the end of each pass. An ENDIF without a matching
IF or an ENDC without a matching COND causes a “C" error.

The assembler evaluates the conditional statement to TRUE (which
equals FFFFH, or -1, or any nonzero value), or to FALSE (which
equals 0000H). The code in the conditional block is assembled if the
evaluation matches the condition defined in the conditional state-
ment. If the evaluation does not match, the assembler either ignores
the conditional block completely or, if the conditional block contains
the optional EL.SE statement, assembles only the ELSE portion.

Conditionals may be nested up to 255 levels. Any argument to a
conditional must be known on pass 1 to avoid “V" errors and
incorrect evaluation. For IF/IFT/COND and IFF/IFE, the ex-
pression must involve values which were previously defined, and
the expression must be absolute. If the name is defined after an
IFDEF or IFNDEF, pass 1 considers the name to be undefined, but
it will be defined on pass 2.

Each conditional block may include the optional ELSE pseudo-op,
which allows alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a given
IFxxxx/COND. An ELSE is always bound to the most recent,
open IF. A conditional with more than one ELSE or an ELSE
without a conditional will cause a *C" error.

84

Assembler Features

Conditional Pseudo-ops
IF <exp>
IFT <exp>
* COND <exp>

If <exp> evaluates to not-0, the statements within the conditional
block are assembled.

IFE <exp>
IFF <exp>

1f <exp> evaluates to 0. the statements in the conditional block are
assembled.

IF1 Pass t Conditional

If the assemblerisin pass 1, the statements in the conditional block
are assembled.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in the conditional block
are assembled.

IFDEF <symbol>

If the <symbol> is defined or has been declared external, the
statements in the conditional block are assembled.

IFNDEF <symbol>

If the <symbol> is not defined or not declared external, the
statements in the conditional block are assembled.

IFB <arg>

The angle brackets around <arg> are required.

If the <arg> is blank (none given) or null (two angle brackets with
nothing in between, <>), the statements in the conditional block
are assembled.

IFNB <arg>

The angle brackets around <arg> are required.

Utility Software Package Reference Manual

[f <arg> is not blank, the statements in the conditional block are
assembled. This is used for testing for dummy parameters.

IFIDN <arg1><arg2>

The angle brackets around <argl1> and <arg2> are required.
If the string <argl>isidentical to the string <arg2>, the statements
in the conditional block are assembled.

IFDIF <arg1><arg2>

The angle brackets around <argl> and <arg2> are required.

If the string <argl> is different from the string <arg2>, the
statements in the conditional block are assembled.

ELSE

The ELSE pseudo-op allows you to generate alternate code when
the opposite condition exists. This can be used with any of the
conditional pseudo-ops.

ENDIF
+ ENDC

These pseudo-ops terminate conditional blocks. A terminate
pseudo-op must be given for every conditional pseudo-op used.
ENDIF must be matched with an IFxxxx pseudo-op. ENDC must
be matched with the COND pseudo-op.

86

Chapter 5

Running

Microsoft MACRO Assembler

5.1 Invoking MS-MACRO Assembler 89

5.2 MS-MACRO Assembler Command Line 90
5:2.1 Source 91

5.2.2 Object 92

5.2.3 List 92

5.2.4 Switches 93

5.2.5 Additional Command Line Entries 96

Filename Extensions 97
Device Designations 98
Device Designations As Filenames 99

5.3 MS-MACRO Assembler
Listing File Formats 100

5.3.1 File Format 100

5.3.2 Symbol Table Format 102
5.4 Error Codes and Messages 102
5.4.1 Error Codes 103

5.4.2 Error Messages 104

87

Microsoft MACRO Assembler

When you have completed creating the assembly language source
file, you are ready to assemble it. MS-MACRO assembles the
source file statements, including expanding macros and repeat
pseudo-ops. The result of assembly is a relocatable object code
which is ready to link and load with MS-LINK. The relocatable
object code can be saved in a disk file, which the assembler gives the
filename extension .REL. The assembled (REL) file is not an
executable file. The file will be executable only after it is processed
through MS-LINK.

MS-MACRO resides in approximately 19K of memory and has an
assembly rate of over 1000 lines per minute. MS-MACRO runs
under the CP/M-80 operating system.

MS-MACRO assembles your source file in two passes. During pass
1. MS-MACRO evaluates the program statements, calculates how
much code it will generate, builds a symbol table where all symbols
are assigned values, and expands macro call statements. During
pass 2, MS-MACRO fills in the symbol and expression values from
the symbol table, again expands macro call statements, and emits
the relocatable code. MS-MACRO checks the values of symbols,
expressions, and macros during both passes. If a value during pass
2 is different from the value during pass 1, MS-MACRO returns a
phase error code.

Before MS-MACRO can be run, the disk which contains MS-MACRO

must be inserted in the appropriate disk drive. The disk on which
vou created the source file must also be in a disk drive.

5.1 Invoking MS-MACRO Assembler

To invoke MS-MACRO, enter:
M80
The program file M80.COM will beloaded. MS-MACRO will display

an asterisk (*) to indicate that the assembler is ready to accept a
command line.

89

Utility Software Package Reference Manual

5.2 MS-MACRO Assembler Command Line

The command line for MS-M ACRO consists of four fields, labeled:
Object.List=Source/Switch

The command line may be entered on its own line, or it may be
entered at the same time as the M80 command. (If M80 and the
command line are entered on one line, MS-M ACRO will not return
the asterisk prompt.) Entering the command line on its own line
allows single drive configurations to use MS-MACRO. In addition,
by entering M80 and the command line separately, you are able to
perform another assembly without reinvoking MS-MACRO. When
assembly is finished, MS-M ACRO will return the asterisk (*) prompt
and wait for another command line. To exit MS-MACRO when
you have entered M80 and the command line separately, type
<CTRL C>.

If you are performing only one assembly, entering the command
line on the same line as M80 is convenient; it requires less typing
and allows the assembly operation to be part of a SUBMIT
command. When you enter M80 and the command line together,
MS-MACRO exits automatically to the operating system.

Note

If you enter M80 and the command line separately, you must
enter the command line in uppercase only. If you do not,
MS-MACRO will return a “?Command Error” message. If you
enter M80 and the command line on one line, the entries may be
in either uppercase or lowercase (or mixed) because CP/M-80
converts all entries to uppercase before passing the entries.

90

Microsoft MACRO Assembler

5.2.1 Source (=filename)

To assemble your source program, you must enter at least an equal
sign (=) and the source filename.

The =filename indicates which source file you want to assemble. If
the source file disk is not in the currently logged drive, you must
include the drive designation as part of the filename. If the source
filename is entered without an extension, MS-MACRO assumes
that the extension is . MAC. If the extension is not . MAC, you must
include the extension as part of the filename. For other possibilities
for drive/device designations and filename extensions, see Section
5.2.5, “Additional Command Line Entries.”

The source entry is the only entry required besides M80.
The simplest command is:
M80 =Source

This command directs MS-MACRO to assemble the source file and
save the result in a relocatable object file (called a REL file) with the
same name as the source file. If the source file is NEIL.MAC, the
command line:

M80 =NEIL
generates an assembled file named NEIL.REL.

An additional option is to enter only a comma {(,) to the left of the
equal sign. When MS-MACRO sees acomma as the first entry after
the M80 entry, it suppresses all output files (object and list). The
command line

M80 .=NEIL

causes MS-MACRO to assemble the file NEIL.MAC, but nooutput
files are created. Programmers use this command line to check
syntax in the source program before saving the assembled program.
Because no files are generated, the assembly is completed faster
and errors are known sooner.

91

Utility Software Package Reference Manual

5.2.2 Object (filename)

Anobject entry is always optional. However, certain circumstances
will compel you to make some entry for the object.

The object file saves the assembled program in a disk file. MS-LLINK
uses the object file to create an executable program. If both object
and list entries are omitted from a command line (as in =Source),
MS-MACRO will generate an object file with the same filename as
the source, but with the default extension .REL.

If you want your object file to have a name different from the source
file, you must enter a filename in the object field. MS-M ACRO will
still append the filename extension .REL, unless you also enter an
extension.

Also, if you want both alist file and a REL file generated, you must
enter a filename for the object, even if you want the REL file named
after the source file. If you enter a filename for the list but omit the
object, no REL file will be generated. Programmers do use this
feature for checking the program for errors before final assembly.
The program listing aids debugging.

The name for the object file may be the same as the source filename
or any other legal filename you choose. Since it is practical to have
all files which relate to a program carry some mutual indication of
their relationship, most often you will want to give your object file
the same name as your source file.

5.2.3 List (,filename)

A list entry is always optional. The comma is required in front of all
list entries. If you want a list file, enter a ,filename for the list.
(There is an alternative to this rule. See Section 5.2.4, “Switches,”
for a discussion of the /L switch.)

MS-MACRO appends the default extension .PRN to the list file
uniess you specify a different extension in the list entry.

The command line

M80 ,NEIL=NEIL

92

Microsoft MACRQO Assembler

assembles the file NEIL.MAC (source file) and creates the list file
NEIL.PRN. An object {REL) file is not created.

The name may be the same as the source filename or any other legal
filename you choose. Since it is practical to have all files which
relate to a program carry some mutual indication of their rela-
tionship. most often you will want to give your listing file the same
name as your source file.

Avoid entering only a comma for the list after entering a filename
for the object. For example:

M80 NEIL,=NEIL

MS-MACRO will probably ignore the comma and assemble the
source file into a REL file. It is possible that MS-MACRO might
return a "COMMAND Error™ message.

If vou enter only a comma for the list and nothing for the object,
MS-MACRO will assemble the source file, but will generate no
output files. This command,

M80 .=Source

allows vou to check the source program for syntax errors before
saving the assembled program in a disk file. While MS-MACRO
always checks for errors, this command form provides much faster
assembly because the output files do not have to be created.

At the end of assembly, MS-MACRO will print the message:

[xx| [No] Fata! errors [,xx warnings]
This message reports the number of fatal errors and warning errors
encountered in the program. The message is listed at the end of
every assembly on the terminal screen and in the listing file. When

the message appears, the assembler has finished. When the message
“No Fatal Errors™ appears, the assembly is complete and successful.

5.2.4 Switches (/Switch)

You can command MS-MACRO to perform someadditional functions
besides assembling and creating object and listing files. These
additional commands are given to MS-MACRO as entries at the

93

Utility Software Package Reference Manual

end of the command line. A switch entry directs MS-MACRO to
“switch on” some additional or alternate function; hence, these
entries are called switches. Switches are letters preceded by slash
marks (/). Any number of switches may be entered, but each switch
must be preceded by a slash. For example:

M80 ,=NEIL/L/R

The MS-MACRO switches are listed below.

Switch

/0

/H

/R

2!

Action
Octal listing. MS-MACRO generates list file addresses
in octal radix.

Hexadecimal listing. MS-MACRO generates list file
addresses in hexadecimal. This is the default.

Force generation of an object file with the same name as
the source file. May be used instead of giving a filename
in the object field of the command line.

This switch is convenient when you want a REL file but
forgot to enter a filename in the object field and entered
a comma and filename or a comma only in the list field.
(Remember: If no filename or comma is entered before
the equal sign, a REL file is generated.) Thus. if you
enter

M80 .NEIL=NEIL
or

M80 ,=NEIL
then decide, before pressing <ENTER >, that you want
a REL file, simply add /R. The command line would
then be:

M80 ,NEIL=NEIL/R

or

M80 ,=NEIL/R

/L

/C

/2

Microsoft MACRO Assembler

Force generation of a listing file with the same name as
the source file. May be used instead of giving a filename
in the list field of the command line.

This switch is convenient when you want a list file but
forgot to enter a filename in the list field. If youenter the
command line:

M80 =NEIL
or
M80 ,=NEIL
or
M80 NEIL=NEIL

then decide, before pressing <ENTER:>, that you do
want alistfile, simply add /L. The command would then
be:

M80 =NEIL/L
or
M80 .=NEIL/L
or
M80 NEIL=NEIL/L

Causes MS-MACRO to generate a special list file (with
the same name as the source file) for use with MS-CREF
Cross-Reference Facility. If you want to use MS-CREF,
you must assemble your file with this switch set. See
Chapter 7, “Microsoft CREF Cross-Reference Facility,”
for further details.

Directs MS-MACRO to assemble Z80 opcodes. If your
source file contains Z80 opcodes and if you do not include
the .Z80 pseudo-op in your source file, then you must use
the /Z switch at assembly time so that MS-M ACRO will
assemble the Z80 opcodes.

95

Utility Software Package Reference Manual

/1 Directs MS-MACRO to assemble 8080 opcodes. If your
source file contains 8080 opcodes and if you do not
include the .8080 pseudo-op in your source file, then you
must use the /I switch at assembly time so that
MS-MACRO will assemble the 8080 opcodes. (default)

/P Each /P allocates an extra 256 bytes of stack space for
use during assembly. Use /P if stack overflow errors
occur during assembly. Otherwise, /P is not needed.

/M The /M switch initializes block data areas. If you want
the area that is defined by the DS (define space) pseudo-
op initialized to zeros, then you should use the /M
switch in the command line. Otherwise, the space is not
guaranteed to contain zeros. That is, DS does not
automatically initialize the space to zeros, in which case
you may not know what is stored in the DS space or how
the program will be affected.

/X The /X switch sets the default and current setting to
suppress the listing of false conditionals. Absence of /X
inthe command linesetsthe default and current setting
to list conditional blocks which evaluate false. /X is
often used in conjunction with the conditional listing
pseudo-op .TFCOND. Refer to Section 4.1.5, “Listing
Pseudo-ops,” for details.

5.2.5 Additional Command Line Entries

Each command line field supports two additional types of entries —
filename extensions and device designations. These two types of
entries are actually part of a “file specification.” A file specification
includes the device where a file is located, the name of the file, and
the filename extension.

Usually, filename extensions and device designations are handled
by defaults—the MS-MACRO program “inserts’ these entries if
their positions are left blank in a command line. The default
assignments in no way prevent you from entering cither filename
extensions or device designations, including entries that match the
default entries. The programmer may enter or omit these additional
entries in any combination.

96

Microsoft MACR() Assembler

The format for a file specification under MS-MACRO is:

dev:filename.ext

where

dev: is a 1-3 letter device designation followed by a (required)
colon.

filename is a 1-8 letter filename.

.ext is a 1-3 character filename extension preceded by a (re-
quired) period.

Filename Extensions (.ext)

To distinguish between source file, object file, and list file,
MS-MACRO appends an extension to each filename. Filename
extensions are three-letter mnemonics appended to the filename
with a period (.) between the filename and the extension. The
extension which MS-MACRO appends reflects the type of file.
Since the extensions are supplied by MS-MACRO, they are called
default extensions. The default extensions which MS-MACRO
supplies are:

REL Relocatable object file
.PRN Listing file
.COM Absolute (executable object) file

Also, MS-MACRO assumes that, if no filename extension is entered,
a source file carries the filename extension .MAC.

You may supply your own extensions, if you find this necessary or
desirable. The disadvantage is that whenever you call the file, you
must always remember to include your extension. Also, you must
remember what type of file it is—relocatable, source, absolute, etc.
The advantage of allowing MS-MACRO to assigndefault extensions
is that you always have a mnemonic indication of the type of file,
and vou can call the filename without appending the extension, in
most cases.

97

Utility Software Package Reference Manual

Device Designations (dev:)

Each of the fields in a command line (except invocation) also can
include a device designation.

When a device designation is specified in the source field, the
designation tells MS-MACRO where to find the source file. When a
device designation is specified in the object or list fields, the
designation tells MS-M ACRO where to output the object or list file.
If the device designation is omitted from any of these fields,
MS-MACRO assumes (defaults to) the currently logged drive.
Thus, any time the device designation is the currently logged drive
or device, the device designation need not be specified.

It is important to include device designations if several devices or
drives will be used during an assembly. For example, if your
MS-MACROdisk is in drive A and your program disk is in drive B,
and you want your REL file output to drive B, you need to give the
command line:

M80 =B:NEIL

When the REL file is output, the currently logged drive is drive B.
(However, when MS-MACRO is finished, drive A will be the
currently logged drive again.) In contrast, if you saved your source
program on the MS-MACRO disk in drive A and want the REL file
output to a disk in drive B, then you need to enter the command
line:

M80 B:=A:NEIL

As a rule of thumb, if you are not sure if you need to include the
device designation (especially the drive designation), enter a
designation; it is the one sure way to get the right files in the right
places.

The available device designations for MS-MACRO are:

A:, B:;, C:,... Diskdrives

LST: Line printer

TTY: Terminal screen or keyboard
HSR: High speed reader

98

Microsoft MACRO Assembler

Device Designations As Filenames

As an option, you may enter a device designation only in the
command line fields in place of a filename. The use of this option
gives various results depending on which device is specified and in
which field the device is specified. For example,

M80 .TTY:=TTY:

allows you to assemble a line immediately on input to check for
syntax or other errors. A modification of this command (that is,
M80 ,LST:=TTY:), provides the same result but printed on a line
printer instead of the terminal screen.

If you use either of these commands (,TTY:=TTY:or,LST:=TTY:),
your first entry should be an END statement. You need to put the
assembler into pass 2 before it will emit the code. If you simply start
entering statement lines without firstentering END, you will receive
no response until an END statement is entered. Then you will have
to reenter all your statements before you see any code generated.

Table 1 illustrates the results of the various choices. The table is
meant to indicate the possibilities ratherthan provide an exhaustive
list of the combinations.

Table 1. Effects of Device Designations
Without Filenames
dev: Object ,List =Source
A:, B:, write file write file N/A
€, Dz, to drive to drive (a filename
specified specified must be
specified)
HSR: N/A N/A reads source
{input only) (input only) program from
high speed
reader
LST: N/A writes N/A
{unreadable listing to (output only)
file format) line printer
TTY N/A “writes” “reads” source
(unrcadable listing to program from
file format) screen keyboard

99

Utility Software Puckage Reference Manual

5.3 MS-MACRO Assembler Listing File Formats

A listing of an MS-MACRUO file displays the two parts of the file in
two different formats. One format displays the filelines. The second
format displays symbol table listings.

5.3.1 File Format

Each page of an MS-MACRO listing prints header data in the first
two lines. If no header data were commanded in the source file
(neither the TITLE nor SUBTTL pseudo-op was given), those
portions of the header lines would be left blank.

The format is:

[TITLE text} M80 z.2z PAGE x
[SUBTTL text]

where

TITLE text is the text supplicd with the " TITLE pseudo-op,
if TITLE wasincluded in the sourcefile. If no .TITLE pseudo-op
was given in the source file. this space is left blank.

z.zz is the version number of your MS-MACRO program.

x is the page number, which is shown and incremented only
when a .PAGE pseudo-op is encountered in the source file, or
whenever the current page size has been filled.

SUBTTL text is the text supplied with the .SUBTTL pseudo-
op, if SUBTTL was included in the source file. If no .SUBTTL
was given in the source file, this space is left blank.

A blank line follows the header data. The text of the listing file
begins on the next line.

100

Microsoft MACRO Assembler

‘The format of a listing line is:

[error] ####m xx xxxxm(w] text

where:

error represents a one-letter error code. An error code is printed
only if the line contains an error. Otherwise, the space is left
blank.

represents the location counter. The number is a four-
digit hexadecimal number or a six-digit octal number. The
radix of the location counter number is determined by the use
of the /O or /H switch in the MS-M ACRO command line switch
field. If no radix switch was given, the default radix is hexa-
decimal (four-digit).

m represents the PC mode indicator character. The possible
svmbols are:

Code relative
Data relative
! Common relative
<space> Absolute
4 External

xx and xxxx represent the assembled code. xx represents a
one-byvte value. One-byte values are always followed immedi-
ately by a space. xxxx represents a two-byte value, with the
high-order byte printed first (this is the opposite of the order
in which they are stored). Two-byte values are followed by one
of the mode indicators discussed above (indicated by the
second m).

[w] represents a line in the MS-MACRO file that came from
another file through an INCLUDE pseudo-op; or a line that is
part of an expansion (MACRO. REPT, IRP, IRPC). For lines
from an INCLUDE statement, a C is printed following the
assembled code; for lines in an expansion, a plus sign (+) is
printed following the assembled code. Otherwise, this space is
blank.

text represents the rest of the line, including labels, operations,
arguments, and comments.

101

Utility Seftware Package Reference Manual

5.3.2 Symbol Table Format

The symbol table listing page follows the same header data format
as the file line pages. However, instead of a page number, the
symbol table page shows PAGE S.

Then, in a symbol table listing, all macro names in a program are
listed alphabetically. Next, all symbols are listed, also alphabetically.
A tab follows each symbol, then the value of the symbol is printed.
Each symbol value is followed by one of the following characters:

I Public symbol
U Undefined symbol
C Common block name. The value shown for the

common block name is its length in bytes in
hexadecimal or octal radix.

: External symbol

<space> Absolute value

*

Program relative value

Data relative value

! Common relative value

5.4 Error Codes and Messages

Errors encountered during assembly cause MS-MACRO to return
either an error code or an errormessage. Error codes are one-character
flags printed in column one of the listing file. If a listing file is not
being printed on the terminal screen, the lines containing errors will
nevertheless be printed on the terminal screen. Error messages are
printed at the end of the listing file, or, if the listing file is not being
displayed on the terminal screen, any error messages will be
displayed at the end of the error code lines.

102

5.4.1

Error
Code

Microsoft MACRO Assembler

Error Codes

Meaning

Argument error
The argument to a pseudo-op is not in correct format
or is out of range.

Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs
for one IF, ENDC without COND.

Double-defined symbol
Reference to a symbol which has more than one
definition.

External error
Use of an external isillegal in the flagged context. For
example, FOO SET NAME or LXI B,2-NAME.

Multiply-defined symbol
The definition is for a symbol that already has a
definition.

Number error
An error in a number, usually a bad digit. For example,
8Q.

Bad opcode or objectionable syntax

ENDM, LOCAL outside a block; SET, EQU, or
MACRO without a name; bad syntax in an opcode; or
bad syntax in an expression (for example, mismatched
parentheses, quotation marks, consecutive operators).

Phase error

The value of a label or EQU name is different during
pass 2 from its value during pass 1.

103

Utility Software Package Reference Manual

Q Questionable

Usually, a line is not terminated properly. For example,
MOV AX,BX,. This is a warning error.

R Relocation

Illegal use of relocation in an expression, such as
abs-rel. Data, code, and common areas are relocatable.

U Undefined symbol

A symbol referenced in an expression is not defined.
For some pseudo-ops, a V" erroris printed for pass 1
then a “U" error for pass 2. Compare with “V" error
code definition below.

\Y Value error

On pass 1 a pseudo-op which must have its value
known on pass 1 (for example, .RADIX, .PAGE, DS,
IF, IFE) has a value whichisundefined. If the symbol
is defined later in the program, a “U" error will not
appear on the pass 2 listing.

5.4.2 Error Messages

%No END statement

No END statement: either it is missing or it is not parsed be-
cause it is in a false conditional, unterminated IRP/IRPC/REPT
block, or terminated macro.

Unterminated conditional

At least one conditional is unterminated at the end of the file.

Unterminated REPT/IRP/IRPC/MACRO

At least one block is unterminated.

104

Microsoft MACRO Assembler

Symbol table full

As MS-MACRO was building thesymbol table, the memory
available wasexhausted The mostusual causeisalarge number
of macro blocks which also contain statements for many of the
statement lines. Macro blocks are stored in the symbol table
verbatim, including the comments appended to the lines inside
the macro block. You should check all macro blocks in the
source program. To exclude comments inside macro blocks
from the syvmbol table, precede these comments by double
semicolons (;;). This method should free enough space to
assemble your program.

[xx| |No| Fatal errors | ,xx warnings]|

The number of fatal errors and warning errors encountered in
the program. The message s listed at the end of every assembly
on the terminal screen and in the listing file. When the message
appears, the assembler has finished. When the message “No
Fatal Errors™appears. the assembly is complete and successful.

105

Chapter 6
Microsoft LINK Linking Loader

6.1 Invoking MS-LINK Linking Loader 109
6.2 MS-LINK Linking Loader Commands 110
6.2.1 Filenames 111
6.2.2 Switches 112

Execute 114

Exit 116

Save 117

Address Setting 118

Library Search 123

Global Listing 123

Radix Setting 124

Special Code 125
6.3 Error Messages 126

107

Microsoft LINK Linking Loader

The REL files which MS-MACRO creates are not executable. To
make a REL file executable, you need to load and link the REL file
with Microsoft-LINK Linking Loader. The result is an executable
object file.

Loading means physically placing the file in memory and assigning
absolute addresses to the code and data in place of the relative
addresses assigned by MS-MACRO Assembler. This is one of the
required steps for converting a relocatable (REL) file into an
executable (COM) file.

Linking means that each loaded file (or module) that directs program
flow outside itself (by a CALL, an external symbol, or an include)
will be “linked" to the module that contains the corresponding code.

MS-LINK can also save the assembled-and-linked program as an
exccutable object program on disk in a file with the extension
.COM. Consequently, any time you wish to run your program, you
need only insert the disk which contains your COM file into an
appropriate disk drive and “call” your program —a simple process
of tvping in the filename vou used to save the program, followed by
a carriage return,

6.1 Invoking MS-LINK Linking Loader

To invoke MS-LINK, enter:
L8O

The program file [.80.COM will be loaded. MS-LINK will display
an asterisk (*) to indicate that it is ready to accept a command. The
REL file(s) you want link-loaded must be available in a disk drive.
If vou have only one drive, you will need to swap disks in the drive
at each step of the link-loading process.

109

Utility Software Package Reference Manual

6.2 MS-LINK Linking Loader Commands

MS-LINK commands are filenames and switches.

You can enter your commands to MS-LINK one at a time; or, vou
can enter all of your commands (including L.80) on one line.

A command line has a flexible format, allowing you a number of
options for loading and linking files and for performing other
operations. The basic rule for MS-LINK commands is that files are
loaded in the order they are named, beginning at the (default)
address 103H under CP/M-80. Even though the files will be loaded
in the order entered, you do not have to enter the files in the order of
execution. MS-LINK places a jumpinstruction at address 100H-102H
which jumps to the start address of the first instruction to be
executed, regardless of its location in memory.

MS-LINK can perform about eleven different tasks. Even though
you could use them all, you will rarely use more than three or four at
a time.

When you enter a command to MS-LINK, MS-LINK returns an
asterisk (*) prompt that tells you to enter another command. For
example:

A LBO<RETURN>

*/switch<RETURN>

*filename<RETURN>

*/switch<RETURN>

*filename/switch<RETURN>

*/E<RETURN> (to exit MS-LLINK)

Note that all of the above lines may be entered as one line. For
example:

L80 /switch,filename/switch filename/switch/EXRETURN>
This shows further the flexibility of the MS-LINK command line.
Although entering each command on a separate line is slow and
tedious, the advantage is, especially if you are new to a linking

loader, that you know at all times what function MS-LINK is
performing.

110

Microsoft LINK Linking Loader

6.2.1 Filenames

Files processed by MS-LINK are REL files. A filename commands
MS-LINK to load the named file (also called a module). If any file
has been loaded already, a filename also commands MS-LINK to
link the loaded files as required.

Normally each linking session requires at least two filenames. One
filename tells MS-LINK which REL file to load and link; the other
commands MS-LINK to save the executable code in a file with the
specified name.

If you enter only one filename during the link session, either the
COM file will not be saved (in which case you may have wasted your
time), or MS-LINK will return the error message:

?NOTHING LOADED

Note, however, that if you enter only one filename followed by the
/G switch, the COM file will not be saved, but the program will
execute as soon as MS-LLINK is finished loading and linking (Refer
to the description of the switches in the next section.)

You can enter as many filenames as will fit on one line. The files
named can be REL files in different languages (BASIC, COBOL,
FORTRAN, or assembly) or runtime library REL files for any of
the high-level programming languages. (For exact procedures for
high-level language REL files, see the product manual included
with the high-level language compiler.)

When MS-LINK is finished, the results are saved in the file named
by the programmer in the command line (the filename followed by a
/N —see Section 6.2.2, “Switches”). MS-LINK gives this filename
the extension .COM.

A filename command in MS-LINK actually means a file specification.
A file specification includes a device designation, a filename, and a
filename extension. The format of a file specification is:

dev:filename.ext

MS-LINK defaults the dev: to the default or currently logged disk
drive. MS-LINK defaults the input filename extension to .REL and

Utility Software Package Reference Manual

the output filename extension to .COM. You can alter the de-
vice designation to any applicable output device supported by
MS-MACRO and/or the filename extension to any three characters
by specifying a device or a filename extension when you enter a
filename command.

6.2.2 Switches

Switches command MS-LINK to perform functions besides loading
and linking. Switches are letters preceded by slash marks (/). You
can place as many switches as you need in a single command line,
but each switch letter must be preceded by a slash mark (/). For
example, if you want to link and load a program named NEIL, save
an image of it on disk, then execute the program. You need two
filenames and two switches, so you would enter the commands:

NEIL NEIL/N/G<SRETURN>

MS-LINK saves a memory image on disk (the /N switch), then runs
the NEIL program (the /G switch).

Some switches can be entered by themselves (/E, /G, /R, /P, /D,
/U, /M, /0, /H). Some switches must be appended to the filename
they affect (/N, /S). Some switches work only if other switches are
also entered during the MS-LINK session (/X, /Y). Some switches
must precede any filenames you want affected (/P, /D). Some
switches command actions that are deferred until the end of the
MS-LINK session (/N, /X, /Y). Some switches command actions
that take place when entered (/S, /R —a filename entered without a
switch appended acts this way, too). These “rules of behavior”
should be kept in mind when entering MS-LINK commands. See
the descriptions for each switch for full details of its action.

The MS-LINK switches are summarized by function in Table 2.
Full descriptions of the switches by function follow this table.

Note

Do not confuse the MS-LINK switches with the MS-MACRO
switches.

112

Microsoft LINK Linking Loader

Table 2. MS-LINK Switches

Function Switch Action
Execute /G Fxecutes COM file, then exits to operat-
ing system.

/G:Name Sets COM file start address equal to
value of Name. executes COM file. then
exits to operating system.

Exit /E Exits to operating system.

/E:Name Sets COM file start address equal to
value of Name, then exits to operating
system.

Save /N Saves all previously loaded programs
and subroutines using filename immedi-
ately preceding /N.

/N:P Alternate form of /N: saves only program
area.

Address /P Sets start address for programs and
Setting data. If used with /D, /P sets only the
program start.
/D Sets start address for data area only.
/R Resets MS-LINK.
Library /S Searches the library named immediately
Search preceding /S.
Global /U Lists undefined globals.
Listing

/M Lists complete global reference map.
Radix /0 Octal radix.
Setting

/H Hexadecimal radix (default).

Special /X Saves "COM" file in Intel ASCII Hex
Code format. Requires /N switch. Gives"COM™
file the extension .HEX.

/Y Creates a special file for use with the

SID/ZSID debugger. Requires /N and /E
switches. Gives special file the extension

SYM.

13

Utility Software Package Reference Manual

At least two switches will probably be used in every linking session.
These switches belong to the first three functions — Execute, Exit,

and Save.

Execute

Switch
/G

114

Action

The /G switch causes MS-LINK to load the file-
name(s) entered in the command line, to link the
program(s) together, then to execute the link-loaded
program. After the program runs, your computer
returns to operating system command level. For
example,

L8O NEIL.NEIL/N/G

links NEIL.REL, saves the result in a disk file
named NEIL.COM, then exits to the operating
system.

Execution takes place as soon as the command line
has been interpreted. Just before execution begins,
MS-LINK prints three numbers and a "BEGIN
EXECUTION™ message. These three numbers can
be very useful to you in developing future assembly
language programs. The first number is the start
address of the program. The second number is the
address of the next available byte; that is, the end
address plus one byte. The third number is the
number of 256-byte pages taken up by the program
(the difference between the start address and the
end address converted to 256-byte pages).

If youdonot want to save the COM file, use the /G
switchandenteronlyonefilename onthecommand
line. For example:

L8O NEIL/G

/G:<name>

Microsoft LINK Linking Loader

Note

No COM file is created (since you did not
include /N). Torunthe program again, you will
have'to run MS-LINK again.

The /G:<name> switch performs exactly like the
plain /G switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When MS-LINK sees <name>,
it uses <name> as the start of the program and
loads the address of the line with <name> as its
label into the jump instruction at 100H-102H.

The value of this switch (and of /E:<name>below)
is its ability to tell MS-LLINK where to start exe-
cution when the assembled modules do not make
this clear. Usually this is no problem because you
link in a high-level language program (which
MS-LINK takes as the main program by default),
or you link only assembly language modules and
only one has an END <name> statement to signal
MS-LINK which assembly language program to
execute first. But if two or more assembly language
modules contain an END <name> statement, or if
none of the assembly language modules contains
an END <name> statement, then /G :<name> tells
MS-LINK to use this module as the starting point
for execution.

Programmers who want to execute an assembly
language module before a high-level language
program should use a call or include statement
at the beginning of the high-level language pro-
gram to cause execution of the assembly language
module before execution of the high-level language
program.

115

Utility Software Package Reference Manual

Exit

Switch

/E

/E:<name>

116

Action

Use /E to link and load a program and perform
some other functions on the files (for example, save
it on a disk) when you do not want to run the
program at thistime. When MS-LINK has finished
the tasks, it will exit to the operating system.

(The /G switch is the only other switch which exits
MS-LINK.)

When linking is finished, MS-LINK outputs three
numbers: start address, next available byte, num-
ber of 266-byte pages.

The /L:<name> switch performs exactly like the
plain /I switch, but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When MS-LINK sees <name>,
it uses <name> as the start of the program and
loads the address of the line with <name> as the
label into the jump instruction at 10011-102H.

The value of this switch {and of /G :<name> above)
is its ability to tell MS-LINK where to start exe-
cution when the assembled modules do not make
this clear. Usually this is no problem because you
link in a high-level language program (which
MS-LINK takes as the main program by default),
or you link only assembly language modules and
only one has an END <name> statement to signal
MS-LINK which assembly language program to
execute first. But if two or more assembly language
modules contain an ENI) <name> statement, or if
none of the assembly language modules contains
an END <name>statement, then /E:<name> tells
MS-LINK to use this module as the starting point
for execution.

Programmers who want to execute an assembly
language module before a high-level language
program should use a call or include statement at
the beginning of the high-level language program
to cause this order of execution.

Save

Switch

/N

Microsoft LINK Linking Loader

Action

The /N switch causes the assembled-linked program
to be saved in a disk file. It is important that a
filename always be specified for the /N switch. If
vou do not specify an extension, the default ex-
tension for the saved file is .COM. The COM
filename will be the name the programmer appends
the /N switch to. The /N switch must immediately
follow the filename under which you wish to save
the results of the link-load session.

The /N switch does not take effect unless a /E or
/G switch follows it.

The most common error programmers make with
the /N switch is to forget that they must specify at
least tweo filenames: one as the file to be linked and
another one as the name for the file to be saved.
Therefore, at a minimum the command line should
include:

L8O NEIL.NEIL/N/G

The first filename NEIL is the file to be loaded and
linked: the second filename NEIL is the name for
the COM file that will save the result of the link-
loading session.

It is, of course, possible to specify filenames in any
order. For example:

L8O NEIL/N.ASMSUB1,ASMSUB2,BASPROG/G

Here MS-LINK will load and link the files
BASPROG, ASMSUB1. and ASMSUB2; then
save the result in the file named NEIL.

From these two examples, it is possible to sec that
the filename followed by the /N save switch is not
loaded. 1t is only a specification for an output file;
vou must always name at least one input file, too.

7

Utility Software Package Reference Manual

/N:P

You will use this switch almost every time you link
a REL file because there is no other way to save the
result of a link-load session, and because not saving
the result means you would have to link-load again
to run your program.

Once saved on disk, you need only type the COM
filename at operating system command level to
run the program.

By default, MS-LINK saves both the program and
data areas in the COM file. If you wish to save only
the program area to make your disk files smaller,
use the /N switch in the form /N:P. With this
switch set, only the program code will be saved.

Two of these switches (/N pluseithera /G or a /E type) are the only
switches required for most MS-LINK operations. Some additional
functions are available through the use of other switches, which
allow programmers to manipulate the MS-LINK processes in more
detail. The switches that turn on these additional functions are
arranged in categories according to type of function. The function
of each category is defined by the category name.

Address Setting
Switch Action
/P The /P switch is used to set both the program and

118

data origin. If you do not enter the /P switch,
MS-LINK performs this task automatically, using
a default address for both program and data. (103H
for CP/M-80)

The format of the /P switch is:
/P:<address>,

The address value must be expressed in the current
radix. The default radix is hexadecimal.

The /P switch is designed to allow you to place
program (or code) segments at addresses other
than the default. The default value for the /P switch
is 103H.

Microsoft LINK Linking Loader

Note

The /P switch takes effect as soon as it is seen,
but it does not affect files already loaded. So be
sure to place the /P switch before any files you
want to load starting at the specified address.

The /P switch and /D switch, when used, must be
separated from the REL filename by a comma. For
example:

L80 /P:103,NEIL.NEIL/N/E

The /P switch affects primarily the CSEG code in
your assembly language program. If /P is given but
not /D, both data and program (CSEG and DSEG)
areas will be loaded starting at the /P:<address>.
DSEG (and any common areas) will be loaded
first. If both /P and /D switches are given, /P sets
the start of the CSEG area only. Normally, unless
your programs are all CSEG, you will use /P and
/D together.

Note especially that ASEG areas are not affected
by the /P switch. So be careful to set the /P address
outside any ASEG areas unless you want the
program or data areas to write over the ASEG
areas.

You may enter more than one /P switch during a
single link session to place different program (code)
segments at addresses which are not end-to-end.
MS-LINK will automatically place one program
segment (CSEG) after the next. You can cause

119

Ultility Software Package Reference Manual

/D

120

space to be left between modules. However, some
restrictions on the placement of modules apply:

1. Be sure that program areas do not overlay one
another. MS-LINK returns a warning error
message if they do.

2. Be sure that the program areas are not split
by data or common areas; that is, a CSEG at
200H, a DSEG at 300H, and another CSEG at
400H is illegal. MS-LINK returns a fatal er-
ror in this case.

When the loading session is all done, MS-LINK
wants to see a segment of memory loaded with
data and common and another segment loaded
with program code. The code segments may have
gaps between the modules as long as a data segment
is not loaded between the start of the first code
segment module and the end of the last code
segment module, and vice versa. So, placing DSEG
modules at 103H-115H, 150H-165H, 170H-175H,
and CSEG modules at 200H-250H, 300H-350H,
400H-450H is acceptable. MS-LINK will show
data between 103H and 175H and program be-
tween 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. MS-LINK
does not initialize gaps to zero or null. This could
cause unpredictable results.

The /D switch sets the origin for DSEG and
common areas. If you do not enter the /D switch,
MS-LINK performs this task automatically, using
adefaultaddressfor both data and program.(103H
for CP/M-80)

The format for the /D switch is:
/D:<address>,

The address for the /I switch must be in the
current radix. The default radix is hexadecimal.

The /D switch is designed to allow you to place
data and common segments at addresses other

Microsoft LINK Linking Loader

than the default. The default value for the /D
switch is 103H. The /D switch must be separated
from the REL filenames by a comma. For example:

L80 /D:103.NEIL.NEIL/N/E

When the /P switch is used with the /D switch,
data and common areas load starting at the address
given with the /D switch. (The program will be
loaded beginning at the program origin given with
the /P switch.) This is the only occasion when the
address given in /P is the start address for the
actual program code.

Note

The /D switch takes effect as soon as MS-LINK
“sees” the switch, so the /D switch has no
effect on programs or data already loaded.
Therefore, it is important to place the /D switch
(as well as the /P switch) before the files you
want to load starting at the address specified.

You may enter more than one /D switch during a
single link session to place different program (code)
segments at addresses which are not end-to-end.
MS-LINK will automatically place one data seg-
ment (DSEG) after the next. However, some re-
strictions on the placement of modules apply:

1. Be sure that data areas do not overlay one
another. MS-LINK returns a warning error
message if they do.

2. Be sure that the data areas are not split by
program areas; that is. a DSEG at 200H. a
CSEG at 300H, and another DSEG at 400H is
illegal. MS-LINK returns a fatal error in this
case.

121

Utility Software Package Reference Manual

When the loading session is all done, MS-LINK
wants to see a segment of memory loaded with
data and common and another segment loaded
with program code. The data segments may have
gaps between the modules as long as a program
segment is not loaded between the start of the first
data segment module and the end of the last data
segment module, and vice versa. So, placing DSEG
modules at 103H-115H, 150H-165H. 170H-175H,
and CSEG modules at 200H-250H, 300H-350H,
400H-450H is acceptable. MS-LINK will show
data between 103H and 175H and program be-
tween 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. MS-LINK
does not initialize gaps to zero or null. This could
cause unpredictable results.

Additional Note for /P and /D Switches

If your program is too large for the loader, you will sometimes
be able to load it anyway if you use /D and /P together. This
way you will be able to load programs and data of a larger
combined total. While MS-LINK is loading and linking, it
builds a table consisting of five bytes for each program-relative
reference. By setting both /D and /P, you eliminate the need for
MS-LINK to build this table, thus giving you some extra
memory to work with.

To set the two switches, look to the end of the list file. Take the
address you decided for the /D switch (where you want the
DSEG to start loading), add the number for the total of data,
add that number to 103H, add another 100H + 1, and the result
should be the /P: address for the start of the program area. The
/D switch should be set at 103H or higher (D:103).

122

/R

Microsoft LINK Linking Loader

The /R switch “resets” MS-LINK toits initialized
condition. MS-LINK scansthecommandline before
it begins the functions commanded. As soon as
MS-LINK sees the /R switch, all files loaded are
ignored, MS-LINK resets itself, and the asterisk
(*) prompt is returned showing that MS-LINK is
running and waiting for you to enter a command
line.

Library Search

Switch

/S

Action

The /S switch causes MS-LINK to search the file
named immediately prior to the switch for routines,
subroutines, definitions for globals, and soon. Ina
command line, the filename with the /S switch
appended must be separated from the rest of the
command line by commas. For example:

L80 NEIL/N,MYLIB/S.NEIL/G
The /S switch is used to search library files only,

including a library you constructed, using the
MS-LIB Library Manager (see Chapter 8).

Global Listing

Switch
/U

Action

The /U switch tells MS-LINK to list all undefined
globals. The /U works only in command lines that
do not include eithera /G or a /E switch. Note that
if your program contains any undefined globals,
MS-LINK lists them automatically, unless the
command line also contains a /S (library search)
switch. In these cases, enter only the /U switch,
and the list of undefined globals will be listed. Use
CTRI-S to suspend the listing if you want to study
a portion of the list that would scroll off the screen.
Use CTRI-Q to restart the listing.

123

Utility Software Puckage Reference Manual

/M

The various runtime libraries provide definitions
for the globals you need to run your high-level
language programs.

In addition to listing undefined globals, the /U
switch directs MS-LINK to list the origin, end,
and size of the program and data areas. These
areas are listed as one lump area unless both the /P
and /1) switches are set. If both /P and /D are set,
the start, end, and size of both arcas are listed
separately.

The /M switch directs MS-LINK to list all globals,
both defined and undefined, on the screen. The
listing cannot be sent to a printer. In the listing,
defined globals are followed by their values, and
undefined globals are followed by an asterisk (+).

In addition to listing all globals, the /M switch
directs MS-LINK to list the origin, end, and size of
the program and data areas. These areas are listed
asone lump area unless both the /P and /D switches
are set. If both /P and /D are set, the start, end,
and size of both areas are listed separately.

Radix Setting

Switch
/0

/H

124

Action

The /O switch sets the current radix to octal. If
you have a reason to use octal values in vour
program, give the /O switch in the command line.
If you can think of no reason to switch to octal
radix, then there is no reason to use this switch.

The /H switch resets the current radix to hexa-
decimal. Hexadecimal is the default radix. You do
not need to give this switch in the command line
unless you previously gave the /O switch and now
want to return to hexadecimal.

Special Code

Switch

/X

/Y

Microsoft LINK Linking Loader

Action

The /X switch saves the *"COM" filein Intel ASCII
HEX format. The /X switch requires the /N switch
appended to the same filename as the /X. For
example:

L8O NEIL.NEIL/X/N/E

The file that is saved with the /X switch set is
given the filename extension . HEX.

The primary use of the /X switch is to prepare
programs to be burned into PROMs. The hex
format was originally developed to facilitate the
movement of programs from one machine to
another. The hex format provides more code
checking than object code does. Also, a HEX file
can be edited with some sophisticated line editors.

The /Y switch saves a file in a special format for
use with the Digital Research symbolic debuggers,
SID and ZSID. The /Y switch requires the /N and
the /E (not /() switches be given in the command
line. For example:

L8O NEIL.NEIL/Y/N/E

The file that is saved with the /Y switch set is
given the filename extension .SYM. A COM file

will also be saved. So, the sample command line
above creates both NEITL.COM and NEIL.SYM.

The SYM file contains the names and addresses of
all globals. which allows you to use the Digital
Research symbolic debuggers SID and ZSID with
the SYM file.

Utility Software Package Reference Manual

6.3 Error Messages

Errors encountered during the running of MS-LINK will return
messages, most preceded by either the symbol ? or the symbol %.
No error codes are returned, so once you understand the meaning of
the message, error recognition should be easy.

126

?No Start Address
The /G switch was issued, but no main program has been
loaded.

?Loading Error
The last file given for input was not a properly formatted
MS-LINK object file.

?20ut of Memory

Not enough memory to load the module.

?Command Error

Unrecognizable MS-LLINK command.

?<filename> Not Found
<filename>, as given in the command string, does not
exist.

?Start Symbol — <name> — Undefined
The /E:Name or /G:Name switch was given, but the Name
specified was not defined.

?Nothing Loaded

A <filename>/S or /E or /G was given, but no object file
was loaded. That is, an attempt was made to search a
library, to exit MS-LINK, or to execute a program, when in
fact nothing had been loaded. For example,

TEST/N/E

results in “?Nothing Loaded” because TEST/N names
TEST.COM, but does not load TEST.REL.

Microsoft LINK Linking Loader

To load a file. enter the filename. To save a file, enter a
filename followed by the /N switch and either a /E or a /G
switch. Forexample, any of the following sets of commands
should work:

L8O NEIL.NEIL/N/E
or

L8O
*NEIL
*NEIL/N/E

or
L80 NEIL/N.NEIL/E

?Can’t Save Object File

A disk error occurred when the file was being saved. Usually,
this means that the disk is full or that it is write-protected.

%2nd COMMON larger /XXXXXX/

When loading modules which include common blocks,
MS-LINK takes the size of the first common block loaded
to set the amount of memory needed before program code is
loaded. If a subsequent module contains a common block
larger than the first one loaded, MS-LINK returns this
error message. It means that the first definition of the
common block /XXXXXX/ encountered in the modules
loaded was not the largest block defined with that name.
Reorder module loading sequence or change common block
definitions so that all blocks are the same size.

%Mult. Def. Global YYYYYY

You have one global (public) symbol name YYYYYY with
more than one definition. Usually, two or more of the
modules being loaded have declared the same symbol name
as public.

Utility Software Package Reference Manual

128

%QOverlaying Program Area ,Start = xxxx

,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)

Usually this occurs when either /D or /P is set to an address
inside the area taken by MS-LINK. You should reset the
switch address above 102H. It may also occur if you set
addresses for programs loaded after some initial programs
were loaded and the addresses were not set high enough.
For example, if MYPROG is larger than 147 bytes and you
enter the commands

MYPROG./P:150,SUBR1,FUNNY/N/E

you will receive the “%Overlaying Program Area” error
message.

%Qverlaying Data Area ,Start = XXXX

,Public = <symbol name>(xxxx)
,External = <symbol name> (xxxx)

The /D and /P switches were set too close together. For
example, if /D was given a higher address than /P but not
high enough to be beyond the end of the program area,
when the program is loaded, the top end will be laid over the
dataarea. Or, if /D is lower than /P, /P was not high enough
to prevent the beginning of the program from starting in
the area already loaded with data.

?Intersecting Program Area

?ntersecting Data Area

The program and data areas intersect and an address or
external chain entry is in this intersection. The final value
cannot be converted to a current value since it is in the area
intersection.

Microsoft LINK Linking Loader

Origin Above Loader Memory, Move Anyway (Y or N)?

or

Origin Below Loader Memory, Move Anyway (Y or N)?

This message will appear only after either the /E or the /G
switch command was given to MS-LINK. If MS-LINK has
not enough memory toload a module buta /E or /G has not
been entered, vou will receive the "?0ut of Memory"
message.

MS-LINK can load modules onlv between its first address
in memory and the top of available memory. If the program
istoolarge for thisspace or if vouset a /D and/or /P switch
too high for the size of vour program, MS-LINK runs out of
memory and returns the “Origin Above Loader Memory™
message.

If vou set a /D) and/or /P switch below the first address of
MS-LINK (100H for CP/M-80), MS-LINK returns the
“Origin Below Loader Memory' message. This prevents
vou from loading your program into memory designated
for the operating system.

If aY CR is given, MS-LINK will move the area and
continue. If anything else is given, MS-LLINK will exit. In

either case. if the /N switch was given, the image will
already have been saved.

129

Other Utilities

Chapter 7

Microsoft CREF
Cross-Reference Facility

7.1 Creating an MS-CREF Listing 133

7.1.1 Creating a Cross-Reference File 134

W 4ls2 Generating a Cross-Reference Listing 134
7.2 MS-CREF Listing Control Pseudo-ops 136

131

Microsoft CREF Cross-Reference Facility

A cross-reference facility processes a specially assembled listing file
to list the locations of all intermodule references and the locations of
their definitions. The result is a cross-reference listing. ‘This cross
reference listing can be used to aid debugging vour program.

MS-CREF Cross-Reference Facility allows a programmer to process
the cross-reference file generated by MS-MACRQO. This cross
reference file containg embedded control characters, set up during
MS-MACRO assembly. MS-CREF interprets the control characters
and generates a file that lists cross-references among variables.

MS-CREF produces a listing, resembling the PRN listing of
MS-MACRO. with two additional features:

1. ach source statement is numbered with a cross-reference
number.

<

Atthe end of the listing, variable names appear in alphabetie
order. Each name is followed by the line number where the
varialle is defined (flagged with #). followed by the numbers
of other lines where the variable is referenced.

The MS-CREF listing file replaces the NS-MACRO PRN list file
and also receives the filename extension .PRN.

7.1 Creating an MS-CREF Listing

Creating an NMS-CREF listing involves two steps: (1) creating a
cross-reference file (.CREF). and (2) generating a cross-reference
listing (.PRN). The first step occursin the MS-MACRO Assembler:
the second in the MS-CRETEF Cross-Reference Facility.

Utility Software Package Reference Manual

7.1.1 Creating a Cross-Reference File

‘To create a cross-reference file, set the /C switch in the MS-MACRO
command line. For example:

M80 =NEIL/C
This command line assembles the file NEII1..MAC, generating the
output files NE1L.REL (object file) and NEIL.CRF (cross-reference
file).
7.1.2 Generating a Cross-Reference Listing

The cross-reference listing is generated by running the .CRF file
through MS-CREF.

To invoke the cross-reference facility, enter:
CREF80

MS-CREF will return an asterisk (*) prompt.

To create the cross-reference listing file, enter
=filename

where filename is the name of your .CRF file. For example,
CREF80 =NEIL

will generatea PRN file (NEIL.PRN)containing the cross-reference
information.

134

Mitrosoft CREF Cross-Reference Facility

This PRN file can be printed or sent to the terminal screen using
operating system commands. Additionally, MS-CREF supports
the same output device designations as MS-MACRO. Simply enter
the device designation in front of the filename. For example,
CREF80 PRN:=NEIL.
sends the PRN listing to the printer only (no disk file is generated).
CREFBO TTY:=NEIL
sends the PRN listing to the CRT only (no disk file is generated).
You will need to give a drive designation if you want the PRN file
saved elsewhere than the currently logged drive (where the CRF
file resides). For example,
CREF80 B:=A:NEIL
saves NEIL.PRN on drive B.

When finished, MS-CREF prompts with an asterisk. You may enter
another =filename, or exit from MS-CREF to the operating system.

To exit MS-CREF, enter CTRI.-C.
If you want the PRN file named differently from the default (CRF
filename and extension .PRN), enter the name in front of the equal
sign. For example:

CREF80 NEIL.CRL=NEIL
or

CREF80 NEILCREF=NEIL

The former command line generates a cross-reference list file named
NEIL.CRL: the latter generates a file named NEILCREF.PRN.

Utility Software Package Reference Manual

Look at the filename extensions to distinguish a cross-reference
listing file from the listing file MS-MACRO normally generates.
The listing file MS-MACRO normally generates (without the /C
switch set in the command line) receives the default filename
extension .PRN. The cross-reference listing file generated by
MS-CREF receives the default filename extension .PRN.

7.2 MS-CREF Listing Control Pseudo-ops

You may want the option of generating a cross-reference listing for
part of a program but not all of it. To control the listing or
suppressing of cross-references, use the cross-reference listing control
pseudo-ops, .CREF and .XCREF, in the source file for MS-MACRO.
These two pseudo-ops can be entered at any point in the program in
the operator field. Like the other listing control pseudo-ops, .CREF
and .XCREF support no arguments.

Pseudo-op Definition

.CREF Creates cross-references
.CREF is the default condition. Use .CREF to restart
the creation of a cross-reference file after using the
XCREF pseudo-op. .CREF remains in effect until
MS-MACRO encounters . XCREF. Note, however,
that .CRIF has no effect until the /C switch is set in
the MS-MACRO command line.

XCREF Suppresses cross-references

XCREF turns off the .CREF (default) pseudo-op.
.XCREF remains in effect until MS-MACRO en-
counters .CREF. Use . XCREF to suppress the cre-
ation of cross-references in selected portions of the
file. Because neither .CREF nor . XCREF takes effect
until the /C switch is set in the MS-MACROQO com-
mand line, there is no need to use . XCREF if you
want the usuallist file (one without cross-references);
simply omit /C from the MS-MACRO command
line.

136

Chapter 8
Microsoft LIB Library Manager

8.1 Sample MS-LIB Session 140
8.1.1 Building a Library 140
8.1.2 Listing a Library 140

8.2 MS-LIB Commands 141
8.2.1 Invoking MS-LLIB 141
8.2.2 Destination Field 142
8.2.3 Source Field 142

Additional Details
About Source Modules 144

8.2.4 Switch Field 146

137

Microsoft 1.IB Library Manager

Warning

Read this chapter carefully and make a backup copy of your
libraries before using MS-LLIB. MS-LIB is very powerful and
thus can be very destructive. It is easy to destroy a library with
MS-LIB.

MS-LIB is designed as a runtime library manager for CP/M-80
versions of Microsoft FORTRAN Compiler and Microsoft COBOL
Compiler. MS-LIB can also be used to create your own library of
assembly language subroutines.

MS-LIBcreates runtime libraries from assembly language programs
that are subroutines to MS-COBOL Compiler, MS-FORTRAN
Compiler, and other assembly language programs. The programs
collected by MS-LIB can be special modules created by the pro-
grammer or modules from an existing library (FORLIB, for ex-
ample). With MS-LIB, you can build specialized runtime libraries
for whatever execution requirements you design.

The value of building a library is that all the routines needed to
execute a program can be linked with it into an executable object
(COM) file by entering the library name followed by /S in an
MS-LINK command line. For example:

L80 MAIN ,NEWLIB/S.NEIL/N/G

This is much more convenient than entering the necessary sub-
routines individually, especially if there are many modules. With a
library file you can be sure all the necessary modules will be linked
into the COM file. plus there is no danger of running out of space on
the MS-LINK command line. Additionally, the library makes this
special collection of subroutines available for easy linking into any
program.

139

Utility Software Package Relerence Manual

8.1 Sample MS-LIB Session

The two most common uses you will have for MS-LIB are building a
library and listing a library. The following sample sessions illustrate
the basic commands for these two uses.

8.1.1 Building a Library

A LIB
«TRANLIB=SIN,COS,TAN,ATAN.ACOG
«EXP

*/E

A

In this sample session, LLIB invokes MS-LI1B, which returns an
asterisk (*) prompt. TRANLIB is the name of the library being
created. SIN,COS,TAN,ATAN,ACOG are filenumes to be con-
catenated into TRANLIB. EXP is another filename to be con-
catenated into TRANLIB. (EXP could be listed on the previous
command line: thisexample shows filesentered singly and multiply.)
/E causes MS-LIB to rename TRANLIB.LIB to TRANLIB .REL
then to exit to CP/M-80.

8.1.2 Listing a Library

A LIB
+*TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

+CTRL-C
A

In this sample session, LIB invokes MS-LIB. TRANLIB.LIB/U
tells MS-LIB to search TRANLIB.LIB for any intermodule refer-
ences that would not be defined during a single pass through the

140

Microsoft LIB Library Manager

library (that is, any “"backward" referencing symbols). TRANLIB.-
L.IB/1. directs MS-LIB to list the modules in TRANLIB.LIB and
the svmbol definitions the modules contain. CTRL-C exits to
CP/M-80 without destroying any files.

Warning

/E will destroy your current library if there is no new li-
brary under construction. This is a special danger to your
MS-FORTRAN runtime library FORLIB.REL. If you are only
listing the librarv and not revising it, exit MS-LIB using
CTRI-C.

8.2 MS-LIB Commands

8.2.1 Invoking MS-LIB
To invoke MS-LIB, enter:
LB
MS-LIB will return an asterisk (*) prompt, indicating that it is
ready to accept commands. Eachcommand in MS-LIB adds modules

to the library under construction.

Commands to MS-LIB consist of an optional destination field, a
source field. and an optional switch field.

The format of an MS-LIB command is:
destination=source/switch

Each field is described below. The general format for each field is
shown in parentheses after the field name.

141

Utility Software Package Reference Manual

S8.2.2 Destination Field (filename=)

This field is optional. The equal sign is required if any entry is made
in this field.

Enter in this field the filename (and extension, if you choose) for the
library file you want to create.

If this field is omitted, MS-LI1B defaults to the filename FORLIB.
The default filename extension is .REL..

Warning

Do not confuse this default filename FORLIB.LIB with
FORLIB.REL, the runtime library supplied with MS-FOR-
TRAN. ‘These two libraries will not be the same unless vou
command MS-LIB to copy all the files from the MS-FORTRAN
runtime library to the new library. Furthermore, when you exit
MS-LIB, the default library name will be given the filename
extension .REL, which means that it replaces the FORLIB.REL
supplied with MS-FORTRAN. For this reason, unless you want
your MS-FORTRAN runtime library destroyed, we recommend
emphatically that you alweays specify a destination filename
when creating a new library.

8.2.3 Source Field (filename module)

Some entry is required in this field. All source files must be REL
files.

Source field entries tell MS-L1B which files or parts of files (modules)
you want added to the destination library file. You have two choices
for entries:

1. Filename(s) only

2. Any combination of filename(s) and module name(s)

142

Microsoft LL1B Library Manager

The following syntax rules apply:

1.

If a command consists of filenames only, the entries are
separated by commas only. For example:

FILE1,FILE2,FILE3

If acommand consists of filenames and module names, the
module names must be enclosed in angle brackets (<>).
Modules follow the filename where they are found. Each
filename: module - combination is separated from other
command line entries by commas. For example:

FILE1,FILE2 MODZ FILES MODR ,FILE4

If more than one module is named from the same file, the
module names, enclosed in angle brackets (<>), must be
separated from each other by commas. For example:

FILE1,FiILE2 MODZ.MODR ,FILE3

See "Additional Details About Source Modules,™ option 2,
in this section.

Files and modules are typically MS-FORTRAN or MS-COBOL
subprograms or main programs, or assembly language programs
that contain ENTRY, GLOBAL, or PUBLIC statements. (These
statements are called entry points.) MS-LIB recognizes a module
by its program name, which may be a filename, or a name given by
either the .TITLE or the NAME pseudo-op in MS-MACRO. All
source files must be REL files.

MS-1.1B concatenates REL files and modules of REL files; that is,
MS-LIRB strings one file or module after the other.

So there is no difference between the command under syntax rule 2

and

FILE1
FILE2 MODZ
FILES MODR
FILE4

Also, because thelibrary file is built by concatenation, it isimportant
to order the modules so that all intermodule references are “forward.”

143

Utility Software Package Reference Manual

That is, the module containing the external reference should
physically appear ahead of the module containing the entry point
(the definition). Otherwise, when you direct MS-LINK to search
the library, MS-LINK may not satisfy all references on a single
pass through the library.

Additional Details About Source Modules

To extract modules from previous libraries and other REL files,
MS-LiB uses a powerful syntax to specify ranges of modules within
a REL file.

These ranges may be from one module to the entire file (in which
case no module specification is given).

The basic principle of specifying a range of modules is, generally,
that any module named in a command will be included. (There is an
exception, when specifying a relative offset range. See item 6.)

The options for specifying modules are:

1. One module only

Enter the module name. For example,
FILE1<MODZ>

includes only module MODZ of FILE1.
2. Several discontiguous modules from one file

Enter the module names separated by commas. For example,
FILE1I<MODZ,MODR.MODK>

includes modules MODZ, MODR, and MODK. Note that
these modules may be given in any order you need them
concatenated for a proper one-pass search, regardless of
their order in the original file.

144

Microsoft LIB Library Manager

From the first module through the named module
Enter two periods(..) and the name of the last module to be
included. For example,

FILE1<.MODK>
includes all modules from the first modulein FILE1 through
module MODK.
From a named module through the last module
Enter the name of the module that starts the range followed
by two periods (..). For example,

FILEI<MODR.>
includes all the modules, beginning with module MODR,
through the last module in FILE1.
From one named module through another named module

Enter the name of the module that starts the range followed
by two periods (..) followed by the name of the module that
ends the range. For example,

FILE1I<MODZ..MODK>
includes all modules, beginning with module MODZ,
through module MODK.
Relative offset range

Enter the module name followed by a + or — and the
number of modules to be included. + means following the
named module. — means preceding the named module. The
named module is not included in the library. The offset
number must be an integer in the range 1 to 255. For
example,

FILE1I<MODZ +2>

includes the two modules immediately following module
MODZ. While

FILEI<MODK—-3>

includes the three modules immediately preceding module
MODK.

145

Ulility Software PPackage Reference Manual

Additionally, ranges and offsets may be used together. For
example,

FILE1 MODR+1..MODK-1

includes all the modules between module MODR and module
MODK (but neither MODR nor MODXK is included).

7. All modules in a file

Enter the filename only. For example,
FILE1

includes the entire file (all modules in FILE1).

8.2.4 Switch Field (/switch)

Anentryin the switch field commands MS-L1B to perform additional
functions. A switch field entry is a letter preceded by a slash mark

(/).

Warning

/E will destroy your current library if there is no new library
under construction. This is a special danger to your MS-
FORTRAN runtime library FORLIB.REL because FORLIB is
the default filename used if you do not specify a destination
filename. Therefore, unless you want to delete your complete
MS-FORTRAN runtime library, give MS-LIB a destination
filename for the new library. If you are only listing the library
and not revising it, exit MS-LIB using CTRL-C.

Switch Action

/E Exits to CP/M-80. If you are not creating a new library
or revising an existing library, use CTRL-C instead of
/E.

The library under construction (.LIB) is renamed to
.REL and any previous copy of the library file is deleted.
Thisis why /E is so dangerous and not to be used unless

146

/R

/L

/U

/C

/0

/H

Microsoft LLIB Library Manager

you are constructing a new library. Again, we recommend
emphatically that you always enter a filename in the
destination field of the MS-LIB command line.

Renames the library currently being built (.LIB) to
.REL. The same warnings and cautions apply to /R as
apply to /E.

The previous copy of the library is deleted. Use /R only
if you are building a new library. /R performs the same
functions as /E, but does not exit to CP/M-80 on
completion. Use /R instead of /E when you want to exit
the current library but want to continue using MS-LIB
for other library managing.

Lists the modules in the file specified and the symbol
definitions the modules contain. The contents of a file
are listed in cross-reference format.

Listings are currently always sent to the terminal; use
CTRIL-P before running MS-LIB to send the listing to
the printer.

Use /U to list the symbols which could be undefined in a
single pass through a library. If a symbol in a library
module refers “backward” (to a preceding module), /U
will list that symbol.

Use /C to clear commands from MS-LIB withoutexiting
the MS-LIB program. The library under construction is
deleted and the MS-LIB session starts over. The asterisk
() prompt will appear.

Use /C if you specified the wrong module(s) or the
wrong order and want to start over with new MS-LIB
commands.

Use /0 to set typeout mode to octal radix. /O will be
given together with the /L switch, which commands
MS-LIB to list. Remember: When switches are given
together, a slash must precede each switch. Forexample:

NEWLIB/L/O

Use /H to set typeout mode to hexadecimal radix.
Hexadecimal is the default radix.

147

Appendices

Appendices

A Compatibility With Other Assemblers

B The Microsoft Utility Software Package

With TEKDOS* 153
B.1l TEKDOS Command Files 153
B.2 MS-MACRO 153
B.3 MS-CREF 154
B.4 MS-LINK 154

C ASCII Character Codes 157

D Format of MS-LINK-Compatible
Object Files 159

E MS-MACRO Pseudo-op Table 163
E.1 Single-Function Pseudo-ops 163
E.2 Listing Pseudo-ops 164

E.3 Macro Facility Pseudo-ops 165
' Opcode Table 167

F.1 780 Opcodes 167

F.2 8080 Opcodes 169

149

Appendix A

Compatibility
With Other Assemblers

The $EJECT and $TITLE controls are provided for compatibility
with Intel ISIS™ assembler. The dollar sign must appear in column
1 only if spaces or tabs separate the dollar sign from the control
word. The control word

$SEJECT
is the same as the MS-MACRO PAGE pseudo-op.
The control word
STITLE('text)
is the same as the MS-MACRO SUBTTL <_text> pseudo-op.

The Intel operands PAGE and INPAGE generate “Q" errors when
used with the MS-MACRO CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MS-MACRO is invoked, the default for the origin is code
relative 0. With the Intel ISIS assembler, the default is absolute 0.

With MS-MACRO. the dollar sign ($) is a defined constant that
indicates the value of the location counter at the start of the
statement. Other assemblers may use a decimal point or an asterisk.
Other constants are defined by MS-MACRO to have the following
values:

A=7 B=0 C=1 D=2 E=3
L=5

M=6 SP=6 PSW=6

151

Appendix B

The Microsoft Utility Software
Package With TEKDOS

The command formats for MS-MACRO, MS-LLINK, and MS-CREF
differ slightlv under the TEKDOS operating system.

B.1 TEKDOS Command Files

The files M&0. 1.80. and C80 are actually TEKDOS command files
for the assembler, loader, and cross-reference programs, respectively.
These command files set the emulation mode to 0 and select the
780" assembler processor (see TEKDOS documentation), then
execute the appropriate program file. You will note that all of these
command files are set up to execute the Microsoft programs from
drive #1. MS-LLINK will also look for the library on drive #1. If you
wish to execute any of this software from drive #0, the command
file must be edited. Then, MS-LINK should be given an explicit
library search directive, such as MYLIB-S. See Section 6.2.2,
“Switches.”

Filenames under TEKDOS do not use the Microsoft Utility Software
Package default filename extensions.

B.2 MS-MACRO

The MS-MACRO assembler accepts command lines only (the invoke
command. M80, and all filenames and switches must be on one
line). No prompt is displayed, and the interactive commands
(.TTY:=TTY: and ,LPT:=TTY:) are not accepted. Commands

153

have the same format as TEKDOS assembler commands, that is,
up to three filenames or device names plus optional switches.

M80 object] llist) source [switch [switch [...]}]

The object and list file entries are optional. These files will not be
created if the parameters are omitted. Any error messages will still
be displayed on the console. The available switches are described in
Chapter 5, “Running Microsoft-MACRO Assembler.” All command
line entries may be delimited by commas or spaces. If you do not
want to request an object file, you must enter a <space comma
space> between the M80 entry and the name of the list file. For
example:

M80 , LIST SOURCE

B.3 MS-CREF

The format of commands to MS-CREF is:
C80 list source

Both filenames are required. The source file is always the name of
an MS-CREF file created during assembly by the /C switch.

To create an MS-CREF file from the source TSTMAC using
MS-MACRO, enter:

M80, TSTCRF TSTMAC C

To create a cross-reference listing from the MS-CREF file TSTCREF,
enter:

C80 TSTLST TSTCRF

B.4 MS-LINK

With TEKDOS, MS-LINK Linking Loader accepts interactive
commands only. Command lines are not supported.

154

Utility Software Package With TEKDOS

When MS-LINK isinvoked, and whenever it is waiting for input, it
will prompt with an asterisk. Commands are lists of filenames
and/or devices separated by commas or spaces and optionally
interspersed with switches. The input to MS-LINK must be Micro-
soft relocatable object code (not the same as TEKDOS loader
format).

Switches to MS-LINK are delimited by hyphens under TEKDOS,
instead of slashes. All MS-LINK switches{as documented in Chapter
6) are supported, except —G and —N, which are not implemented
at this time.

For example, assemble an MS-MACRO program named XTEST.

1. Create an object file called XREL and a listing file called
XLST:

M80 XREL XLST XTEST

2. Load XTEST and save the loaded module:

L80
*XREL—-E
[04AD 22B8]

*DOS+*ERROR 46
L80 TERMINATED
M XMOD 400 22B8 04AD

Note that — I exits via an error message due to execution of a Halt
instruction. Thememoryimage is intact, however, and the TEKDOS
Module command may be used to save it. Once a program is saved
in module format, it may then be executed directly without going
through MS-LINK again.

The bracketed numbers printed by MS-LINK before exiting are the
entry point address and the highest address loaded, respectively.
The loader default is to begin loading at 400H. However, the loader
also places a jump to the start address in location 0, which allows
execution to begin at 0. The memory locations between 0003 and
0400H are reserved for SRBs and 1/0 buffers at runtime.

155

Appendix C
ASCII Character Codes

Dec

nown
0ol
ooy
a0
IR
O
Nk
07
[RIREY
0Ny
0o
01l
(i
0l
ol
nin
(13NN
(3
[IRE
DERT
020
021
h22
(A
024
(U
[§RIN
027
02K
024
030
031
R
033
IRE]
035
036
037
03
034
040
011
042

Hex

ool
o1l
nept
[(IX13]
ol
osH
osH
o7 H
[IEN R
nup
RN
nBH
oc
ahIt
o H
Bl
1ol
1H
Tt
131
141
15
161
17H
IxH
[RUA]
1\H
(B3R
1CH
1DH
1N
IFH
204
2111
22H
23H
24H
25H
2611
27H
28H
29H
2AH

CHR Dec
N 043
SO 044
STN 045
[SNIAN 046
O 047
FNQ 048
ACK 044
BEIL. 04s0
BS Ol
Hr ({F%]
1.V (IR}
T 05H4
1 05H)
CR 0L6
SO anT
S 0HK
DELE 054
Del 060
Dne? 061
DCyY 062

[J[IR}

064

065
3 066
CAN 067
FAL 06X
SUR 064
ESCAPE 070
FS 071
GS 072
RS 073
us 074
SPACE 075
¥ 076

077
[078
3 079
o 0RO
& 0R1
! 0R2

083
) 084
u 085

Hex CHR
2BH +
20H

2D

2K H

2N

JoH 0
31N 1
3UH pa
33 H £}
34H 4
a5H i)
36 H 6
37H 7
RENE N
Aan L]
AN £
SBH i
JCH <
RIM] =
JE1 >
3EH ?
J0H]
41H A
421 B
a3H ¢
44 H N
A5 I
46 H F
47H G
AR 1
49H {
4A11 J
43 H K
JCH 1.
4Dl M
4EH N
4F1 O
50H P
51H Q
52H R
531 8
5411 T
5511 U

Dee

0R6
0R7
ORR
0ORY
090
09l
092
093
044
095
0v6
07
0uR
09y
1oy
101
102
103
104
105
106
107
108
109
110
11
[§i473
3
114
115
Il6
117
(L)
119
120
121
122
123
124
125
126
127

Hex

a6l
aTH
AR
EIU R
MAH
SBH
HCH
ShH
HI R
SFH
60H
61H
62H
63 H
HaH
6hH
6611
67H
6R11
69H
6AH
6B H
6CH
6DH
6k
6+
70H
711
721
ERIE
74l
751
7611
77H
7811
791
TA11
7BH
7CH
7DH
7K1
7FH

CHR

T T TNw sz

Dec=decimal
I.F =1lane Feed
DEL = Rubout

Hex =hexadecimal (H)
FF=Form Feed

CHR=character

CR=Carriage Return

157

Appendix D

Format of MS-LINK-Compatible
Object Files

This appendix contains reference material for users who wish to
know the load format of MS-LLINK relocatable object files. None of
this material is necessarv to the operation of any of the utility
software programs. Thereis nothing in the format material presented
here which can be manipulated by the user. The material is highly
technical, and it is not presented in any tutorial manner.

MS-LINK-compatible object files consist of a bit stream. Individual
fields within the bit stream are not aligned on byte boundaries,
except as noted below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum, thereby decreasing
the number of disk reads/writes.

There are two basic types of load items: absolute and relocatable.
The first bit of an item indicates one of these two types. If the first
bit is a 0. the following 8 bits are loaded as an absolute byte. If the
first bit'isa 1. the next 2 bits are used to indicate one of 4 types of
relocatable items:

00 Special MS-LINK item (see below).

01 Program relative. Load the following 16 bits after adding
the current program base.

10 Data relative. Load the following 16 bits after adding the
current data base.

11 Common relative. Load the following 16 bits after adding
the current common base.

Utility Software Packaye Reference Manual

Special MS-LINK items consist of the bit stream 100 (read one-
zero-zero) followed by:

A four-bit control field.

An optional A field consisting of a two-bit address type that is
thesame as the two-bitfield described above, except 00 specifies
absolute address.

An optional B field consisting of 3 bits that give a symbol
length and up to 8 bits for each character of the symbol.

A general representation of a special MS-LINK item is:

100 xxxx yy nn 222 + characters of symbol name
A field B field

where

XXXX is a four-bit control field (0-15 below)

yy is a two-bit address type field
nn is a sixteen-bit value
222 is a three-bit symbol length field

The following special types have a B field only:

Entry symbol (name for search)

Select common block

Program name

Request library search

Extension MS-LINK items (see below)

SN = O

The following special MS-LINK items have both an A field and
a B field:
Define common size

Chain external (A is head of address chain, B is name of
external symbol)

7 Define entry point (A is address, B is name)

160

MS-LINK-Compatible Object Files

The following special MS-LINK items have an A field only:

8 External - offset. Used for JMP and CALL to externals.

9 External + offset. The A value will be added to the two
bytes starting at the current location counter immediately
before execution.

10 Define size of data area (A is size).
11 Set loading location counter to A.

12 Chain address. A is head of chain. Replace all entries in
chain with current location counter. The last entry in the
chain has an address field of absolute zero.

13 Define program size (A is size).

14 End program (forces to byte boundary).
The following special MS-LINK item has neither an A nor a B field:
15 End file

An cextension MS-LINK item follows the general format of a
B-field-only special MS-LINK item, but the contents of the B field
are not a symbol name. Instead, the symbol area contains one
character to identify the tvpe of extension MS-LINK item, fol-
lowed by from one to seven characters of additional information.

Thus. every extension MS-LINK item has the format:

100 0100 I s bbbbbb

where

11 is 3 bits containing the length of the field bbbbbb
(0 implys 1 since F80 emits entry length of 0 for
blank common)

s is an eight-bit extension MS-LINK item subtype
identifier

bbbbbb are 1 to6byvtes foradditionalinformation. If used as
B field for name, bbbbbb may be only 6 characters.

161

Utility Software Puckage Reference Manual

The present extension MS-LINK item subtypes are:

5

A
B
Q, -

X'35" COBOL overlay segment sentinel

X'41" Arithmetic Fixup (Arithmetic Operator)
X'42' Arithmetic Fixup (External Reference)
X'43' Arithmetic Fixup (Area Base + Offset)

Descriptions of Subtypes

162

Subtype 5

When the overlay segment sentinel is encountered by
MS-LINK, lll receives the value 010 (binary). and the curvent
overlay segment number is set to the value b+49. If the
previously existing segment number was nonzero and the
/N switch isin effect, the data area is written to disk in a file
whose name is the current program name and whose
extension is Vnn, where nn are the two hexadecimal digits
representing the number b+49 (decimal).

Subtypes A,B,C

Subtypes A, B, and C allow the processing of polish
arithmetic text. Items must be read as reverse polish
expression. One or more value items (subtype B or C) are
followed by one or more arithmetic operators (subtype A)
and end with a store-result arithmetic operator (B.STBT or
B.STWD).

All items are put in the fixup table after any offset entries
have been converted to final addresses. The polish ex-
pression is executed out of the fixup table at the end of link.
The result is stored at the PC given when the items were
read.

Appendix E
MS-MACRO Pseudo-op Table

Notation: * means Z80 pseudo-op
No stars means 8080 pseudo-op

E.1 Single-Function Pseudo-ops

Instruction Set Selection

.2.80
.8080

Data Definition and Symbol Definition

<name> ASET <exp>

BYTE EXT <symbol>

BYTE EXTRN <symbol>

BYTE EXTERNAL <symbol>

DB <exp>|.<exp>...|

DB <string>|.<string>...]

DC <string>

DDB <exp>|.<exp>...|

DEFB <exp>[.<exp>...|

<name> DEFL <exp>

DEFM <string>| <string>...|

DEFS <exp>|.<val>|

DEFW <exp>[.<exp>...|

DS <exp>|,<val>]

DW <exp>[.<exp>...]

ENTRY <name>|(,<name>...]

<name> QU <exp>

EXT <name>|,<name>...]

IEXTRN <name>|.<name>...]

+ EXTERNAL <name>|<name>...]
GLOBAL <name>[,<name>...|
PUBLIC <name>|,<name>...|
<name> SET <exp> (not in .Z80 mode)

* * * * *

163

Utility Software Packapge Reference Manual

PC Mode Pseudo-ops

ASEG

CSEG

DSEG

COMMON /<block name>/
ORG <exp>

.PHASE <exp>/.DEPHASE

File-Related Pseudo-ops

.COMMENT <delim><text><delim>
END | <exp>|

INCLUDE <filename>

$INCLUDE <filename>

MACLIB <filename>

.RADIX <exp>

.REQUEST <filename>[,<filename>...]

E.2 Listing Pseudo-ops

Format Control Pseudo-ops

+ sEJECT |<exp>| (one star is part of *EJECT)
PAGE <exp>
SUBTTL <text>
TITLE <text>
$TITLE

General Listing Control Pseudo-ops
.LIST

XLIST
PRINTX <delim><text><delim>

164

MS-MACRQ Pseudo-op Thable

Conditional Listing Control Pseudo-ops
SEFCOND
.LFCOND
TFCOND

Expansion Listing Control Pseudo-ops
LALL

SALL
NALL

Cross-Reference Listing Control Pseudo-ops

NCREF
LCREF

Al

2.3 Macro Facility Pseudo-ops

Macro Pseudo-ops

<name> MACRO <parameter>(. <parameter>...|
FENDM

EXITM

LOCAL <parameter>|,<parameter>...|

Repeat Pseudo-ops
REPT <exp>

IRP <dummy> <parameters in angle brackets>
IRPC <dummy>,string

165

Utility Software Package Reference Manual

Conditional Assembly Facility Pseudo-ops

*+ COND <exp>
ELSE
+ ENDC
ENDIF
IF <exp>
IFB <arg>
IFDEF <symbol>
1FDIF <argl>,<arg2>
IFE <exp>
1FF <exp>
IFIDN <argl~>,<arg2>
IFNB <arg>
IFNDEF <symbol>
IFT <exp>
IF1
1F2

166

Appendix F
Opcode Table

The opcodes are listed alphabetically by instruction set. For details,
refer to the reference books listed in Chapter 1, “Introduction.”

F.1 780 Opcodes

ADC A Add with Carry to Accumulator
ADC HL.rp Add Register Pair with Carry to HL
ADD Add

AND Logical AND

BIT Test Bit

CALL addr Call Subroutine

CALL cond,addr Call Conditional

CCF Complement Carry Flag

cp Compare

CcpPD Compare. Decrement

CPDR Compare. Decrement, Repeat
CPlI Compare, Increment

CPIR Compare, Increment, Repeat
CPL Complement Accumulator

DAA Decimal Adjust Accumulator
DEC Decrement

DI Disable Interrupts

DJNZ Decrement and Jump if Not Zero
El Enable Interrupts

EX Exchange

EXX Exchange Register Pairs and Alternatives
HALT Halt

IM X Set Interrupt Mode

IN Input

INC Increment

IND Input, Decrement

INDR Input, Decrement, Repeat

167

INT

INTR

JP addr

JP cond,addr
JR

JR cond,addr
LD A,(addr)
LD A,BC)or (DE)
LD Al

LD AR

I.D HIL,(addr)
LD data

LD xy,(addr)

LD reg,(HL)
LD reg,(xy+disp)

LD rp,(addr)

LD SP,HL

LD SP,xy

LD dst,scr

LD (addr),A

LD (BC)or(DE)A
LD ILA

LD R,A

LD (addr),HL

LD (HL),data

LD (xy+disp).data
LD (addr),xy

LD (HL),reg
LD (xy+disp)reg
LD (addr),rp
LDD

LDDR

LDI

LDIR

NEG

NOP

OR

ouT

OouTD

OTDR

OUTI

OTIR

POP

168

Input, Increment

Input, Increment, Repeat

Jump

Jump Conditional

Jump Relative

Jump Relative Conditional

Load Accumulator Direct

Load Accumulator Secondary

Load Accumulator from Interrupt Vector
Register

Load Accumulator from Refresh Register

Load HL Direct

Load Immediate

Load Index Register Direct

Load Register

Load Register Indexed

Load Register Pair Direct

Move HL to Stack Pointer

Move Index Register to Stack Pointer

Move Register-to-Register

Store Accumulator Direct

Store Accumulator Secondary

Store Accumulator to Interrupt Vector
Register

Store Accumulator to Refresh Register

Store HL Direct

Store Immediate to Memory

Store Immediate to Memory Indexed

Store Index Register Direct

Store Register

Store Register Indexed

Store Register Pair Direct

Load, Decrement

Load, Decrement, Repeat

Load, Increment

Load, Increment, Repeat

Negate (Two's Complement) Accumulator

No Operation

Logical OR

Output

Output, Decrement

Output, Decrement, Repeat

Output, Increment

Output, Increment, Repeat

Pop from Stack

PUSH
RES
RET
RET cond
RETI
RETN
RIL
RILLA
RI.C
RL.CA
RLD

RR
RRA
RRC
RRCA
RRD

RST
ST
SBC
SCF
SLA
SRA
SRI.
sSUB
NOR

Opcode Table

Push to Stack

Reset Bit

Return from Subroutine

Return Conditional

Return from Interrupt

Return from Nonmaskable Interrupt

Rotate Left Through Carry

Rotate Accumulator Left Through Carry

Rotate Left Circular

Rotate Accumulator Left Circular

Rotate Accumulator and Memory Left
Decimal

Rotate Right Through Carry

Rotate Accumulator Right Through Carry

Rotate Right Circular

Rotate Accumulator Right Circular

Rotate Accumulator and Memory Right
Decimal

Restart

Set Bit

Subtract with Carry (Borrow)

Set Carry Flag

Shift Left Arithmetic

Shift Right Arithmetic

Shift Right Logical

Subtract

Logical Exclusive OR

F.2 8080 Opcodes

Opcode

ADC.ACI
ADD.ADI
ANALANI
CALL

cC

M

CMA
CMC
CMP.CP]
CNC

Function

Add with Carry

Add

Logical AND ?r

Call Subroutine

Call on Carry

Call on Minus
Complement Accumulator
Complement Carry
Compare

Call on No Carry

169

Ulility Software Package Reference Manual

CNZ
CpP

CPE
CPO
Cz

DAA
DAD

ORA,ORI
OR OUT
PCHL
POP
PUSH
RAL
RAR

RET
RLC

RNC

RNZ
RP

170

Call on Not Zero 7r
Call on Positive

Call on Parity Even
Call on Parity Odd
Call on Zero

Decimal Adjust

16-bit Add

Decrement

16-bit Decrement
Disable Interrupts
Enable Interrupts
Halt

Input

Increment

Increment 16 bits
Jump on Carry

Jump on Minus

Jump

Jump on Not Carry
Jump on Not Zero
Jump on Positive
Jump on Parity Even
Jump on Parity Odd
Jump on Zero

Load Accumulator
Load Accumulator Indirect
Load HL Direct

Load 16 bits

Move

Move Immediate

No Operation

Logical OR

Output

HL to Program Counter
Pop from Stack

Push to Stack

Rotate with Carry Left
Rotate with Carry Right
Return on Carry
Return from Subroutine
Rotate Left

Return on Minus
Return on No Carry
Return on Not Zero
Return on Positive

RPE
RPO
RRC
RST

R7,
SBB,SBI
SHLD
SPHL
STA
STAX
STC
SUB,SUI
XCHG
XRAXRI
XTHL

Opcode Table

Return on Parity Even
Return on Parity Odd
Rotate Right

Restart

Return on Zero

Subtract with Borrow

Store HL Direct

H1. to Stack Pointer

Store Accumulator

Store Accumulator Indirect
Set Carry

Subtract

Exchange D and E, H and L
Logical Exclusive OR
Exchange Top of Stack, HL

171

Index

1282 /N:P - MS-LINK, 118
.- current program counter, 151 /0 - MS-LIB, 147

Yo, 83 /0 - MS-LINK. 124

&, 82 /0 - MS-MACRO, 94
i, 82 /P - MS-LINK, 118-120

/P - MS-MACRO., 96
/R - MS-L1B, 147

SEJECT. 63 /R - MS-LINK, 123
SINCLUDE, 59 /R - MS-MACRO, 94
STITLE. 65 /S - MS-1LLINK, 123

/U-MS-LIB. 147
/U - MS-LINK, 123-124

EJECT, 63 /N - MS-MACROQO, 96
LCOMMENT, 57 /Y - NMIS-LINK, 125
LCREFC 70,136 /7, - MS-MACRO. 95

DEPHASEL 56

LALLL 69

LFCOND, 68 8080 opcodes, 34

LIST, 66 8080 opeodes as operands, 34-35
PHASEL b6

PRINTXL 67

RADIN, 61 ASEG, 51

REQUEST. 62 ASET, 50

SALL6Y

SEFCOND, 68

TEFCOND, 68 BYTE EXT, 48

NXALLL 69 BYTE EXTERNAL, 48
NCREF. 700136 BYTE EXTRN, 48
NXLIST, 66

/C - MS-LIB. 147

/D - NIS-LINKL 120122 Calling a macro, 73-74

/6 - NIS-LIB 116-147 Character constants, 32-33
/15 MS-LINK, 116 Comments, 24

/G- MS-LINK, 115 COMMON, 52, Hh4

/1T MS-LIB, 147 CONI). 84-86

/H - MS-LINK, 124 CSEG. 52, 151

/1T - NS-MACRO, 94 Current program counter, 34, 151
/1 - MSNACRO. 96

/1 - NS-LIB L 147

/1. - MISATACRO. 95 DB. 43

/N MSLINK, 124 DC. 14

/M - MSAACRO, 96 DEFB, 43

/N - MS-LINK, 117-118 DEFL, 50

173

Index

DEFM, 43

DEFS, 45

DEFW, 46

Device names as files, 99
DS, 45

DSEQG, 53, 151

DW, 46

ELSE, 84, 86

END, 58

ENDC, 84, 86

ENDIF, 84, 86

ENDM, 79

ENTRY, 49

EQU, 47

Error messages
MS-LINK, 126-129
MS-MACRO, 104-105

EXITM, 80

EXT, 48

EXTERNAL, 48

EXTERNAL symbols, 26-27

EXTRN, 48

File format, 23

GLOBAL, 49

IF, 84-86

IF1, 85

IF2, 85

IFB. 85
IFDEF, 84-85
IFDIF, 86
IFE, 85

IFF, 85
IFIDN, 86
IFNB, 85
IFNDEF, 84-85
IFT, 84-85
INCLUDE, 59
IRP, 77

IRPC. 78

174

LABEL:, 25
Listing formats, 100-101
LOCAL, 81

MACLIB, 59

MACRO, 71-72

MACRO-80 error codes and
messages. 103-105

MACRO-80 listing files. 100-101

MACRO-80 Macro Assembler. 89

Modes. 28-29

Mode rules for symbols in
expressions, 34

MS-CREF Cross-Reference
“acility, 133-136

MS-LIB command format, 141

MS-LIB Library Manager, 139

MS-LIB modules, 142-146

MS-LINK error messages, 126-129

MS-LINK Linking Loader, 109

NAME, 60
Notation, svntax, 5
Numbers as operands, 31

Operands, 31-35

Operator order of precedence. 38
Operators, 35-38

ORG, 55

PAGE, 63, 151

Pseudo-ops,
SEJECT, 63
$INCLUDE, 59
$TITLE, 65
+EJECT, 63
.COMMENT, 57
.CREF, 70. 136
.DEPHASE. 56
.LALL, 69
.LFCOND. 68
.LIST, 66
.PHASE. 56

Pseudo-ops continued
PRINTX, 67
RADIX, 61
REQUEST, 62
SALL, 69
SFCOND. 68
TFCOND, 68
XALL, 69
XCREF, 70, 136
XLIST, 66
ASEG. 51
ASE'T, 50
Block listing, 69
BYTE EXT, 48
BYTE EXTERNAL, 48
BYTE EXTRN, 48
COMMON, 52, h4
COND. R4-86
Conditional, 84
Conditional listing, 68
CSEG, b2, 151
Data definition, 42
DB, 43
DC 44
DEFB, 43
DEFL, 50
DEFM, 43
DEFS, 45
DEFW., 46
DS, 45
DSEG, 53, 151
DW, 46
FLSE. 84, 86
IXND. n8
ENDC, 84, 86
[ENDIF, 84, 86
ENDM. 79
ENTRY, 49
KQU. 47
EXTTM., 80
[Expansion listing, 69
IXT, 48
EXTERNAL, 48
EXTRN, 48
Format control, 63
General listing., 66
GLOBAL. 49
IF. 84-86
IF1, 85
112, 85

Index

Pseudo-ops continued
IFB, 85
IFDEF, 84-85
IFDIF, 86
1FE, 85
IFF, 85
IFID N, 86
IFNB, 85
IFNDEF, 84-85
IFT, 84-85
INCLUDE, 59
IRP, 77
IRPC, 78
Listing. 63-70
LLOCAL, 81
MACLIB, 59
MACRO, 71-72
Macro listing, 69
NAME, 60
ORG. 55
PAGE, 63, 151
PC mode, 51
PUBLIC, 49
REPT, 76
SET, 50
SURBTTI. 65
Symbol definition, 42
TITLE, 64
PURBLIC. 49
PUBLIC symbols, 26

REPT, 716

Restrictions on module placement
with MS-LINK, 120

Rules for externals in
expressions, 33-34

SET, 50
Special macro operators, 82-83
! 82
T, 83
&, 82
1. 82
Special radix notation, 31
Statement line format, 23-24
Strings. 32
SUBTTI. 65

175

Index

Switches,
MS-LIB,

/C, 147
/1, 146-147
/H, 147
/L, 147
/0, 147
/R, 147
/U, 147

MS-LINK,

176

/D, 120-122
/K, 116
/G, 115
/H, 124
/M, 124
/N, 117-118
/N:P, 118
/0, 124

/P, 118-120
/R, 123
/S, 123
/U, 123, 124
/X, 125
/Y, 125

Switches continued
MS-MACRO,

/H, 94

/1,96

/L., 95

/M, 96

/0, 94

/P, 96

/R, 94

/X, 96

/2, 95
Symbol table format, 102
Symbols, 24
Symbols in expressions, 34
Symbols rules, 24-25
Syntax notation, 5
System requirements, 3

TEKDOS, 153
TITLE, 64

780 opcodes, 41-42

MICRZSOFT. Software

10700 Northup Way, Bellevue, WA 98004 Problem Report

Name

Street
City State Zip

Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category
_______Software Problem ___ Documentation Problem
#
____ Software Enhancement (Begument)
____ Other
Software Description
Microsoft Product
Rem: Registration #
Operating System __ . _ _
Rev. . . __ .. Supplier -
Other Software Used
Rev. _______ Supplier
Hardware Description
Manufacturer __ . CPU___ = Memory KB
Disk Size _ _____ " Density: Sides:
Single______ Single _____
Double _ Double

Peripherals _ = _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

Tech Support Date Received

RoutingCode ______ ___ Date Resolved _

Report Number

Action Taken:

Part no SPRO0O

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172
	00173
	00174
	00175
	00176
	00177
	00178
	00179
	00180
	00181
	00182
	00183
	00184
	00185
	00186
	00187
	00188
	00189
	00190
	00191
	00192

