
microsoft

cobol-80

documentation

Microsoft COBOL-&l and associated software are accompanied by the following document�:

1. CO[lQL-&l USER'S GUIDE
describes all the procedures associated with running COBOL-80, writing COBOL programs,
and running the programs with your hardware.

2. COBOL-&l REFERENCE MANUAL
provides extensive descriptions of COBOL-80's statements, syntax and organization.

3. MICROSOFT UTILITY SOF1WARE MANUAL
describes the use of the MACRO-80 Assembler, LINK-80 Linking Loader and LIB-80 Library
Manager with the COBOL-80 compiler.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1978

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trade mark of Digital Research

Microsoft COBOL User's Guide Update

USER'S GUIDE UPDATE NOTICE

The text file, README.DOC, is included on one of your

distribution disks. README.DOC contains the most current

infonnaticn concerning the enhancements ar.d extensions to

Microsoft COBOL since the last release.

Microsoft Corporation

UPDATE NOTICE
for Microsoft COBOL Compiler

Release 4.66

the differences
Release 4.66, for

SoftCard) and the

This update (June 10, 1983) describes
between the Microsoft COBOL Compiler,
CP/M-80 operating systems (including
previous Release 4.65.

Release 4.66 contains enhancements and corrections which are
described in the following sections.

Important

If you a"e using the MS-COBOL-Hosted Version of the
Microsoft SORT Sorting and Merging Facility with
MS-COBOL Compiler, Release 4.66, an update is also
required for your MS-SORT package. For information on
how to receive this update, contact:

Enhancements

Product Update Administrator
Microsoft Corporation
10700 Northup Way
Bellevue, Washington 98004

(206) 828-8080

1. Uppercase and lowercase characters are treated the
same unless the characters are inside a non-numeric
(quoted) literal.

2. End-of-source-file processing has been improved.
Blank lines at the end of the file will no longer
generate error messages. Files with last records
that have not been terminated with a carriage

Page 2

return will now have the last record processed.

3. Error handling for non-nu;neric (quoted) literals

has been improved so the compiler recovers more
quickly from such an error.

However, non-numeric literals

across more than one line,

that are
but do not

continuation character, now generate an
message.

broken
use a
error

Corrections

1. In Release 4.65, when a COMPUTE statement with a
ROUNDED option was the last or only statement in a
paragraph, and multiplication was performed on the
statement, the result may have been ten times too
great.

This has been corrected in this Release 4.66.

No other statements (for example, MULTIPLY), share
this problem.

2. Target paragraphs of the GO TO statement with the
DEPENDING ON clause may now be in independent
segments (overlays).

3. The MS-SORT library has been
problems found in sorting
megabyte in size) files.

changed to correct
large .(around one

Microsoft COBOL Compiler

Release 4.65 Update Notice

October 1982

Microsoft COBOL Compiler Release 4.65 contains several
enhancements and corrections to the previous release. These
changes are listed below and, where necessary, are
documented in the Microsoft COBOL User's Guide.

Note that if you are using the MS-SORT utility with MS-COBOL
Version 4.65, you will need to contact Microsoft to receive
the MS-SORT update. Contact the Product Updace
Administrator, Microsoft Corporation, 10700 Northup Way,
Bellevue, Washington 98004 (Phone: (206) 828-8080).

Enhancements

1. Sequential, Line Sequential, and Relative files now use
a sophisticated buffer management scheme in which no
buffers are allocated within the compiled program. This
new method of buffer management will decrease the size
of compiled programs and improve runtime performance.

2. Relative files will no longer be
space between reco:ds is set
records indicated by a null byte
the record. This new format
relative files with the CP/M PIP

non-contiguous: all
to zeroes, with deleted
as the first byte of

allows users to copy
utility.

Note that if current files have large gaps between
record numbers, the format will not be compatible with
this version of COBOL. To correct this incompatibility,
you will need to create an MS-COBOL program, under a
previous release of MS-COBOL, that writes records into
the unallocated gaps of your relative files. Then write
these new records to the file with a null byte as the
first character, or DELETE them after they have been
written.

3. The Debug facility has been modified to make use of a
new buffering mechanism for accessing the Debug
Information File. Two new commands have been added:

Page 2

Address [<dataname>) - displays the absolute address
(hexadecimal) of a data item in memory.

Dump [<addrl>[,<addr2>)] - displays memory addresses
(hexadecimal and ASCII equivalents) from address 1
through address 2.

These commands are also documented in Section 4.2 of the
Microsoft COBOL User's Guide.

4. An Indexed File Recovery Utility, called REBUILD, has
been added. It reads through the data portion of an
indexed file, skipping over deleted records, and creates
new key and data files. This utility can be used
whenever a damaged indexed file must be recovered--for
example, when a "Disk fu11• condition occurs.

5. Using the RtwRITE statement with an indexed file
formerly wrote records to the file with a deleted flag
set on · (reference count=0). This fault has been
corrected in Release 4.65. Note that this did not
ir.terfere with �orma_!_ MS-COBOL processing of the file.
However, the Indexed File Recovery Utility (REBUILD)
will skip over records whose reference count is 0.
Therefore, if you wish to use REBUILD with such files,
these records should be recorded correctly in the data
file. The skeleton program RECOVR.COB has been provided
on your second distribution disk for this purpose. Once
modified and compiled, it will read an old indexed file
and write a new one.

6. If you rur. out of disk space after a file is written to
or closed, 1':S-COBOL will now move "24" (for a sequential
or line-sequential file) or •34• (for an indexed or
relative file) into the file status item, indicating
that data have been lost. It is therefore a good idea
to check the file status atter a WRITE or CLOSE.

Corrections

**In previous versions, if files were open at the time of a
CHAIN, arguments may have overwritten disk buffers. This
problem has been corrected.

**Various intermittent problems, including incorrect
evaluation of subscripted variables, were formerly caused
when the compiler did not allocate sufficient space to a
temporary memory area when compiling a segmented program.
This has been corrected.

Page 3

**Correction has been made to the exponentiation algorithm
where the scale of the result was not computed correctly
for a negative exponent.

**Corrections have been made to the processing of all file
types when an out-of-space condition occurs during a
WRITE. Now, when a CLOSE is executed following an
unsuccessful WRITE attempt, all buffers are written to
disk and a call is made to the operating system to close
the file and record its full lengt�. Note that there is
still a possibility that the last record written will only
partly exist in the file. Because of the complicated
block manipulation required for indexed files, the
out-of-space condition requires use of the Indexed File
Recovery Utility (see REBUILD, above).

**In previous versions, indexed files that
variable length records did not perform
correctly. This problem has been corrected.

contained
REWRITES

**In previous versions, problems occurred when SORT was used
with input or output procedures in independent segments.
These problems have been corrected.

**Two changes have been made to fields involved in a screen
ACCEP-1': (1) Highlight and blink will now remain active
during an ACCEPT. (2) When the USING or WIT"rl UPDATE
attributes are active, individual numeric fields must
either be accepted as displayed or completely replaced.
The first digit typed while the cursor is in the field
will clear the original number.

**Default tab settings have been changed to columns

8, 12, 20, 28, 36, 44, 52, 60, and 68

S ee Appendix C of the Microsoft COBOL User's Guide for
information on how to changethese settings.

Microsoft COBOL
user's guide
for 8080 and Z80
microprocesso:-s

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy Microsoft COBOL on cassette tape,
disk, or any other medium for any purpose other than the
purchaser's personal use.

Copyright (C) Microsoft Corporation, 1980

LIMITED WARRANTY

MICROSOFT CORPORATION shall have no liability or
responsibility to purchaser or any other person or
entity with respect to any liability, loss or
damage caused or alleged to be caused directly or
indirectly by this product, including but not
limited to any interruption of service, loss of
business or anticipatory profits or consequential
damages resulting from the use or operation of
this product. This product will be exchanged
within twelve months from date of purchase if
defective in manufacture, labeling or packaging,
but except for such replacement the sale or
subsequent use of this program is without warranty
or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONL Y WARRANTY
BY MICROSOFT- CORPORATION. AN�AND ALL WARRANTIES
MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE
EXPRESSL Y EXCLUDED.

MADE

FOR

ARE

To report software bugs or errors in the documentation,
please complete and return the Problem Report at the back of
this manual.

Microsoft COBOL Compiler is a trademark of Microsoft
Corporation.
CP/M is a registered trademark of Digital Research, Inc.
ISIS-II is a trademark of Intel Corporation.

Document No. 8302-465-04

Contents

CHAPTER l

1.1
1.2
1.2.l
1.2.2
1. 2.3
1.2.4
1.2.5
1.3
1.4

CHAPTER 2

2.1
2.2
2.3
2.4

CHAPTER 3

3.1
3.2
3.3

CHAPTER 4

4.1

4.2

4.3

4.4
4.5
4.5.l
4.5.2
4.6

OVERVIEW

Introduction
Your Distribution Disks

The Microsoft COBOL Compiler
The Runtime System
The CRT Drivers
Utility Software
Miscellaneous Files

Getting Started
Program Development Steps

CQ�PILING MICROSOFT COBOL PROGRAMS

Microsoft COBOL Command Line Syntax
Compiler Switches
Output Listings and Error Messages
Files Used by Microsoft COBOL

LINKING MICROSOFT COBOL PROGRA."!S

MS-LINK Command Line Syntax
Subprograms
Function Libraries

EXECUTING MICROSOFT COBOL PROGRAMS

The Runtime System
The Interactive Debug Facility
Printer File Handling
Disk File Handling
CRT Handling

Terminal Output
Keyboard Input

Runtime Errors

APPENDIX A

A.l
A.2
A.3

APPENDIX B

8.1
B.2
8.3

APPENDIX C

C.l
c.2
c.3

APPENDIX D

D.l
D.2
D.3

l\PPENDIX E

CONFIGURING THE CRT

General Instructions
Terminal Charts
Writing a CRT Driver

INTERPROGRAM COMMUNICATION

Subprogram Calling Mechanism
CHAIN Parameters
CHAIN Error Messages

CUSTOMIZATIONS

Source Program Tab Stops
Compiler Listing Page Length
Runtime DAY, DATE, TIME, LINE NUMBER

REBUILD: Indexed File Recovery Utility

Overview
Running REBUILD
Sample REBUILD Session

EXTENSIONS FOR FILE HANDLING UNDER CP/M-80

1.1 INTRODUCTION

CHAPTER 1

OVERVIEW

The purpose of this Microsoft COBOL User's Guide is to give
you practical information about getting a Microsoft COBOL
(MS-COBOL) program up and running on your 8080 or Z80
computer. All the steps necessary to use Microsoft C030L
successfully -- compiling, linking, executing, etc. are
carefully described in the following pages.

1.2 YOUR DISTRIBUTION DISKS

You will receive from one to four disks from Microsoft,
depending on your implem2ntation of MS-COBOL. The following
files are on disk (though not necessarily in this order):

The MS-COBOL Compiler
COBOL.COM
COclOLl.OV'R
COBOL2. OV,�
COBOL3 .O�
COBOL4.0VR

The Runtime System
?.UNCOB.Cc»I the runtime executor
COBLBX.REL -- the runtime executor's library
CRTDRV.REL -- the durr�y CRT driver
DZBUG.REL -- the interactive debug facility

OVERVIEW Page 1-2

Utility Software
L80.COM -- the Microsoft Linking Loader
LD80.COM -- the Microsoft Link-to-Disk Linking

Loader
LIB.COM -
M80.COM -
CREF80.COM

the Microsoft Library Manager
the Microsoft Macro Assembler

the Mic:osoft Cross-Reference
Facility

CRT Drivers -- files whose names begin with CD
CD .MAC source code
cD=:.REL -- relocatable object code

Conversion Utilities
SEQCVT.COM converts old format

sequential files to line sequential
CVISAM.COM -- converts old format indexed

files to new format
REBUILD.COM -- "recovers" a damaged indexed

file
RECOVR.COB -- a skeleto� MS-COBOL program

which converts indexed files created
previous to Version 4.65 to format
compatible with REBUILD

Demonstration Programs
SQUARO.COB
CRTEST.COB

Miscellaneous
COBLIB.REL

RUNCOB.COM
COBLOC -- gives

programs

a relocatable

the load address

version of

of MS-COBOL

COPCOB.SUB -- a SUBMIT file to copy all files
from this diskette

OVERVIEW Page 1-3

1.2.1 The Microsoft COBOL Compiler

The compiler consists of a main program and four overlays.
These five parts correspond to the five "phases R of
compilation. The main program is always memory-resident and
controls the transition from each phase to the next. The
overlay portion of the main program compiles the
IDENTIFICATION and ENVIRONMENT DIVISIONS. Overlay 1 is
brought in to compile the DATA DIVISION. The PROCEDURE
DIVISION is compiled by overlay 2. These 3 parts constitute
the first pass of compilation. Their function is to create
an intermediate version of the program, which is stored on
the current disk in a file named STEXT.INT. Overlay 3 reads
the intermediate file and creates the object code. Finally,
overlay 4 allocates the file control blocks and checks
certain error conditions. The intermediate file is then
deleted.

1.2.2 The Runtime System

The runtime system consists of an executable program that
interprets the object code of your program produced by the
compiler. It resides in a file called RUNCOB.COM. In
addition, some optional routines are contained in
COBLBX.REL. These optional routines will be linked with
your compiled program by the linker. At runtime, the
compiled pr<>sram relocates itself to a high memory address
(the address contained in the first line of COBLOC), then
reads in the executor from RUNCOB.COM, and jumps into the
interpretation code of the runtime system.

Certain extensions for
included in COBLBX.REL.
of these extensions.

1.2.3 The CRT Drivers

file handling under CP/M-80 are
See Appendix E for the description

The CRT drivers enable you to configure your system for the
type of CRT terninal you are using. You will need to select
the appropriate driver (see Appendix A of this Guide). Once
you have done so, the driver will be automatically included
with each program you link with the linking loader. The
driver provides cursor positioning and other functions to
support interactive ACCEPT and DISPLAY statements.

OVERVIEW Page 1-4

1.2.4 Utility Software

The Microsoft linking loader is used to link MS-COBOL object
programs with the runtime system (see Chapter 3 of this
Guine). The other utilities are provided for your
convenience. Each of these programs is documented in the
Microsoft Utility Software Package Manual.

1.2.5 Miscellaneous Files

SQUARO.COB is an MS-COBOL source program that computes the
square root of a number you provide. It is used to verify
that you have a working version of the compiler and runtime
system.

CRTEST.COB is an MS-COBOL source program that tests the
functions of the interactive CRT driver (see Appendix A).

SEQCVT.COM is a special utility program that converts
MS-COBOL files from SEQUENTIAL format to LINE SEQUENTIAL
format. The Microsoft COBOL SEQUENTIAL file format was
changed when version 3.0 was released. SEQUENTIAL
organization files created by earlier versions are in the
format that is now known as LINE SEQUENTIAL. To use this
program, enter:

SEQCVT <newfile>=<oldfile>

COPCOB.SUB is a command file that copies the files on your
distribution disk. It is provided as a convenience.

COBLOC provides two pieces of information to the linking
loader, and to the runtime system. On the first line of
COBLOC is the address at which a compiled program will be
linked. The linker will use this value as the argument for
an implied /P switch. The second line of COBLOC tells the
compiled program which drive contains the runtime system.
You may change the information on this line to suit your
confiquration. An A: on this line indicates that
RUNCOB.CO� will reside on drive A at runtime. A colon only
(:) on this line indicates that the executor will reside on
the currently logged drive. COBLOC must not contain editor
line numbers.

DEBUG.REL is the Microsoft COBOL interactive debug facility.
It can be linked with an MS-COBOL object program as
described in Section 4.2.

COBLIB.REL is an alternative version of the runtime syst m.
Unlike the executor (RUNCOB.COM), this file is linked w th
your compiled program to form one entire executable un t.

OVERVIEW Page 1-5

This runtime system can cnly be used when your program is
compiled with the /X switch (see Section 2.2). Use of
COBLIB may create smaller runtime images, because the
linking loader will not link various optional modules into
the executable program unless they are referenced.

CVISAM.CQV. is a utility program that converts indexed files
created before Version 4.6 to new format. Before using this
program, be sure to make a backup of the old format file.
To use CVISAM, enter:

CVISAM

The program will prompt you for the information it needs to
perform the conversion.

REBUILD.COM is a utility program used for recovering damaged
indexed files. REBUILD.COM reads the data portion of the
file, skipping over deleted records, and creates new data
and key files (see Section 4.4 for detailed discussion of
indexed files). Use REBUILD.Ca-1 just like
CVISAM.CCM: enter

REBUILD

and the program will prompt you for the information it
needs. See Appendix D for a more detailed discussion of
REBUILD.

Note: If you have indexed files created prior
4.65, they may contain records with a
incorrectly set on. In this case, use the
program (described below) to rewrite the file.

to Version
delete flag

RECOVR.COB

RECOVR.COB is a skeleton MS-COBOL program that reads an
indexed file and creates a new file, ensuring that delete
flags within rewritten records are set off. This program
should be used to re-create indexed files written before
Version 4.65, which may contain incorrectly set delete
flags. The RECOVR.COB program may be edited and altered for
particular situations.

1.3 GETTING STARTED

The first thing to do when you receive your disk is make a
copy for program development, saving the original disk as a
backup. This may be done by using the COPCOB command file
supplied with MS-COBOL or with some other disk copying
facility you may have.

OVERVIEW

Having done that, verify your copy of
runtime system by compiling, linking, and
program SQUARO.COB. To do this, refer to
below in Section 1.4.

Page 1-6

the compiler and
executing the test
the examples given

Finally, if you intend to use the interactive ACCEPT and
DISPLAY facility in your MS-COBOL program, you must select a
CRT driver and configure it into your runtime system. This
procedure need be done only once; thereafter your selected
driver will automatically be included with each of your
object programs. See Appendix A of this Guide for full
instructions.

1.4 PROGRAM DEVELOPMENT STEPS

Preparation of an MS-COBOL program for execution consists of
three basic step-s:

1. Creating the source file with a text editor

2. Compiling with the MS-COBOL Compiler

3. Linking with the Linking Loader

The source program is a file which consists of lines of
ASCII text terminated by carriage-return line-feed. You can
create a source file with Microsoft EDIT-BO or any other
editor that uses 7-bit ASCII character codes. The file
should be prepared according to the coding rules given in
the Microsoft COBOL Reference Manual. Line numbers may be
included in columns 1-6 of each line and these may be 8-bit
ASCII co<les. The compiler ignores characters other than TAB
and carriage return until column 7 is reached. TAB stops
assumed by the compiler are at columns 8, 12, 20, 28, 36,
44, 52, 60, and 68. Columns past 72 should not be used. If
you use EDIT-80, you automatically begin typing in column 7
of each inserted line.

Having created the source program file, the next step is to
compile it. This is done by typing a command line that will

execute the MS-COBOL compiler and provide the n�me of your
source file. Under CP/M-80, you must be logged-in on the
disk that contains the MS-COBOL compiler, since the compiler
overlays are always read from the current disk. The
following example shows a command to compile the test
program SQUARO which is included on your distribution disk,
assuming drive A contains a copy of that file:

A>COBOL SQUARO.REL,TTY: nSQUARO.COB

Th s co��and will compile SQUARO.COB, placing the
re ocatable object code in a file named SQUARO.REL and
pr nting the listing on your terminal. A shorter notation

OVERVIEW Page 1-7

of this same cor:unand line takes advantage of default
filename extensions assumed by the compiler:

A>COBOL SQUARO,TTY:=SQUARO

The shortest notation of all uses a compilation switch to
force generation of an object file that defaults to the
filename SQUAi�O.REL:

A>CO3OL ,TTY: =SQU.!\RO/R

These three example commands all produce exactly the sarne
results. A full description of the command line syntax is
given in Chapter 2.

Once the source program is compiled, the final step before
execution is to linl< the progra:!l with the Linking Loader,
MS-L!NK. This step converts your relocatable object program
into an absolute version and combines it with the �icrosoft
CO3OL runtime system. This absolute version is built in
memory, where it may then be saved on disk, executed
directly, or both. The following is a command to link
SQU��O and execute it without saving the absolute version:

A>LD80 SQUARO/G

MS-LINK assumes the extension .REL for the file SQUARO that
is to be linked. Once SQUARO has completed execution, you
could not execute it again without performing the link
command, sin.::e the absolute version was not saved. To save
the absolute version in a disk file without executing it
di.:ectly, tys:,e:

A>LD80 SQUARO/N,SQU.l\.RO/E

Then to execute the program, simply type:

A>SQU1'-'l.O

Since the absolute version is saved, it nay be executed
any time without performing the link step. To combine
two examples so that the absolute version is saved and
executed directly, type:

A>LD80 SQUARO/N,SQUARO/G

at
the

then

Refe to Chapter 3 of this Guide and to the Microsoft
Util ty Software Package Manual for a full description of
MS-L NK corr�and line syntax.

CHAPTER 2

CQV.PILING MICROSOFT COBOL PROGRAMS

2.1 MICROSOFT COBOL CQV..�AND LINE SYNTAX

The Microsoft COBOL Compiler reads your MS-COBOL source
program file as input and produces a listing and relocatable
object version of your program. The command line invokes
the MS-COBOL Compiler and tells it the names to use for the
three files. The syntax of the lin� is to type COBOL
followed by a space, followed by a command line, as
described below. MS-COBOL is read from the disk and then
examines the corr�and line. If it is OK, compilation begins.
If not, it types the message "?Corr�and Errorft followed by an
asterisk prompt, then waits for another command line. When
co;npilation is complete, MS-COBOL always exits to the
operating system.

The syntax of an V.S-COBOL command line is:

objectfile,listfile=sourcefile

The separator characters are the co��a and the equal sign.
No spaces are allowed. The terms used in the syntax are:

objectfile
the name of the file to which the object
program is to be written

listfile
the name of the file to which the program
listing is to be written

sourcefile
the name of the MS-COBOL program source file

Each file can be the narr.e of a disk file or the name of a
system device. A file description has the form:

device:filename.extension

Here the separators are the colon and period, and the terms

COMPILING MICROSOFT COBOL PROGRAMS Page 2-2

mean:

device
the name of the system device, which can be a
disk drive, terminal, line printer, or other
device supported by the operating system. If
the device is a disk, the filename must also be
given. If not, the device name itself is the
full file description. MS-COBOL recognizes the
following symbolic device names.

TTY:
LST:
RDR:

filename

for the console terminal
for the system printer
for the high-speed reader

the name of the file on disk. If filename is
specified without a device, the current disk is
assumed as the device .

• extension
the extension of the filename given. If not
specified, the following defaults are assumed:·

.COB for the source program file
.PRN for the listing file
.REL for the object file

In the command line, the objectfile, listfile, or both may
be omitted. If neither a listing file nor an object file is
requested, MS-COBOL will check for errors and display the
total r.�mber of errors on the console. If nothing is typed
to the left of the equal sign, an object file is written on
the same device with the same filename as the source file,
but with the default extension for object files.

Note that in each example given below, a debug information
file (see Section 4.2) is created and placed on the same
disk as the object file.

Examples:

Command String

, =PAYROLL

Effect

Compiles the source from
PAYROLL.COB and produces only an
error count, which is displayed
on the console.

COMPILING MICROSOFT COBOL PROGRAMS Page 2-3

"'PAYROLL

, TTY: =PP.YROLL

PAYOBJ,LST:=PAYROLL

PAYOBJ=B:PAYROLL

PAYROLL,PAYROLL=PAYROLL

Compiles PAYROLL.COB and places
the object into PAYROLL.REL. No
listing is generated.

Com�iles the source from
PAYROLL.COB and places the
program listing on the terminal.
No object. program is generated.

Compiles the source from
PAYROLL.COB, places the listing
on the printer, and places the
object into PAYOEJ.REL.

Compiles PAYROLL.COB from disk B
and places the object into
PAYOBJ.REL. No listing is
generated.

Compiles PAYROLL.COB, places the
listing into PAYROLL.PRN, and
places the object into
PAYROLL.REL.

COMPILING MICROSOFT COBOL PROGRAMS Page 2-4

2.2 COMPILER SWITCHES

The command line may be modified by appending one or more
switches, which affect the compilation procedure as
described below. To add a switch to a command line, type a
slash followed by the one-character switch name.

Switch

/R

/L

/P

/D

Action

Force the compiler to generate an object file.
This switch causes the compiler to write the
object file on the same disk and with the same
filename as the source file, but with the default
extension for object files.

Force the compiler to generate a listing file.
Much like /R, the /L switch causes the compiler to
write the listing file on the same disk and with
the same filename as the source file, but with the
default extension for listing files.

Each/? allocates an extra
space for the compiler's
stack overflow errors occur

(see Section 2.3 below).

100 bytes of stack
use. Use /P only if

during compilation

Omit
Also,
source
bytes
line.

generation of a debug information file.
do not output object code information about
file line numbers. This switch saves 2
of object code for each PROCEDURE DIVISION

/X Prepare an object file that can only be linked
with the runtime system contained in COBLIB.REL.
The executor program file (RUNCOB.COM) will not be
loaded by the compiled program. This option
allows you to link MS-COBOL programs in the manner
used by versions prior to 4.6.

/Fn Generate FIPS flagging messages o� the listing
file. The compiler can detect use of statements
that are Microsoft extensions to the ANSI 1974
COBOL standard. The compiler can also detect the
level of the standard t�at a particular statement
implements.

The numeric value
identifies which
excluded from the
admissable values for

that
level

list
n are:

follows the switch
of features will be

of features. The

COMPILING MICROSOFT COBOL PROGRAMS

value meaning

0 List all FIPS flagging features and

Microsoft extensions
l Exclude LOW-INTERMEDIATE features
2 E.�clude LOW-INTERMEDIATE and

HIGH-INTERMEDIATE features
3 Exclude all except extensions
4 List no FIPS flagging features

Examples of command lines using switches:

Cormnand String

, =PAYROLL/R

, =B:PAYROLL/L

, "'B:PAYROLL/R/L

•PAYROLL/L/P

Is Equivalant To

PAYROLLcPAYROLL or =PAYROLL

,B:PAYROLL=B:PAYROLL

B:PAYROLL,B:PAYROLL=B:PAYROLL

PAYROLL,PAYROLL=PAYROLL/P

Page 2-5

COMPILING MICROSOFT COBOL PROGRAMS Page 2-6

2.3 OUTPUT LISTINGS AND ERROR MESSAGES

The listing file output by Microsoft COBOL is a line-by-line
account of the source file with page headings and error
messages. Each source line listed is preceded by a
consecutive 4-digit decimal number. This is used by the
error messages at the end to refer back to lines 1n error,
and also by the runtime system to indicate which statement
has caused a runtime error.

Two classes of diagnostic error messages may be produced
during compilation:

Low level i_� are displayed directly below source lines on
the listing when simple syntax violations occur. Remedial
action is assumed in each case. as documented below, and
compilation continues. If a low-level error occurs, a high
level diagnostic generated at the end of the listing will
refer to the· line number attached to the low level error.
Therefore, the error count given at the end includes both
classes of errors.

C��PILING MICROSOFT COBOL PROGRAMS

LENGTH?

CHRCTR?

PUNCT?

BADWORD

PIC ,. X

COL. 7?

AREA A?

Reason for Flag

Faulty quoted literal
1. Zero length
2. Improper continuation
3. Premature end-of-file

(before ending delimiter)

Quoted literal length over 120

characters, or numeric literal
over 18 digits, or 'word'
(identifier or name) over 30
characters.

Illegal character

Improper punctuation (e.g.,
ccmma not followed by a space).

Current word is malformed such
as ending in hyphen, or
multiple decimal points in a
numeric literal.

Illegal COPY file name

An improper PICTURE

An improper character appears
in source line character
'column' 7, where only *-/D
are permissible.

Area A, columns 8-12, is not
blank in a continuation line.

Remedial 1'.ction
!?Y Comoiler

Page 2-7

Ignore and continue.
Assume acceptable.
Assume program end.

Excessive characters
are ignored.

Ignore and continue.

Assume acceptable.

Ignore and continue.

Ignore and continue.

PIC Xis assumed.

Assume a blank
in column 7.

Ignore contents of
Area A (assume blank).

COM?ILING MICROSOFT COBOL PROGRAMS

High level diagnostic messages consist of three parts:

1. The associated source line number -
followed by a colon (:).

four digits,

2. An English explanation of the error detected by the
compiler. If this text begins with /W/, then it is
only a warning; if not, it is an error
sufficiently severe to inhibit linkage and
execution of an object program.

3. The program element cited at the point of error is
listed.

An error message preceded by a line number in the range one
through fourteen relates to a diagnostic about file use.
The line number actually represents the internal reference
number that the compiler essigns to the file. This number
is assigned in the same order that FD statements are
encountered in the FILE SECTION of the source program.
These dia<;nosti·cs detect se!nantic incompatibilities between
the declared attributes of a file and its use within the
PROCEDURE DIVISION. These error messages should be heeded,.
but they will not impede execution of the program.

Regardless of whether there is a list device, or what the
list device may be, a message displaying the total number of
errors or warnings is always displayed on the console at the
end of compilation. This allows you to make a simple change
to an MS-COBOL program, recompile it without a listing and
still know whether the compiler encountered any questionable
statements in the program.

Two error messages that occur infrequently and are also
displayed on the console must be noted. One is

?Memory Full

which occurs when there is insufficient memory for all the
symbols and other information the compiler obtains from your
source program. This message indicates that the program is
too large and must be decreased in size or split into
separately compiled modules. The symbol table of data-names
and orocedure-names is usually the largest user of space
during compilation. All names require as many bytes as
there are characters in the name, and there is an overhead
requirement of about 10 bytes per data-name and 2 bytes per
procedure-name. On the average, each line in the DATA
DIVISION requires about 14 bytes of memory during
comoilation, ano each line in the PROCEDURE DIVISION
req�ires about 3 1/4 bytes.

Page 2-8

COMPILING MICROSOFT COBOL PROGRAMS

The other error message

?Compiler Error in Phase n at address xxxx

occurs when the compiler becomes confused. It is usually
caused by one of two problems: either the source program
has been damaged, such as having been overwritten by binary
data; or the compiler or one of the overlay files on the
disk has been damaged, in which case you should try your
backup copy. If neither of these appears to be the cause of
the problem, you can sometimes determine the cause by
compiling increasingly larger chunks of your program,
starting with only a few lines, until the error recurs.
These two error conditions cause immediate termination of
compilation.

Page 2-9

COMPILING MICROSOFT COBOL PROGRAMS

2.4 FILES USED BY MICROSOFT COBOL

In addition to the source, listing, and object files used by
Microsoft COBOL, the following files should be noted.

First, the compiler always places a file called STEXT.INT on
the current disk. It is used to hold intermediate symbolic
text between pass one and pass two of the compiler. It is
created, written, then closed, read, and deleted before the
compiler exits. Consequently, you should never run into it
unless the compilation is aborted.

Second, note the placement of any of the files to be
included because of COPY verbs in the MS-COBOL program.
(See the niscussion of COPY in the Microsoft COBOL Reference

Manual.) Remember that copied tiles can�have COPY
statements within them.

Finally, MS-COBOL programs that use segmentation cause the
linker to create a file for each independent segment of the
program. The filename itself is the PROGRAM-ID defined in
the IDENTIFICATION DIVISION. The extension is .Vnn, where
nn is a two-digit hexadecimal number that is the decimal
segment number minus 49 decimal.

Page 2-10

CHAPTER 3

LINKING MICROSOFT COBOL PROGRAMS

The Microsoft Linking Loader (MS-LINK) is used to convert
the compiled relocatable object version of your program into
an absolute version that is executable. It automatically
combines the required portions of the MS-COBOL runtime
library with your object program. The linker is also used
to link one or more subprograms with a main program. These
subprograms may be specified individually or extracted from
a library, and may be written in MS-COBOL, MS-FORTRAN, or
MS-Macro Assembly language.

Wher. you link MS-COBOL programs, the file COBLOC must be on
the currently logged drive. The first line of this text
file contains an address that should never be altered. The
second line contains a disk drive specification which will
indicate to the runtime system the location of the MS-COBOL
executor, RUNCOB.COM. The contents of this line can be
altered to suit your particular needs. (See Section 4.1 for
further discussion.)

3.1 MS-LINK C�"IMAND LINE SYNTAX

given in the
However, some
when linking

use of the

The complete syntax for MS-LINK commands is
Microsoft Utility Software Package Manual.
functions described there are not useful
MS-COBOL programs. This chapter summarizes
linker for MS-COBOL programs.

You may invoke MS-LINK in one of two ways: either type LDB0
followed by a carriage return and enter a command line when
the asterisk prompt is typed, or type LDB0 followed by a
space, followed by the command line on the same line. (To
use the in-memory version of the linking loader, enter the
same commands described in this chapter for LDB0, except
type L80 instead of LD80.)

LINKING MICROSOFT COBOL PROGRAMS Page 3-2

The command line is a list of filenames separated by commas.
Each filename specified is brought into memory by the linker
and placed at the next available memory address. Switches
are used in the command line to specify functions the linker
is to perform. The command line may be broken up into many
small lines and entered on different lines. The linker will
prompt with an asterisk and wait for more command lines
until one with a /G or /E switch has been processed and the
linker exits to the operating system.

All relocatable object files are assumed by the linker to
have a filename extension of .REL. The generated executable
file will have a default extension of .COM. These defaults
may be overridden by explicitly entering an extension with
the filename.

Switches most useful when linking MS-COBOL programs are:

Switch

filename/N

/E

/G

Effect

Directs
executable
<filename>
complete.

the linker to
program on disk

when the linking

save the
with name

process is

Directs the linker to complete the
linking process and exit to the
operating system. The linker searches
the appropriate MS-COBOL runtime library
(COBLIB.REL or COBLBX.REL) and the
interactive CRT driver (CRTDRV.REL) to
resolve undefined global symbols. The
final step is to save the executable
program on disk, provided that the /N
switch was specified.

Directs the linker to complete the
linking process and beg in execution of
the program. As with /E, the MS-COBOL
runtime library is searched, and the
executable program is saved if /N was
specified.

LINKING MICROSOFT COBOL PROGRAMS Page 3-3

Switches used occasionally when linking MS-COBOL programs

are:

Switch Effect

/R Immediately resets
initial state. The
linker was aborted
from disk.

the linker to its
effect is as if the
and then reloaded

filename/S Directs the linker to search <filename>
to resolve undefined global symbols.
This command is used to selectively load
CALLed subroutines from a user-built
library.

Examples:

Prints a map of all global symbols and
their values. Undefined globals appear
with an asterisk after the name.

Prints a list of all undefined global
symbols.

Command Line

MYPROG,SVPROG/N/E

MYPROG/G

Links MYPROG.REL, saves the absolute version in
SVPROG.COM and exits to the operating system.

Links MYPROG.REL and begins execution
saving the absolute version.

without

MYPROG,SUBPR1,B:SUBPR2,MYPROG/N/E

Links MYPROG.REL, SUBPRl.REL, and B:SUBPR2.REL.
Saves the absolute version in MYPROG.COM and exits
to the operating system.

MYPROG/N,MYPROG,MYLIB/S/E

Links MYPROG.REL, searches MYLIB.REL for
subroutines referenced by CALL statements, saves
the absolute version in MYPROG.COM and exits to the
operating system.

LINKING MICROSOFT COBOL PROGRAMS

3.2 SUBPROGRAMS

Page 3-4

If you have organized your program into a main module and
one or more subprogram modules, the linking loader must be
used to combine them into one executable program. Before
linking, compile (or assemble) all modules so that you have
a relocatable object version of each. Then execute the
linker and specify in the command line the name of each
module you want to link. The first module loaded must be an
MS-COBOL program.

Note that if a subprogram module does not have a USING
clause in its PROCEDURE DIVISION header, the compiler will
not recognize it as a subprogram, but rather assumes it is a
main program. Because the linker sets the starting address
for execution at the last starting address given in the
comnand line, a command such as

LOBO MAINPG/N,MAINPG,SUBPGl

would result in the subprogram being executed first. To
guard against this possibility, issue the command line with
the main program listed last.

you have a compiled main program file
two subprogram files SUBPRl.REL and

not contain a USING clause in the
header, you may load the executable

with the following link command:

For example, if
MAINPG.REL and
SUBPR2.REL that do
PROCEDURE DIVISION
program and save it

LOBO MAINPG/N,SUBPR1,SUBPR2,MAINPG/E

3.3 FUNCTION LIBRARIES

The Microsoft Library Manager MS-LIB (CP/M-BO versions
only), allows you to collect any number of subprograms into
a single file (a library) that can be searched by the
linker. For example, if you have six subprograms named
SUBPRl.REL through SUBPRG.REL that are used by different
main programs, you could incorporate them into a library
with the following command:

LIB
*USRLIB=SUBPR1,SUBPR2,SUBPR3,SUBPR4,SUBPR5,SUBPR6/E

This will create a library file named USRLIB.REL. (See the
Microsoft Utility Software Package Manual for a full
description of MS-LIB.) Then, if you have a main program
MAINPG that CALLs SUBPR2 and SUBPR6, the link command:

LOBO MAINPG/N,MAINPG,USRLIB/S/E

LINKING MICROSOFT COBOL PROGRAMS Page 3-5

will link MAINPG and search USRLIB for SUBPR2 and SUBPR6.

You may also use MS-LIB to append modules to the MS-COBOL
runtime library.

The MS-COBOL Compiler gives a name to each program or
subprogram compiled. The name is taken from the PROGRAM-ID
paragraph. When making a library, you need to make sure
that all subprogram IDs are unique. Since all MS-COBOL
runtime routines in the MS-COBOL runtime library have names
that begin with dollar sign, avoid the dollar sign in naming
your subprograms.

CHAPTER 4

EXECUTING MICROSOFT COBOL PROGRAMS

You may execute an MS-COBOL program in any of three ways.
The first is to use the /G switch in the MS-LINK command
line as described in Section 3,1. Since this approach does
not automatically save the program as an executable file on
disk, it is not widely used and will not be discussed
further in this chapter. The second method is simply to
type the name of an executable program file as saved by
using the /N switch in the linker command line. Finally,
you may execute a program directly from another MS-COBOL
program by using the CHAIN statement. Refer to Chapter 5 of
the Microsoft COBOL Reference Manual for an explanation of
program CHAINi�

4.1 THE RUNTIME SYSTEM

The relocatable object version of your program produced by
the compiler is not 8080 or Z80 machine code. Instead, it
is in the form of a special object language designed
specifically for MS-COBOL instructions. The Microsoft COBOL
runtime system executes your program by examining each
object language instruction and performing the function
required. This includes all processing needed to handle
CRT, printer,· and disk file input and output.

The runtime system can be present in two forms. Normally,
it resides in the file RUNCOB.COM. When a program is
invoked by typing its name, RUNCOB.COM must be on the drive
specified in the second line of the COBLOC file. Once
loaded into memory, RUNCOB.COM will not be reloaded when
chaining from one MS-COBOL program to another.

The COBLOC file is a text file referred to only at link
time. The first line of this file contains an address that
should never be altered. The second line contains a disk
drive spec1fication which indicates to the runtime system
the location of RUNCOB.COM at execution time. The contents
of this line can be altered to suit your particular runtime
configuration. This second line should contain only one

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-2

character which is a disk drive letter. If RUNCOB.COM will
always be on the currently logged drive at runtime, a colon
(:) only may be entered on this line.

The runtime system can also reside within the compiled
MS-COBOL program. This option is selected by using the /X
switch during compilation. This switch produces
instructions (within the relocatable object file) to the
linking loader to combine COBLIB.REL with the compiled
program. COBLIB.REL contains an alternative version of the
runtime system. Use of this version precludes use of the
runtime system contained in RUNCOB.COM.

Whether the runtime system is to reside in RUNCOB.COM or in
COBLIB.REL, the linking loader performs three additional
functions. First, it resolves relative address references
in the compiled program to absolute values. Second, it
automatically binds optional modules from the MS-COBOL
library to the program's object code. If the /X switch is
given to the compiler, the optional modules reside in the
COBLIB.REL runtime library. Without the /X switch, the
optional modules reside alone in the COBLBX.REL library. If
subprograms are called from the main MS-COBOL program, they
too will be bound into the executable file by the linking
loader. Third, the linker automatically links the file
CRTDRV.REL to include terminal dependent functions.

The amount of memory required by an MS-COBOL program at
runtime equals the amount required to store the data items
defined in the DATA DIVISION, plus about 100 bytes per file,
plus about 12 bytes per line of the PROCEDURE DIVISION, plus
up to 19K bytes for the optional runtime library modules,
plus 29K for the runtime system RUNCOB.COM.

All I/0 is done by standard operating system calls.

4.2 THE INTERACTIVE DEBUG FACILITY

The debug facility will be invoked when you execute a
compiled program that has been linked with the file
DEBUG.REL. You will have to specify this file explicitly in
the linker command line for the file to be included; unlike
the runtime library and CRT driver, the debug file is not
automatically linked.

The debug facility uses two types of information: datanames
and line numbers. Both items are placed in a "debug
information file" automatically created by the compiler.
(The /D switch suppresses generation of this file.) The
debug information file will have the same filename as the
name contained in the PROGRAM-ID paragraph of the MS-COBOL
program. The extension will always be .DBG. For example,
if a program has the paragraph:

EXECUTING MICROSOFT COBOL PROGRAMS

PROGRAM-ID. FOOBAR.

the filename of the debug information file will be:

FOOBAR.DBG

Page 4-3

To use the debug facility, first remember to
file DEBUG.REL in the linker command line.
your program. You will see the message:

include the
Then execute

MS-COBOL Interactive Debug Facility v. XXX

Program: <PROGRAM-ID>
Type help for list of commands

prompt (*)
is ready to

The debug

on your console screen. The debug asterisk
follows to indicate that the debug facility
accept any of the debug commands listed below.
information file should be on the current disk.
not, the message

**No debug information file found

will follow the messages already displayed.

If is it

Without a debug information file, limited debugging is
possible. You can execute any of the debug commands except
Change, Exhibit, and Goto <line-number>. However, without
the debug information file, the debug facility cannot verify
that line numbers specified in the Breakpoint command are
valid PROCEDURE DIVISION line numbers that contain
statements or section or paragraph names.

Debug commands may be typed in full or abbreviated to the
first letter (underlined io the chart below) of the command
name. Upper and lower cases are equivalent. Arguments to
the commands (line numbers, datanames, ALL, OFF) must be
given in full. Though spaces are shown below, arguments can
be separated from commands by any non-alphabetic character.
Further, when a numeric argument is expected, the debug
facility will scan until the first digit on the line is
found. For example, the following commands are equivalent
(set a breakpoint at line 100):

Breakpoint 100
BREAK@ 100
bl00
break for me at line 100, if you would please

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-4

The following functions are available with the
facility:

Function

Address [<dataname>)

Description

Display absolute address
(hexadecimal) of <dataname>*
in memory.

List all breakpoints.

debug

�reakpoints

�reakpoint <line-num> Set a breakpoint at <line-num>.
You may have up to 8 breakpoints
set at any given time. Debug
verifies that <line-num>
is a PROCEDURE DIVISION line that
contains a statement or a section
or paragraph name.

fhange <dataname> Display the contents of <dataname>*
and allow a new value to be
entered.

£ump [<addrl>[,<addr2>)) Display memory addresses
(hexadecimal and ASCII

equivalents) from <addrl> through
<addr2>.

Exhibit <dataname> Display the contents of
<dataname>*.

Go Resume execution from the last
breakpoint or current program
position until a breakpoint or
end of program is encountered.

Goto <line-num> Begin execution at <line-num> until
a breakpoint or end of program is
encountered.

�elp Display the list of debug commands.

Kill <line-num> Remove the breakpoint at
<line-num>.

Kill ALL Remove all breakpoints from the
breakpoint list.

Line Display the <line-num> of the
current line.

Quit Terminate the program (closing all
open files).

�tep Execute one statement.

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-5

Trace

Trace OFF

Set trace mode. When trace mode is
set, the line number of each line
will be displayed as the line is
executed.

Turn off trace mode. This command
sets trace mode off. (See the
description of Trace.)

*Note that subscripted variables cannot
datanames.

be used as

4.3 PRINTER FILE HANDLING

When printer files (files transmitted directly to the
printer) are generated, no extra characters are needed in
the record for carriage control. The compiler sends
carriage returns, line feeds, and form feeds to the printer
as needed between lines. Note, however, that blank
characters (spaces) on the end of a print line are truncated
to make printing faster.

No "VALUE OF" clause should be given for a PRINTER file in
the FD, but "LABEL RECORD IS OMITTED" must be specified.
The BLOCK clause must not be used for printer files.

4.4 DISK FILE HANDLING

All of the following formats are subject to change without
notice.

Disk files must have "LABEL RECORD IS STANDARD" declared and
have a "VALUE OF" clause that includes a File ID. File ID
formats are described in the Microsoft Utility Software
Package Manual. Block clauses are checked for syntax but
have no effect on any file type.

The format of SEQUENTIAL organization files is that of a
two-byte count of the record length followed by the actual
record, for as many records as exist in the file. The LINE
SEQUENTIAL organization has the record followed by a
carriage return/line feed delimiter, for as many records as
exist in the file. The end-of-file marker for a SEQUENTIAL
file is one Control-Z character following the last record of
the file. The remainder of the disk sector will be filled
with nulls. For a LINE SEQUENTIAL file, two Control-Z
characters follow the last record of the file. Again, the
remainder of the last disk sector following the end-of-file

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-6

marker will be filled with nulls. To make maximum use of
disk space, records are packed together with no unnecessary
bytes between them.

The format of RELATIVE files is always that of fixed length
records of the size of the largest record defined for the
file. No delimiter is needed, and therefore none is
provided. The runtime marks records as deleted by placing a
null byte in the first byte of the deleted record. In this
case, programs will not be able to access the record again.
It is therefore extremely important that records written to
RELATIVE files not contain a null byte in the first
position.

Six bytes are reserved at the beginning of a relative file
for system bookkeeping information. The first byte of this
six byte header indicates whether the file is damaged. It
is set to 254 (decimal) when the file is opened in I-O mode.
If the file is not closed properly, this byte will not be
cleared, indicating a possible damaged status. When the
file is closed properly, this byte is set to null.

Each INDEXED file declared in an MS-COBOL program will
generate two disk files. The file specification in the
VALUE OF FILE-ID clause specifies a file containing data
only. The filename included in the file specification is
concatenated with an extension "KEY" to form the file
specification of the key file. The key file contains keys,
pointers to keys, and pointers to data. The format of this
file is very complicated, but follows the guidelines for a
prefix B+ tree.* The data file consists of data records.
Each data record is preceded by a two-byte length field and
a one-byte "reference count" that indicates if a record has
been deleted. A reference count of O indicates a deleted
record; a count of greater than O indicates the record is
referenced by the key file. The data file is terminated by
a control record that has a length field containing 2,
followed by two bytes of high-values.

The key file is divided into 256 byte units, called
granules. There ar-e five possible granule types. A type
indicator is located in the first hyte of each granule. The
granule type indicators have the following values:

Value

1

2

3

4

5

� Indicator

Data Set Control Block
Key Set Control Block
Node
Leaf
Deleted granule

* See Comer, Douglas. "The Ubiquitous B-Tree." Computing
Surveys of the ACM. Vol 11, no. 2 (June 1979), pp. 121-137.

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-7

The key file will possess only one Data Set Control Block in
the first granule, one Key Set Control Block for the primary
file key, and additional Key Set Control Blocks for
alternate keys.

Damaged
control
Block.
opened
closed.

flags exist in the fourth byte of the data Set
Block and in the fourth byte of each Key Set Control
They are set to nonzero values when the file is
for updating and restored to zero when the file is

4,5 CRT HANDLING

4.5.1 Terminal Output

All output to the terminal is done by the DISPLAY or EXHIBIT
statements. Characters are sent one at a time by the
DISPLAY runtime module or by the CRT driver. If no cursor
positioning was specified for any of the displayed items, a
carriage-return and line-feed are sent following the last
displayed item. Otherwise, no assumptions about carriage
control are made by the DISPLAY module.

The runtime performs no conversion of data prior to its
display. Therefore, unless specifically intended, do not
display fields containing binary information.

4.5.2 Keyboard Input

All input from the keyboard is done by the ACCEPT statement.
One of two methods of input are used, depending on the type
of ACCEPT being performed.

For a format 2 ACCEPT, a full line of input is typed, using
the operating system facilities for character echo and input
editing, ending with a carriage return. For this type, the
character codes defined in the CRT driver have no effect.

For a format 3 or 4 ACCEPT, each character typed is read
directly by the runtime ACCEPT module by using a call to the
operating system. The ACCEPT module performs all necessary
character echo and input editing functions. The editing
control characters, function keys, and terminator keys are
defined in the CRT driver (see Appendix Al.

EXECUTING MICROSOFT COBOL PROGRAMS

4.6 RUNTIME ERRORS

Page 4-8

Some programming errors cannot be detected by the compiler

but will cause the program to terminate prematurely when it
is being executed. Each of those errors produces a
four-line synopsis, printed on the console, in the format:

** RUN-TIME ERR:
reason (see list below)
line number
program-id

The possible reasons for termination, with
explanations, are listed on the next pages.

additional

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-9

Reason

REDUNDANT OPEN

DATA UNAVAILABLE

SUBSCRIPT FAULT

INPUT/OUTPUT

NON-NUMERIC DATA

PERFORM OVERLAP

CALL PARAMETERS

ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

REWRITE; NO READ

Explanation

Attempt to open a file that is already
open.

Attempt to reference data in a record of
a file that is not open or has reached
the "AT END" condition.

A subscript has
(usually, less than
an index reference
value of which must

an illegal value
1). This applies to

such as I+2, the
not be less than 1.

Unrecoverable I/O error, with no
provision in the user's MS-COBOL program
for acting upon the situation by way of
an AT END clause, INVALID KEY clause,
FILE STATUS item, DECLARATIVE procedure,
etc.

Whenever the content of a numeric item
does not conform to the given PICTURE ,
this condition may arise. You should
always check input data, if it is
subject to error (because "input
editing• has not yet been done) by using
the NUMERIC test.

An illegal s�quence of PERFORMs, as for
example, when paragraph A is performed
and prior to exiting from it another
PERFORM A is initiated; or more than 22
levels of PERFORM nesting.

There is a disparity between the number
of parameters in a calling program and
the called subprogram.

Attempt to READ a file that is not open
in the input or I-O mode.

Attempt to WRITE to a file that is not
open in the output mode for sequential
access files, or in the output or I-0
mode for random or dynamic access files.

Attempt to REWRITE a record in a file
not open in the I-O mode.

Attempt to REWRITE a record of a
sequential access file when the last
operation was not a successful READ.

EXECUTING MICROSOFT COBOL PROGRAMS Page 4-10

OBJ. CODE ERROR

FEATURE UNIMPL.

GO TO • (NOT SET)

FILE LOCKED

READ BEYOND EOF

DELETE; NO READ

ILLEGAL DELETE

ILLEGAL START

NO CRT DRIVER

SEG nn LOAD ERR

An undefined object program instruction
has been encountered. This should occur
only if the absolute version of the
program has been damaged in memory or on
the disk file.

An object program instruction that calls
for an unimplemented feature has been
encountered. This should occur only
because of a damaged object program.

Attempt to execute
alterable paragraph
null GO statement.

an uninitialized
containing only a

Attempt to OPEN a file after earlier
CLOSE WITH LOCK.

Attempt to read (next) after already

encountering end-of-file.

Attempt to DELETE a record of a
sequential access file when the last

operation was not a successful READ.

Relative file not opened for I-O.

File not opened for input or I-O.

An ACCEPT or DISPLAY
cursor positioning is
but no CRT driver has
(See Appendix A of this

statement using
being executed,
been selected.

Guide.)

An unrecoverable read error has occurred
while trying to load a segment of a
segmented program. The two digits nn
are the hexadecimal notation of the
decimal segment number minus 49 decimal.
They match the name of the file
extension (.Vnn) on the disk.

In the case of program CHAINing, error messages may be
generated by the CHAIN processing module. These errors are
of the form "**CHAIN: problem" and also cause termination
of the program. See Appendix B for a list of CHAIN error
messages.

APPENDIX A

CONFIGURING THE CRT

A.l GENERAL INSTRUCTIONS

To enable the interactive ACCEPT and DISPLAY functions,
MS-COBOL requires a terminal driver module that provides
primitive terminal-dependent functions. The system expects
to find this module under the name CRTDRV.REL when programs
are linked with MS-LINK.

A module named CRTDRV is provided with the Release (
MS-COBOL disks. This is a default dummy driver that will
enable programs to link successfully and will provide
support for the ANSI standard ACCEPT and DISPLAY statements.
Programs that use cursor positioning in ACCEPT or DISPLAY
statements and link with the default driver will not rur.
successfully; they will abort with the "NO CRT DRIVER·
runtime error message.

The CRTDRV module should be replaced with the driver
appropriate to the type of terminal being used before
linking a�y MS-COBOL programs. To do this, simply copy the
appropriate driver to CRTDRV.REL. Microsof_t has provided
drivers for a wide range of popular terminals; these are
listed below. If none of these drivers is suitable, one �ay
be constructed; see Section A.3, •writing a CRT Drive�.·

Page A-2

The CRT driver modules supplied by Microsoft are relocatable
object files whose names begin with the letters CD (for fRT
Driver). The MS-Macro Assembler source code for each driver
Is also included. Any driver will support more than one
type of terminal if the terminals have compatible control
sequences. If your terminal is not listed below, check
Section A.2 to compare your terminal's function codes with
those of the supplied terminal drivers. If your terminal is
not charted separately but matches the code for any of the
supplied drivers, use that chart. The terminals and
associated drivers are:

1. ANSI standard terminal CDANSI

2. Lear-Siegler ADM3-A CDADM3

3. Beehive 100, 150 CDBEE

4. Microbee 2 CDBEE

5. Cromemco 3101, 3102 CDBEE

6. SOROC IQ CDSROC

7. Hazeltine 1500 CDHZ15

8. Heath WH19 CDWH19

9. DEC VT52* CDWH19

10. ADDS Regent Terminals** CDADDS

11. Perkin-Elmer CDPERK

12. Zentec Zephr CDZEPH

13. Intertec Super brain CDISB

14. IMSAI VIO CDADM3

*Does not support the cursor on/off functions or the
highlight/blink function. When using the VT52, replace the
appropriate routines with RETURN opcodes.

** Supports ADDS Regent 40, 60, 100, and 200 terminals. The
highlight video codes are not available on the Regent 20 and
25, but the CDADDS driver can be used if that code is
removed.

A.2 TE&�INAL CHARTS

The following pages describe the
terminals for which drivers
distribution disk. There is one
supported.

characteristics
are supplied

page for each

Page A-3

of the
on your
terminal

Section I of each page defines the keys that are recognized
by MS-COBOL to perform the functions of ACCEPT. The value
listed under the heading "Escape Code" is the integer that
is available using a format 1 ACCEPT ... FROM ESCAPE KEY if
the key caused termination of a format 3 or format 4 ACCEPT
statement. The value listed under the heading "Input Code"
is the hexadecimal code generated by the terminal when that
key is typed. The entry under "Key Label" gives the name of
the key as shown on the keyboard.

Section II of each page shows the sequences of codes that
are sent to the terminal from MS-COBOL to perform the
functions of DISPLAY and ACCEPT. Spaces are shown to
separate codes in the list, but they are not part of the
sequence sent to the terminal. Each two-digit number
represents an absolute hexadecimal value. All other codes
describe standard ASCII character codes, except for some
shorthand abbreviations, which have the following
explanations:

Rl The binary row (line) number plus decimal 31.
R2 The row number converted to two ASCII digits, sent high

digit first.

Cl The binary column number plus decimal 31.
C2 The column number converted to two ASCII digits, sent

high digit first.
C3 If the column number is less than 32, a decimal 95 is

added to the number. Otherwise, column number minus
one is used.

N/A Function not available on this terminal.

El If the cursor is at the home position, a clear screen
code (hexadecimal lA) is used. Otherwise, enough
spaces are sent to blank the remainder of the screen
and the cursor is moved back to its original position.

E2 Enough spaces are sent to blank the remainder of the
line and the cursor is moved back to its original
position.

Nl Ten null (binary zero) characters.

CDADDS

I. Keyboard Input
A. Editing Keys

1. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

8. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab

ADDS Regent Terminals
24 Lines 80 Columns

Input Code

delete 15
7F
06
08
2B
2D

Escape Code Input Code
99 02
01 lB

00
09

b. Carriage Return OD
c. Line Feed

c. Function Keys Escape
1. 02
2. 03
3. 04

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code

0A

Input Code
01
03
18

Code Sequence
ESC Y Rl Cl
08
N/A
N/A
ESC k
ESC K
07
ESC 0 P
ESC 0 @

Page A-4

Key Label

CONTROL-U
DEL
CONTROL-F
CONTROL-H
+

Key Label
CONTROL-B
ESC

CONTROL-I
NEW LINE
LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

CDADM 3

.1.:. Keyboard Inout
A. EditingKeys

1. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
s. Plus Sign
6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab

Lear-Siegler ADM-3A
24 Lines 80 Columns

Input Code

delete 15
7F
oc

OB
2B
2D

Escaee Code Input Code
99 02
01 lB

00
09

b. Carriage Return OD
c. Line Feed

c. Function Keys Escaee
1. 02
2. 03
3. 04

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code

OA

Ineut Code
01
03
18

Code Sequence
ESC = Rl Cl
08
N/.a.

N/A
El
E2
07
N/A
N/A

Page A-5

� Label

CONTROL-0
DEL
CONTROL-L
CONTROL-fl
+

� Label
CONTROL-B
ESC

CONTROL-I
R:STURN
LINE FEED

Key Label
CONTROL-A
CONTROL-C
CON'.!.'ROL-X

CDANSI

I• Keyboard Input
A. Editing Keys

1. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys
1. Back tab
2. Escape
3. Field terminators

a. Tab

ANSI Standard Terminal
24 Lines 80 Columns

Input Code

delete 15
7F
06
OB
2B
2D

Escape Code Input Code
99 02
01 lB

00
09

b. Carriage Return OD

c. Line Feed 011.

c. Function Keys Escape Code Input Code
1. 02 01
2. 03 03
3. 04 18

II. Output Functions Code Seguence
A. Set Cursor Position ESC [R2 ; C2
B. Backspace Cursor 08
c. Cursor On ESC > 5 1
D. Cursor Off ESC > 5 h
E. Erase to end of Screen ESC 0 J
F. Erase to End of Line ESC 0 K
G. Sound Bell 07
H. Set Highlight Mode ESC 7 m
r. Reset Highlight Mode ESC 0 m

Page A-6

Key Label

CONTROL-U
DEL, RUB
CONTROL-F
CONTROL-H
+

Key Label
CONTROL-B
ESC

TAB,
CONTROL-I
RETURN,
ENTER
LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

f

CDBEE Beehive Terminals
24 Lines 80 Columns

I. Keyboard Inpu�
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys Escape Code
1. Backtab 99
2. Escape 01
3. Field terminators

a. Tab

b. Carriage Return
c. Line Feed

c. Function Keys Escape Code
1. 02
2. 03
3. 04

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Input Code

15
7F
06
08
2B
2D

Input Code
02
1B
00
09

OD
OA

Input Code
01
03
18

Code Sequence
ESC F Rl Cl
08
N/A
N/A
ESC J Nl
ESC K
07
ESC 1
ESC m

Page A-7

Key Label

CONTROL-U
DEL
CONTROL-F
CONTROL-H
+

Key Label
CONTROL-B
ESC

TAB,
CONTROL-I
RETURN

LINE FEED

� Label
CONTROL-A
CONTROL-C
CONTROL-X

CDHZlS

L.. Ke:z::board Input
A. Editing Keys

1. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
s. Plus Sign
6. Minus Sign

B. Terminator Keys
1. Back tab
2. Escape
3. Field terminators

a. Tab

Page A-8

Hazeltine 1500 Series Terminals
24 Lines 80 Columns

Input Code Ke:z:: Label

delete 15 CONTROL-U
7F DEL
SD J
08 BACK SPACE
2B +

2D

Escape Code Input Code Ke:z:: Label
99 SC \
01 1B ESC

00
09 TAB

b. Carriage Return OD RETURN
c. Line Feed

C. Function Keys
1.
2.

3.

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
o. Cursor Off

Escape Code
02
03
04

E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

0A

Input Code
01
03
18

Code Sequence
-Dcl C3 Rl
08
N/A
N/A
-cAN

-sI
07

-us

-EM

LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

CDISB Intertec Superbrain
24 Lines 80 Columns

I• Keyboard Input
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys Escape Code
1. Backtab 99
2. Escape 01
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

Escape Code
02
03
04

� Code

18
7F
06
08
2B
20

Inout Code
�2

--

1B
00
09
OD

OA

Input Code
01
03
04

II. Output Functions Code Sequence
ESC Y Rl Cl
08

A. Set Cursor Position
B. Backspace Cursor
c. Cursor On
D. Cursor Off
E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
B. Set Highlight Mode
I. Reset Highlight Mode

NOTE

N/A
N/A
ESC -k

ESC -K

07
N/A
N/A

Highlight can be implemented in
nonstandard ways.

Page A-9

Key Label

CONTROL-X
DEL
CONTROL-F
CONTROL-B
+

� Label
CONTROL-B
ESC

TAB
RETURN

LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-D

CDPERK

.!...:. Keyboard Input
A. Editing Keys

1. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab

Perkin-Elmer Terminals
24 Lines 80 Columns

Input Code

delete 15
7F
06
08
2B
20

Escape Code Input Code
99 02
01 lB

00
09

Page A-10

Key Label

CONTROL-U
DEL
CONTROL-F
BACK SPACE
+

Key Label
CONTROL-B
ESC

TAB
b. Carriage Return OD RETURN
c. Line Feed

c. Function Keys
1.

2.
3.

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
c. Cursor On
D. Cursor Off

Escape
02
03
04

E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code

0A LINE FEED

Input Code � Label
01 CONTROL-A
03 CONTROL-C
18 CONTROL-X

Code Sequence
ESC X Rl ESC Y Cl
08
N/A
N/A
ESC J
ESC I
07
N/A
N/A

CDSROC

L. Ke:tboard Input
A. Editing Keys

l. Line delete/Field
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys
l. Backtab
2. Escape
3. Field terminators

a. Tab

SOROC IQ Terminals
24 Lines 80 Columns

Input Code

delete 15
7F
oc

08
2B
2D

Escape Code Input Code
99 02
01 1B

00
09

b. Carriage Return OD
c. Line Feed

c. Function Keys Escape
l. 02
2. 03
3. 04

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code

0A

Input Code
01
03
18

Code Sequence
ESC " Rl Cl
08
N/A
N/A
ESC Y
ESC T
07
N/A
N/A

Page A-11

Key Label

CONTROL-U
DEL
CONTROL-L
CONTROL-H
+

Ke:t Label
CONTROL-B
ESC

CONTROL-I
RETURN

LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

CDWH19 Heath WH19/DEC VT52
24 Lines 80 Columns

I.

II.

Keyboard Input
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys Esca�e
1. Backtab 9
2. Escape 01
3. Field terminators

a. Tab

b. Carriage Return
c. Line Feed

c. Function Keys
1.
2.
3.

Output Functions
A. Set Cursor Position
B. Backspace Cursor
c. Cursor On
D. Cursor Off

Escape
02
03
04

E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Input� Code

15
7F
06
08
2B
2D

Code Inpug2
code

lB
00
09

OD
OA

Code Input Code
01
03
18

Code Seguence
ESC y Rl Cl
08
ESC y 5
ESC X 5

ESC J
ESC K

07
ESC p
ESC q

Page A-12

Key Label

CONTROL-U
DELETE
CONTROL-F
BACK SPACE
+

� Label
CONTROL-B
ESC

TAB,
CONTROL-I
RETURN
LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

CDZEPH Zentec Zephr
24 Lines 80 Columns

I.

II.

Keyboard Input
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

B. Terminator Keys Escape
1. Backtab 99
2. Escape 01
3. Field terminators

a. Tab

b. Carriage Return
c. Line Feed

c. Function Keys
1.
2.
3.

Output Functions
A. Set Cursor Position
B. Backspace Cursor
c. Cursor On
o. Cursor Off

Escape
02
03
04

E. Erase to end of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code

Code

Input Code

15
7F
06
08
2B
2D

Input Code
02
lB
00
09

OD
OA

Inpug1
code

03
18

Code Seg:uence
ESC = Rl Cl
08
N/A
N/A
ESC y Nl
ESC T
07
ESC G 4

ESC G 0

Page A-13

Key Label

CONTROL-U
DEL
CONTROL-F
CONTROL-H
+

� Label
CONTROL-B
ESC

TAB,
CONTROL-I
RETURN

LINE FEED

Key Label
CONTROL-A
CONTROL-C
CONTROL-X

Page A-14

A.3 WRITING A CRT DRIVER

A CRT driver should be written in assembly language and assembled
with the Microsoft Macro Assembler. A driver consists of 16
entry points that must be declared as global labels by using
MS-Macro Assembler ENTRY statements. The source codes for a
number of drivers are supplied on your distribution disk (files
named CD .MAC) to serve as examples and reference for the
following explanation. It may be convenient to modify one of
these drivers instead of starting from scratch.

Once the CRT driver is written, you can test all the functions
and key codes by using the program CRTEST that is supplied on

your distribution disk. To use CRTEST, compile it, link it with
your CRT driver using MS-LINK, and execute it, following the
instructions provided by the program itself.

Five of the driver entry points contain data that describe the
terminal and keyboard. $CRLEN is a byte that contains the number
of lines on the terminal, and $CRWID contains the number of
columns. $CLIST, $TLIST, and $FLIST are sequences of bytes that
define keyboard codes that invoke the functions of ACCEPT. Note
that these codes are not sent to the terminal to perform the
function; they merely declare the keys that should be recognized
by the ACCEPT module. All of these codes should be unique.

$CLIST defines the editing keys, which must be specified in the

following sequence:

1. Line delete (Field delete)

2. Character delete

3. Forward space (Cursor forward)

4. Backspace (Cursor back)

5. Plus sign

6. Minus sign

The list is terminated by a byte containing zero.

Page ll.-15

$FLIST defines function keys that terminate a format 3 or format
4 ACCEPT statement. The order of placement of codes in $FLIST
determines the ESCAPE KEY valL:e available to the ACCEPT ... FROM
ESCAPE KEY statement. The first key generates a value of 02, the
second 03, and so on, up to a maximum value of 39 decimal. The
list is terminated by a byte containing zero.

$TLIST defines several keys, all of which terminate format 3 type
ACCEPT statements. First in the list must be the bacKtab key.
If used in a format 4 ACCEPT, this key causes termination of the
current field and moves the cursor to the previous input field,
if one exists. If used in a format 3 ACCEPT, the backt:ab key
terminates the ACCEPT and sets an escape code value of 99. Next
in the list is the escape key. This key terminates either a
format 3 or format 4 ACCEPT and sets an escape code value of 01.
In addition, it causes the program to execute the ON ESCAPE
clause of a format 4 ACCEPT. Finally, there is a list of normal
field terminator keys, terminated by a zero byte. Any key in
this list terminates the current input field and sets tha escape
code value to 00. Termination of the field ends a format 3
ACCEPT, and moves the cursor to the next field in a format 4
ACCEPT. If the cursor was in the last input field, the entire
ACCEPr statement is terminated.

The remaining 11 entry points are subroutines that perform
terminal functions by sending codes to the terminal. Each code
is sent by calling the external ro"Jtine $0UTCH with the value in
the A register. $OUTCH preserves the values in registers HL and
DE. Be sure to preserve valu2s in all reqisters except the
accumuTatorand condition flags.

- ---

$SETCR moves the cursor to a specific position on the screen.
upon entry, register H contains the specified row (line) number
and register L contains the column number. Note that �S-COBOL
considers the top line of the sc�een to be row l a�d the leftmost
column to be column 1. If necessary, you can convert the row and
column number to a sequential screen position by calling $SQPOS.
This routine expects the row and column to be in EL as they are
passed to $SETCR, and retu::ns the result in HL. $SQPOS is
permanently resident in the runtime.

$CUR.BK moves the cursor to the left one position witho•Jt
disturbing the displayed character at that position. Upon entry,
register HL contains th0 current cursor pc·sition in sequential
format (i.e., a numbei: bet•.;een 1 and n, where n is screen width
times length). t-lost terminals honor the ASCII backspace coce to
oerform this function. The sequential format may be Gonverted to
�ow-column screen format by calling $ROWCL. It expects HL to
contain a sequential screen position and will return with a
converted row and column number in HL. $ROWCL is permanently
resident in the runtime.

$ALARM sounds the terminal's audible tone or bell. Host
terminals honor the ASCII bell code to perform this function.

Page A-16

$CUROF and $CURON inst�uct the terminal to inhibit or enable
display of the cursor. Many terminals do not provide this
facility, however, and a simple RET instruction is appropriate
for drivers of those terminals.

$ERASE clears that portion of the screen from the current
position to the end. The cursor must be left in its original
position. Upon entry, register HL contains the current cursor
position in sequential format. Some terminals, such as the
ADM-3A, do not provide an escape sequence to perform this
function. The example driver CDADM3 provides a routine that
sends enough blanks to clear the screen and then returns the
cursor to its original position. This routine may be used for
any terminal that does not provide its own erase function.

$EOL clears that portion of the screen from the current cursor
position to the end of the line, without moving the cursor. Upon
entry, register H contains the current row number and L contains
the current column.

$HILIT puts the terminal in reverse video mode (or some other
highlight mode if reverse video is not available).

$LOLIT puts the terminal back in normal mode (cancels the effect
of $HILIT).

$INCRT sends a character to the MS-COBOL runtime system
register. Use $INKEY to get a character from the
system, which in turn receives the character from the
$INKEY returns with the character in the A register.

in the A
operating
keyboard.

$OUCRT sends the character in the A register to the operating
system, which in turn sends the character to the CRT screen.

APPENDIX B

INTERPROGRAM COMMUNICATION

This appendix describes the format of parameters passed between a
main program and a subprogram via a CALL USING statement or
between two main programs via a CHAIN USING statement. This
parameter linkage is handled entirely by the Microsoft COBOL
runtime system if both programs are written in MS-COBOL.
However, if the CALLed or CHAINed program is written in assembly
language or MS-FORTRAN, Sections B.l and B.2 will apply.

B.l SUBPROGRAM CALLING MECHANISM

It is possible for an MS-COBOL program to call MS-COBOL
subprograms or to call MS-FORTR.l\N or assembler subroutines.
However, it is not possible, currently, for a MS-FORTRA..� or
assembler program to call an MS-COBOL subroutine. Therefore,
this section pertains to MS-COBOL programs which call �1S-FORTRAN
or assembler subroutines. The calling sequence described below
is identical to that of MS-FORTRA.11/ as it calls MS-FOR'l"RAN or
assembler subroutines.

The MS-COBOL runtime system transfers execution to a subroutine
by means of a machine language CALL instruction. The subroutine
should return via the normal assembler or MS-FORTRAN return
instruction.

Parameters are passed by reference, that is, by passing the
address of the para�eter. The method of passing these addresses
depends on the number of parameters. If the number of parameters
is less than or equal to 3, they are passed in the registers:

parameter 1 in HL
parameter 2 in DE
parameter 3 in BC

Page B-2

If the number of parameters is greater than 3, then l and 2 are
still passed in HL and DE, but BC points to a contiguous data
block in memory which holds the list of parameter addresses.

The subroutine can expect only as many parameters as are passed,
and the calling program is responsible for passing the correct
number of parameters. Neither the compiler nor the runtime
system checks for the correct number of parameters. It is also
entirely up to you to determine that the type and length of
arguments passed the calling program are acceptable to the called
subroutine. Note that alphanumeric data is the only type that is
stored in the same format in MS-COBOL and MS-FORTRAN. None of
the numeric types of data are interchangeable.

The stack space used by an MS-COBOL program is contained within
the program boundaries, so assembler programs that use the stack
must not overflow or underflow the stack. The most certain way
to assure safety is to save the MS-COBOL stack pointer upon
entering the routine and to set the stack pointer to another
stack area. The assembler routine must then restore the saved
MS-COBOL stack pointer before returning to the main program.

To call a subprogram, use the name of the subprogram in the
MS-COBOL CALL statement. If the subprogram is an assembler or
MS-FOR'rRAN program, the name is defined by an ENTRY, SUBROUTINE,
or FUNCTION statement. The name of an MS-COBOL subprogram is as
given in the PROGRAM-ID paragraph. Link the subprogram to the
main program using MS-LINK, as described in Section 3.2 of this
Guide.

B. 2 CHAIN PARAMETERS

The parameters passed between programs with a CHAIN USING
statement are stored at the highest available memory address.
The memory layout of the CHAINed program is as follows, starting
at the highest available address and proceeding towards location
zero. First, 32 bytes are reserved for stack space. Then the
first parameter in the USING list follows, preceded by its length
in bytes. The parameter length is stored in two bytes,
high-order byte first. The parameter itself is stored as a
string of bytes in the same order as they were stored in the DATA
DIVISION, beginning at the address of the length minus the length
itself. Each parameter in the USING list follows in order, each
preceded by its length. �he CHAINed program must expect the same
number and format of parameters as were passed, as no checking
can be done by the compiler or runtime system.

1 stack
space

32 bytes

Page B-3

I
•- highest memory location

•- length of parameter 1 (high byte)

•- length of parameter 1 (low byte)

•- last byte of parameter 1

•- first byte of parameter 1

•- length of parameter 2 (high byte)

•- length of parameter 2 (low byte)

•- last byte of parameter 2

Figure B-1. Memory Layout of CHAIN parameters.

B.3 CHAIN ERROR MESSAGES

During CHAIN processing, the normal mechanism for reporting
runtime errors may have be2n overlayed by the new program.
Therefore, the CHAIN processor generates its own error messages,
which are of the form "**CffAIN: problem•. The following is a
list of possible •problems• and their causes.

Bad file name

File not found

Out of Memory

The syntax of the file name that is to be
load2d is not valid.

The specified file was not found on the
disk.

There was not sufficient memory available
to load the new program. There must be
enough memory for the larger of the
CHAINing and CHAINed programs, plus all
CHAIN parameters, plus 256 bytes for the
program loader.

APPENDIX C

CUSTOMIZATIONS

This appendix is intended for those of you who are experienced
assembly language programmers and would like to change some of
the built-in parameters of MS-COBOL.

C. l SOURCE PROGRAM TAB STOPS

If tab characters (hex 09) are
program, the compiler converts
the next tab stop as defined in
delivered, the table defines
(counting from column 1):

used in the MS-COBOL source
them into enough spaces to reach

its internal TAB table. As
9 stops at the following columns

8, 12, 20, 28, 36, 44, 52, 60, and 68

These may be changed by patching the table, whose address is 7
bytes from the start of COBOL.COM. There is one byte in the
table for each tab stop. You may supply any values you like,
provided the numbers are in order and that there are still
exactly 9 stops defined.

Page C-2

C.2 COMPILER LISTING PAGE LENGTH

One byte in the compiler defines the listing page length to be 55
(hex 37) lines. Its location 1s 6 bytes from the start of
COBOL.COM and may be patched to any value between l and 255.

C.3 RUNTIME DAY, DATE, TIME, LINE NUMBER

For all operating systems that do not provide date or time system
calls, MS-COBOL uses the compiler release date for format l
ACCEPT statements. For single-user systems, MS-COBOL always uses
'00' for the line number. If you have a multi-user system of
access to a system clock (or would like to use some other fixed
date and time), you may replace the runtime module that performs
this function. To do this, write an assembly language module
according to the instructions given below, assemble it with
MS-Macro Assembler, and place it in the appropriate runtime
library, either COBLBX.REL or COBLIB.REL, using the library
manager. Assuming you name the module ACPDAT.MAC, an MS-LIB
command to place it in the library is:

LIB
*NEWLIB=COBLBX< •• ACPDAT-1>,ACPDAT
*COBLBX<ACPDAT+l •. >/E

This will create NEWLIB.REL. You can then save COBLBX.REL and

rename NEWLIB.REL to COBLBX.REL.

ACPDAT Module

Entry point:
Externals:

$AC PDT
$EVAL,$GETOP,$FLAGS,$ESKEY,$MOVE

Page C-3

This module handles the runtime support for the MS-COBOL format 1
ACCEPT source statement:

ACCEPT identifier FROM { ��h
j'

ESCAPE KEY
LINE NUM:IBR

It may be changed by modifying the ACLINE routine and by adding
ACTIME, ACDAY, and ACDATE to the skeleton module given below.
Each of these routines is entered with the address of the target
storage area in the HL register. Each must exit by executing a
JMP $GETOP, as indicated in the skeleton. The individual
routines have the following requirements:

1. ACTIME - move an ASCII string representing the tiffie (in
form HHMMSSFF) to the target area.

2. ACDAY - move an ASCII string representing the Julian
date (in form YYJJJ) to the target area.

3. ACDATE - move an ASCII string representing the date (in
form YYM.�DD) to the target area.

4. ACLINE - move 2 ASCII digits representing the line (CRT)
number to the target area.

An external move routine is available to move a string of data
from one address to another. It is used as follows:

EXT $�OVE
On entry:

HL address of source string
DE = address of target area
BC = length of the string in bytes

CALL $MOVE
After call:

HL
DE
BC

address of first byte beyond source
address of first byte beyond target
0

Page C-4

Skeleton ACPDAT module

TITLE l\CPDAT - ACCEPT DAY/DATE/TIME/ESC KEl/LINE NUM
ENTRY $AC PDT
EXT $EVAL,$GETOP,$FLAGS,$ESKEY

$ACPDT: POP H
INX H
MOV A,M
INX H
ANI 7

STA $FLAGS ;SAVE ACCEPT OPTION
CALL $EVAL ;GET TARGET ADDRESS
LOA $FLAGS
CPI 2 ;WHICH OPTION?
JM ACDATE ;DATE
JZ ACDAY ;DAT
CPI 4
JC ACTIME ;TIME
JZ ACLINE ; LINE NUMBER

ACESC: ;ESCAPE KEY CODE FROM ACCEPT
XCHG
LHLD $ESKEY
XCHG

ACESCl: MOV M,D
INX H
MOV M,E
JMP $GETOP

ACLINE: ;LINE (CRT) NUMBER - ALWAYS '00'
LXI D,3030H
JMP ACESCl

ACTIME: ;TIME:HHMMSSFF

JMP $GETOP
ACDAY: ;DAY:YYJJJ

JMP $GETOJ:1
ACDATE: ;DATE:YYMMDD

JMP $GETOP
END

APPENDIX D

REBUILD: INDEXED FILE RECOVERY UTILITY

The Indexed File Recovery Utility (REBUILD) can be used to
recover or restore information contained within indexed files.
The indexed files that are compatible with this utility are those
that have been created by a program compiled under MS-COBOL
Version 4.64 or later.

D. l OVERVIEW

REBUILD works by reading the data file portion of an indexed file
and generating new key and data files for that indexed file. The
new indexed file has the same structure as the old one. The
utility will skip over all deleted records and any other control
records within the data file.

Use of REBUILD is recommended in the following situations:

1. When space is exhausted during a WRITE operation to the
disk on which the indexed file resides.

2. When electrical power to the computer system is
interrupted or the o:,:,erating system is rebooted while an
indexed file is open in I-0 or OUTPUT mode.

3. Hhen the data file portion of the indexed file contains
large areas of unused space, usually as a result of
numerous record DELETE and REWRITE operations, and
especially when records within the file have varying
lengths.

REBUILD: INDEXED FILE RECOVERY UTILITY Page D-2

Situation l (above) occurs when WRITE produces a boundary error
(file status "24"), indicating that the the disk is full. When
this happens, you should perform a CLOSE in order to write as
much information as possible to disk. It is likely, however,
that the CLOSE will also return with a boundary error. As in the
case of a system failure during the addition of records, the last
256 bytes of information will not be present within the data
file, and are therefore not recoverable by REBUILD.

Recovery from situation 2 (above) may also be limited, because
without a transaction file to rebuild the indexed file, recovery
from some types of system failure is problematic. Because of the
high degree of disk file buffering in memory, a system failure
may leave the data file with partially-written data records.
This may cause REBUILD to fail to completely recover an indexed
file for two reasons:

a. Because a good deal of information is kept in memory, if the
system failure occurred during a file update job, the file
may contain records with both original and new information.
The recovery utility cannot determine which part of the data
was written during the aborted job, and therefore cannot
exclude the new, incomplete data from the rebuilt file.
Adding a current date field to data records may help
discriminate between original and new data.

b. If the system failure occurred while records were being added
to the indexed file, the last 256 bytes of data will not be
written to disk. The recovery utility will detect that
information is missing from the end of the file but cannot
add it to the recovered file.

D.2 RUNNING REBUILD

Invoke the recovery utility by entering:

REBUILD

in response to the operating system prompt.

REBUILD: INDEXED FILE RECOVERY UTILITY Page D-3

The utility will respond with the following header information:

REBUILD by Microsoft Corporation
Indexed File Recovery Utility
V. XXX

Use this utility to recover
damaged, or to reorganize
space.
Compatible indexed files are
for versions 4.64 and later.

indexed files when they are
indexed files by removing unused

those generated by MS-COBOL (C)

The recovery utility will then ask a series of questions. Your
answers will provide the information necessary for rebuilding a
new indexed file from the original data file. The flow of
control within the recovery utility, as it relates to the
operator, is diagra�med in Figure D-1. Following the diagram are
detailed descriptions of the individual recovery steps and a
sample REBUILD session.

REBUILD: INDEXED FILE RECOVERY UTILITY

DISPLAY
TITLE

INPUT
KEY LENGTH

valid

INPUT
KEY POSITION

4- RETURN I valid

•-

4--

INPUT
SOURCE FILENAME

RETURN I valid

INPUT
TARGET FILENAME

RETURN I valid

RECOVER
FILES

...

-RETURN-• TERMINATE
RUN

-- not found

-no space

Figure D.l. Control flow within REBUILD

Page D-4

REBUILD: INDEXED FILE RECOVERY UTILITY

1) Input Key Length

Enter the key length in reply to the prompt:

Input the key length (in bytes)
or <RETURN> to terminate program--�

Page D-5

Enter a key length or press the <RETURN> key* to im.�ediately
terminate the program. If you enter a key length, the program
will proceed to the next prompt.

The key length should be a positive integer that represents the
number of bytes contained in the item specified by the RECORD KEY
clause of an MS-COBOL program. Failure to enter the correct key
length may not hamper the execution of REBUILD, but programs will

not be able to access the generated indexed file.

2) Input Key Position

Enter the key position in reply to the prompt:

Input the byte position of the key field,
starting at 1,
or <RETUR.�> to return to the Key Length prompt-->

Enter the position of the key data item within the record; or
press the <RETURN> key to move back to the Input Key Length
prompt in order to correct information or terminate the program.
If you enter a key position, the program will proceed to the next
prompt.

The key position should be a positive integer that represents the
position within the record of the data item specified by the
RECORD KEY clau::;e of an MS-COBOL program. l\.s with the key
length, REBUILD does not check whether an incorrect response has
been entered; but the result of an incorrect response will be
that programs will not be able to access the generated indexed
file.

3) Input Source Filename

Enter the filename of the source file in reply to the prompt:

Input the filename of the source data file
(should not have extension of .KEY)
or <RETURN> to return to the Key Length prompt-->

*On some terminals, the <RETURN> key is labelled as NEWLINE or
ENTER.

REBUILD: INDEXED FILE RECOVERY UTILITY Page D-6

Enter a filename; or press the <RETURN> key to move back to the
Input Key Length prompt so that you can correct and re-enter
previous information or terminate the program.

The source filename should be the name that is used in the VALUE
OF FILE-ID clause in MS-COBOL programs that refer to the indexed
file. The filename used here should be the name of the data

file. The key file, which has the same name but an extension of
.KEY, will not be used in the recovery operation and should not
be entered in response to this prompt.

The source filename may contain a drive specifier.

After the source filename is entered, REBUILD will check for the
presence of the file. If it is not present, the following
message will be displayed:

•••source file not found

and the Input Source Filename prompt will be redisplayed.

4) Input Target Filename

Enter the filename of the indexed file to be generated in reply
to the prompt:

Input the filename of the target data file
(should not have extension of .KEY)
or <RETURN> to return to the Key Length prompt--�

Enter a filename or press the <RETURN> key. As usual, <RETURN>
moves you back to the Input Key Length prompt so that you can
re-enter information or terminate the program.

As with the source file, this name is the name of the data file.
Do not enter the key file, which has the same name but the .KEY
extension.

The target filename should be unique within a directory.
Therefore, if you wish to use a name identical to the source
filename, you should send the target file to a different disk by
including a drive specifier in the filename. The target file can
be generated on the same disk as the source file, but you will
have to use a different name. Once the recovery operation is
complete, you can then rename the target filename to the source
filename.

If the recovery utility cannot successfully create a new indexed
file, either because the disk directory is full or because of
insufficient space on the disk, the program will display the
message:

*** No space for target file

REBUILD: INDEXED FILE RECOVERY UTILITY

and will redisplay the Input Target Filename prompt.

5) Recover File

Page D-7

After you have answered all questions, the recovery utility will

display:

Now reading <source-file>
and creating <target-file>

The program will begin building the new indexed file from the old
data file. When this process is finished, the following message
will be displayed:

Conversion successfully completed.
Source records read: xxx,xxx
Target records read: xxx,xxx

The record counts should match. If they do not, so�e type of
input-output error occurred during the recovery operation.

Regardless of whether the record counts match, REBUILD will then
display another Input Key Length prompt. You can begin another
file recovery operation (or redo the one that had an input-output
error) or terminate the program.

REBUILD: INDEXED FILE. RECOVERY UTILITY

D.3 SAMPLE REBUILD SESSION

The following program fragment accesses the
IXFILE.DAT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT IX-FILE
ASSIGN TO DISK
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY IX-KEY
FILE STATUS IX-STAT.

DI\TA DIVISION.
FILE SECTION.
FD IX-FILE

01

LABEL RECORD STANDARD
VALUE OF FILE-ID "IXFILE.DAT"
RECORD CONTAINS 75 CHARACTERS
DATA RECORD IX-REC.
IX- REC.
05 IX-DATE
05 IX-TIME
05 IX-KEY.

10 IX-STATE
10 IX-CITY
10 IX-STREET

05 IX-ZIP
05 IX-ZONE

PIC X(6).
PIC X (6).

PIC XX.
PIC X(20).
PIC X (30).

PIC X(5).
PIC X(6).

Page D-8

indexed file

For this program fragment, the responses to the REBUILD utility
would be:

Input Key Length: 52

Input Key Position: 13

Input Source Filename:

Input Target Filename:

IXFILE.DAT

NEWIX.DAT

The result of the recovery operation would be to generate a new
indexed file with the key filename NEWIX.KEY and the data
filename NEWIX.DAT.

APPENDIX E

EXTENSIONS FOR FILE HANDLING UNDER CP/M-80

Various routines have been included to enhance file handling
capabilities from within an MS-COBOL program. These routines are
contained within tha MS-COBOL runtime library, and will not be
linked into the executable program if none of them are referenced
from your MS-COBOL program. They are invoked by issuing
subprogram CALLS with optional parameters (see Chapter 5 of the
Microsoft COBOL Reference Manual).

The names and functions of these routines are as follows:

DSKRES

FILENQ

KILL

RENAM

Reset the disk drives so that more than one diskette may
be utilized per drive. WARNING: Do not call this
routine if files are currently open.

Interrogate directory to see if a specified file exists.

Delete a specified file from the disk-.

Rename a specified file to another name.

The calling conventions of these routines are the following:

CALL 'DSKRES' USING status

CALL 'FILENQ' USING status,filename

CALL 'KILL USING status,filename

CALL 'RENAM' USING status,old-filename,new-filename

Page E-2

The variables status and filename in these calling sequences
should have the following characteristics:

status

filename

defined in the Working-Storage section with PICTURE
XX. Returned status codes are:

'00' Command executed with no errors
'30' Error: file not found
'40' Error: syntax error in filename
'50' Error: duplicate file found

defined in the Working-Storage section. It should
be an alphanumeric field containing the filenames
followed by a space. This format is similar to the
data item referenced by the VALUE OF FILE-ID clause
in the FD entry of the FILE SECTION.

"QLIT"?

$ALAR..'-1
$CL I ST
$CrtLEN
$CRWID
$CURBK
$CUROF •
$CURON
$EOL .
$ERASE
$FLIST
$HILIT
$INCRT
$INI<EY •
$LOLIT
$0UCRT
$0U'.I":H
$R0\'1CL •
$Si::T-CR
$SQPOS
$TLIST .

** RUN-TIME ERR:
**CHAIN: problem

.COB

.PRN

.REL

.vnn .

/D • •
/E •
/Fn
/G
/L
/M
/N

/P .
/R
/S
/U
/X

?Conm1and Error
?Compiler Error
?Memory Full

ACCEPT • • • • •

INDEX

.

.

2-7

A-15
A-14
A-14
A-14

A-15
A-16
A-16
A-16
A-16
A-15
A-16
A-16
A-16
A-16
A-16
A-15
A-15
A-15
.a.-15
A-15

4-8
4-10, B-3

2-2
2-2
2-2
2-10, 4-10

2-4, 4-2
3-2
2-4
3-2, 4-1
2-4
3-3
3-2
1-4, 2-4
2-4, 3-3
3-3
3-3
1-5, 2-4, 4-2

2-1
2-9
2-8

1-3, 1-6, 4-7, 4-10, A-1,
A-3, A-14, C-3

ACPDAT module • • • • •
Address (debug command)
ADDS Regent Terminals
ADM-3A . . • . • • • .
ANSI Standard Terminal
AREA A? • • • • •
AT END condition.

B+ tree
Bad file name
BADWORD
Beehive Terminals
BLOCK clause • • •
Breakpoint (debug command)
Breakpoints (debug command)

CALL
CALL PARAMETERS
CALL USING
CDADDS
CD/\DM3
CD,\NSI
CDBEE
CDl!Zl5
CDISD
CDPERK
CDSROC
CDW!ll9
CDZEPI!
CD ,M/\C
CD---.REL
Cl!/\IN
Cl!I\IN error messages
CHAIN parameters • •
Cl!I\IN USING
CII/\IN: problem
Change (debug command)
CHRCTR?
COBLBX.REL
COBLIB.REL

COBLOC . .
COBOL.COM
COBOLl .OVR
COBOL2 .OVR
COBOL3 .OVR
COBOL4 .OVR
COL. 77 • •
Comer, Douglas
Command line syntax
Compiler switches
COPCOB .
COPCOB.SUB
COPY . . .
CREF80.COM

C-3 to C-4

4-4

A-4

A-16
A-6
2-7
-1-9

4-6

B-3
2-7
A-7
4-5
4-4

4-4

3-3, 4-9, B-1
4-9

B-1
A-4

A-5, A-16
A-6
A-7
A-8
1\-9
1\-10
A-11
A-12
A-13
1-2, A-14

1-2
4-1, 4-10, B-1
B-3
B-2
B-1 to B-2
4-10, B-3
4-4

2-7
1-1, 1-3
1-2, 1-4, 2-4, 3-2, 4-2,
C-2
1-2 to 1-4, 3-1, 4-1
1-1
1-1
1-1
1-1
1-1
2-7
4-6
2-1
2-4
1-5
1-2, 1-4
2-7, 2-10
1-2

CRT Drivers
CRT handling
CRTDRV . •
CRTDRV.REL
CRTEST . •
CRTEST.COB
CVISAM.COM

DATA DIVISION
DATA UNAVAILABLE .
Date . . • • •
Day . . • . •
Debug commands

Address
Breakpoint • •
Breakpoints
Change
Durr.p • • •
Exhibit
Go •
Goto
Help
Kill
Kill ALL
Line
Quit
Step
Trace
Trace OFF

Debug file •
DEBUG.REL
DECLARATIVE procedure
DELETE; NO READ
Disk file handling
DISPLAY • • • . •

Distribution disks
Dump (debug command)

Entry points . • • •
ENVIRONMENT DIVISION
Error messages . .

"QLIT�? • . . •
**CHAIN: problem
?Compiler Error
?Memory Full •
AREA A?
Bad file name
BADWORD
CALL PARA.�ETERS
CHAIN: problem
CHRCTR?
COL.7? • . • • •
COPY • • • • . •
DATA UNAVAILABLE

1-3
4-7
A-1
1-1, 3-2, 4-2, A-1
A-14
1-2, 1-4

• • 1-2, 1-5

1-3
4-9
C-2

• C-2

4-4
4-4
4-4
4-4

• 4-4
4-4
4-4

• 4-4
4-4
4-4

• 4-4
4-4
4-4
4-4
4-5
4-5
2-4

1-1, 4-2

• 4-9
4-10
4-5

• 1-3, 1-6, 4-7, 4-10, A-1,
.a.-3
1-1
4-4

A-14
1-3
2-6
2-7

• 4-10, B-3
2-9
2-8
2-7
B-3
2-7
4-9
B-3
2-7
2-7
2-7
4-9

DELETE; NO READ
FEATURE UNIMPL.
FILE LOCKED
File not found •
GO TO. (NOT SET)
ILLEGAL DELETE •
ILLEGAL READ . •
ILLEGAL REWRITE
ILLEGAL START
ILLEGAL WRITE
INPUT/OUTPUT .
LDIGTH?
NAME? . • . .
NO CRT DRIVER
NON-NUMERIC DATA .

OBJ. CODE ERROR
Out of memory
PERFORM OVERLAP
PIC = X • • • •
PICTURE
PUNCT? . . . • •
READ BEYOND EOF
REDUNDANT OPEN
REWRITE; NO READ
SEG nn LOAD ERR
SUBSCRIPT FAULT

Escape Code
Escape Key • • • .
Executor (runtime system)
EXHIBIT . • • . • • • •
Exhibit (debug command)

FD s tatements
FEATURE UNIMPL.
Fi le ID
FILE LOCKED
File not found
FI LE SECTION • .
FILE STATUS item
f i lename/N . . •
filename/S . . .
FIPS flagging
Function libraries

Getting started
Global labels
Go (debug command)
GO TO. (NOT SET) .
Goto (debug command)
Granule type indicators
Granules • •

4-10

4-10

4-10
B-3
4-10
4-10

4-9

4-9

4-10

. 4-9

4-9

2-7
2-7

. 4-10

4-9

4-10

B-3
4-9

2-7
2-7

2-7
4-10

. 4-9

4-9

4-10

4-9

A-3

A-15

1-3
4-7

4-4

• 2-8
4-10
4-5

4-10

B-3
2-8
4-9

3-2

3-3
2-4

3-4

1-5
A-14
4-4

4-10

4-4

4-6

. 4-6

Hazeltine 1500 Series Terminals A-8
Heath WH19/DEC VT52 A-12
Help (debug command) . • • . . • 4-4

High level diagnostic
High-level diagnostic

IDENTIFICATION DIVISION
ILLEGAL DELETE
ILLEGAL RE.a.o •
ILLEGAL REWRITE
ILLEGAL START
ILLEGAL WRITE
INDEXED
Indexed File Recovery Utility
Input Code . • • . • • • •
INPU'l"/OUTPUT . . • • • • •
Interactive Debug Facility
Intertec Superbrain
INVALID KEY clause
IS/1 . .M

KEY
Key Label
Keyboard input
Kill (debug command)
Kill ALL (debug command)

LB0
L80 .COM
LABEL RECORD
LABEL RECORD
LD80 • • • •
LDB0.CCM • •

IS OMITTED
IS STANDARD

Lear-Siegler ADM-3A
LENGTH? . • • •
LIB.COM . • • •
Libraries . . . •
Line (debug command)
Line number . . • •
LINE SEQUENTIAL
Linking • . • . • •
Listing page length
Low level error
LST: • • . • . . • •

M80.CCM

2-6
2-8

1-3,
4-10
4-9
4-9
4-10
4-9
4-6
D-1
A-3
4-9
4-2
A-9
4-9
4-6

4-6

A-3
4-7
4-4
4-4

3-1
1-2
4-5
4-5
3-1
1-2
A-5
2-7
1-2
3-4

4-4
C-2
.1-4,
3-1
C-2
2-6
2-2

1-2
1-4

2-10

4-5

Miscellaneous Files
MS-CO3OL Interactive Deb1Jg
MS-LIB • • . . • •

Facility 4-2
3-4

MS-LL'K •
MS-Macro As sembler

NA."IE?
NO CRT DRIVER
NON-NUMERIC DATA
NUMERIC test . •

OBJ. CODE ERROR

1-7, 3-1
A-14

2-7
4-10, A-1
4-9
4-9

4-10

ON ESCAPE clause
Out of memory
Output listings

Page length
Parameters •
PERFORM OVERLAP
Perkin-Elmer Terminals
PIC = X • , • , • •
PICTURE • , • , ,
Printer file handling
PROCEDURE DIVISION
PROCEDURE DIVISION Header
PROGRAM-ID
PUNCT? . • • • • •

Quit (debug command)

RCISAM.COM • • •
RDR: . . . , . ,
READ BEYOND EOF
REBUILD
REBUILD. COM
RECOVR.COB .
REDUNDANT OPEN
RELATIVE
REWRITE; NO READ
RUN-TIME ERR:
RUNCOB.COM .
Runtime date .
Runtime day
Runtime errors
Runtime line number
Runtime System •
Runtime time . .

S2G nn LOAD ERR
SEQCVT.COM . . ,
SEQUENTIAL . . ,
SOROC IQ Terminals
SQUARO . •
SQUARO.COB • . • .
SQUARO,REL . . . •
Stack space
Ste? (debug command)
STEXT.INT . . . •
Subp�ogram calling
Subprograms
SUBSCRIPT FAULT
Switches

Compiler
/D •
/Fn
/L
/P .

A-15
B-3
2-6

C-2
B-1
4-9
A-10
2-7

. 2-7,
4-5

. 1-3,
3-4

2-10
2-7

4-4

1-5
2-2
4-10
D-1
1-2
1-2,

. 4-9
4-6,
4-9
4-8

1-1,
C-2
C-2
4-8
C-2
1-3
C-2

4-10
1-2,
1-4,
A-11
1-6
1-2,
1-6
2-4,
4-4
1-3,
B-1
3-4
4-9

2-4,
2-4
2-4
2-4

4-9

2-4, 2-8, 4-3

1-5

4-10

1-3, 2-4, 4-1

to 1-4, 4-1

1-4
4-5

1-4, 1-6

B-2 to 8-3

2-10

4-2

/R • •
/X • .

MS-LINK
/E
/G

/M
/N
/P
/R
/S
/U
filename/N
filename/S

Switches - compiler
Switches - MS-LINK •
Syntax, command line

Ta!) stops
Terminal charts
Terminal output
Time •
Tr;;ce (debug cor:-.inand)
Trace OFF (debug command)
TTY: • • • • • • • • • •

VALUE OF clause . • • •
VALUE OF FILE-ID clause

Writing a CRT driver •

Zentec Zephr • • • • •

2-4

1-5, 2-4, 4-2

3-2
3-2, 4-1

• 3-3
3-2

• 1-4
3-3
3-3
3-3

• 3-2
3-3

• 2-4

• 3-2
• 2-1

• • C-1
A-3

4-7
C-2
4-5
4-5
2-2

4-5
4-6

. A-14

• • • A-13

Microsoft

COBOL

reference manual

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy Microsoft COBOL on
cassette tape, disk. or any other medium for any purpose other than the purchaser's personal use.

Copyright O Microsoft. Inc .. 1980, 1981. 1982

LIMITED WARRANTY

MICROSOIT. Inc. shall have no liability or resp<Jnsibility to purd1Hser or any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product.
inducting but not limited to any interruption of service. loss of business or anticipatory profits or
consequential damage,i resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture, lnbelfa,g. or packaging, but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT. INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

Microsoft COBOL and COBOL-80 are trademarks of Microsoft. Inc.

Document No. 8301-460-03
Part No. 00FllRM

Introduction

CHAPTER 1

1.1
1. 2
1. 3
1. 4
1. 5
1. 6
1. 7
1.8
1. 9
1.).0
1.11
1.12
1.13
1.14

CHAPTER 2

2.1
2.2
2.2.1
2. 2. 2
2. 2. 2 .1
2.2.2.2

CHAPTER 3

3.1
3 .1.1
3. l. 2
3. 1. 3

3. 2

3. 3

3. 4

3.5
3.6
3.7
3.8
3.9
3.10
3. 11
3.12
3. l3

3.14

Microsoft
COBOL Reference Manual

CONTENTS

Fundamental Concepts of COBOL

Character Set
Punctuation
Word Formation
Format tlotation
Level Numbers and Data-Names
File-Names
Condition-Names
Mnemonic-Names
Literals
Fiqurative Constants
Structure of a Proqram
Codinq Rules
Qualification of Names
COPY Statement

Identification and Environment Divisions

Identification Division

Envlronment Division
Configuration Section
Input-Output Section

File-Control Entry
I-O Control Paragraph

Data Division

Data Items
Group Items
Elementarv Items
Numeric Items

Data Descriptior. Entrv
Formats for Elementary Items
USAGE Clause
PIC'T'URE Clause
VALUE Clause
REDEFINES Clause
OCC:URS Clause
SYNCHRONIZED Clause
3LANK WHEN ZERO Clause
JUSTIFIED Clause
SIGN Clause
Level 88 Condition-Names
File Section, FD Entries

3 .14. l
3. 14. 2
3.14.3
3. 14. 4
3 .14. 5
3. 14. 6
3. 14. 7
3.15
3.16
3 .17
3. 18

C:HAP'l'ER 4

4. 1
4. 2
4. 3
4.4
4. 5
4. 5. 1
4. 5. 2
4. 5. 3
4. 5. 4
4. 'i. 5

�. 'j. 6
4. 5. 7
4. 5. 8
4. 6
4.7
4. 8
4. 8. 1
4. 8. 2
4. 8. 3
4. 8. 3. 1
4. 8. 3. 2
4. 8. 3. 3
4. 8. 4
4. 9
4. 9. l
4. 9. 2
4. 10
4. ll
4. 12
4 .13
4. 13. 1
4.14
4. 15
4.16
4. 1 7
4.18
4.19
4.20
4.21

(Sequential I-0 Only)
LABSL r.1ause
VALUE OF Clause
DATA REC:ORDS Clause
BLOCK CJ.ause
RECORD Clause
CODE-SET Clause
LINAGE Clause

Working-Storage Section
Linkage Section
Screen Section
Data Division Limitations

Procedure Division

Statements, Sentences, Prccedures-Names
Organization of the Procedure Division
MOVE Statement
I�SPECT Statement
Arithmetic Statements

SIZE ERROR Option
ROUNDED Option
GIVING Option
ADD Statement
SUBTRACT Statement
MULTIPCY Statement
DIVIDE Statement
COMPUTE Statement

GO TO Statement
S"'OP Statement
ACCEPT Statement

Format l ACCEPT Statement
Format 2 ACCEP"' Statement
Format 3 ArCEP"' Statement

Data Inout Field
Data lnouut and Data Transfer
HI"'ff Phrase Summary

Examples Using the ACCEPT Statement
DISPLAY Statement

Position-soec
Inentifier, Literal, and ERASE

PERF0R." Statement
EXIT Stuterr,ent
/1.LTER StateMent
IF Statement

Conditions
OPEN Statement (Sequential I-0)
READ Statement (Sequential I-0)
WRITE Statement (Sequential I-OJ
CLOSE Statement (Sequential I-0)
REWRITE Statement (Sequential I-0)
General Note on I/0 Error Handling

S"'RING Statement
tJNSTRH!G Statement

4.22

CHAPTER 5

5.1
5.2
5.3
5.4

CHAIN

CHAPTER 6

6.1
6.2
6. 3
6.4
6. 5

CHAPTER 7

7.1
7.2
7. 2 .1
7. 2. 2
7. 3

7.4
7. 5
7. 6
7.7
7. 8

CHAPTER 8

8. 1
8. 2
8. 2 .1
8.3

8.4
8. 5
8. 6
8.7
8.8

CHAPTER 9

CHAPTER 10

Dvnamic Debugging Statements

Inter-Program Communication

CALL Statement
EXIT PROGRAM Statement
CHAIN Statement
Procedure Division Header with CALL and

"'ahle Handling by the Indexing Method

Index-Names and InQeX Items
SET Statement
Relative Indexing
SEARCH Statement - Format 1
SEARCH Statement - Format 2

Indexed Files

Definition of Indexed File Organization
Svntax Considerations

- REC:ORD K.a:Y Clause
File Status Re�ortir.g

Procedure Division Statements
for Indexed Files
READ Statement
hlRITE Statement
REWRITE Statement
DELETE Statement
STAR"' Statement

Relative Files

Definition of Relative File Organization
Syntax Considerations

?.'=::LATIVE KEY C�ause
Procedure Division Statements
for Relative Files
READ Statement
WRITE Statement
REWRITE Statement
DELETE Statement
STAR"' Statement

DECLARATIVES and the USE Sentence

Appendix fl

Appendix B

Appendix c

Appendix D

Appendix E

Appendix F

Appendix G

Standard

Advanced Forms of Conditions

Table of Permissible MOVE Operands

Nesting of IF Statements

ASCII Character Set

Reserved Word List

PERFORM with VARYING and AFTER Clauses

Microsoft COBOL With Respect to the ANSI

Acknowledgment

"Any organization interested in reoroducing the COBOL report
and soecifications in whole or in part, using ideas taken
from this reoort as the basis for an instruction manual or
for anv other purpose is free to do so. However, all such
organizations are requested to reproduce this section as
part of the introduction to the nocument. Those using a
short passage, as in a hook review, are requested to
mention, 'COBOL' in acknowledgment of the source, but need
not quote this entire section.

"COBOL is an inaustry lanquage and is not the prooerty of
anv company or group of companies, or of anv organization or
group of organizations.

"No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system and language.
Moreover, no resoonsibility is 3ssumect by any contributor,
or by the committee, in connection therewith.

"Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures for oroposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted
material used herein

FL0''1-�ATIC (Tracemark of Sperry Rand Corporation),
Proqramming for the UNIVAC. (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by IBM; FAC�, DSI 27A5260-2760, copyrighted 1960 by
Minneaoolis-Honevwell

have specificallv authorized the use of this material in
whole or in part, in the COBOL soecification in proqra�ming
manuals or similar publications."

--from the ANSI COBOL STANDARD
(X3.23-1974)

Microsoft COBOL Reference Manual

Introduction

Microsoft COBOL is based upon American National Standard
X3.23-1974. Elements of the COBOL language are allocated to
twelve different functional processing "modules."

Each module of the COBOL Standard has two non-null
Level 1 reoresents a subset of the full

capabilities and features contained in Level 2.

"levels"
set of

In order for a qiven svstem to he called COBOL, it must
provide at least Level 1 of the Nucleus, Table Handling, and
Sequential I-O Modules.

The followinq summarv specifies the content of Microsoft
COBOL with respect to the Standard.

Module

Nucleus

or

Features of Microsoft COBOL

All of Level 1, plus these features of
Level 2:

CONDITIONS:
Level 88 conditions with value series

ranqe
Use of logical AND/OR/NOT in conditions
Use of algebraic relational symbols for

equality or inequalities (,>,=)
Implied subject, or both subject and

relation, i� relational conditions
Sign test
Nested IF statements; parer.theses in

conditions

VERBS:
Extensions to the functions of ACCEPT

and DISPLAY for formatted screen
handling

ACCEP�ance of data from DATE/DAY/TIME
STRING and UNSTRING statements
COMPUmE with multiple receiving fields
PERFORM VARYING ... UNTIL

IDENTIFIERS:

Mnemonic-names for ACCEPT or DISPLAY
devices

Procedure-names �onsisting of digits
onlv

nualification of Names (in Procedure
Division statements only)

Microsoft COBOL Reference Manual

Sequential,
Relative and
Indexed I7o

with

All of Level 1 plus these features of
Level 2:

RESERVE clause
Multiple operands in OPEN and CLOSE,

individual options per file

VALUE OF FILE-ID is data-name

Seauential .!.LQ EXTEND mode for OPEN

Relative and
Indexed I/0
or

NRITE ADVANCING data-name lines
LINAGE phrase and AT END-OF-PAGE clause

DYNAMIC access mode (with READ NEXT)
START (with key relations EQUAL, GREATER,

NO"' LESS)

Lihrarv Level 1

Inter-Program Level 1
Communication

Table Handling All of Level 1, plus full Level 2 formats
for SEARCH statement

Debugging Special extensions to ANSI-74 Standard

ilebugqing.

Seqmentation

providing convenient trace-style

Conditional compilation: lines with "D in
column 7" are bypassed unless WITH

DEBUGGING MODE is given in
SOURCE-COMPUTER paragraph

Level 1

CHAPTER 1

FUNDAMENTAL CONCEPTS OF COBOL

1.1 CHARACTE� SET

The COBOL source language character set consists of the
following characters:

Letters A through Z
Blank or space
Digits O t�rough 9
Soecial characters:

- + Plus siqn
- Minus siqn

* Asterisk
Equal sign

> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comr.ia

Sem5.colon
Period or decimal point

" Quotation mark
(Left parenthesis

) Riqht parenthesis
' Aoostrophe (alternate of quotation mark)

/ .Slash

Of the previous set, the following characters are
used for words:

0 through 9
A through Z
- (hyphen)

The following characters are used for punctuation:

(Left parenthesis
) Right oarenthesis
, Comma

Period
Semicolon

FUNDAMENTAL CONCEPTS OF COBOL Page 1-2

The followinq relation characters are used in simple
conditions:

,.

<

In the case of non-numeric (quoted) literals, comment
entries, and comment lines, the COBOL character set is
expanded to include the computer's entire character set.

1. 2 PUNCTUATION

The following general rules of punctuation aoplv in writing
source programs:

1.

2.

As punctuation, a period,
shoulrl not be preceded hy
followed by a space.

semicolon, or comma
a space, but must he

At least one space must appear between two
successive words and/� literals. Two or more
successive spaces are treated as single space,
exceot in non-numeric literals.

3. Pelation characters should alwavs he preceded by a
space and followed by another space.

4. When the period, comma, plus, or
are used in the PICTURE clause,
solelv by rules for report items.

minus characters
they are governed

5. mav be used as a separator hetween
ooerands of a statement, or hetween two

A comma
successive
subscripts.

6. A semicolon or comma mav be used to separate a
series of statements or clauses.

1.3 WORD FORMATION

User-defined and reserved words are composed of a
comhination of not more than 30 characters, chosen from the
followinq set of 37 characters:

0 through 9 (iliqits)
A through 7. (letters)
- (hyphen)

FUNDAMENTAL CONCEP�S OF COBOL Page 1-3

All words must contain at least one letter or hyphen, except
procedure-names which may consist entirely of digits. A
word may not begin or end with a hyphen. A word is ended by
a space or by proper punctuation. A word mav contain more
than one embedded hyphen; consecutive embedded hypher.s are
also permitted. All words are either reserved words, which
have preassigned meanings, or programmer-supplied names. If
a programmer- supplied name is not unique, there must be a
unique method of reference to it by use of name qualifiers,
e.g., TAX-RATE IN STATE-TABLE. Primarily, a non-reserved
word identifies a data item or field and is called a
data-name. Other cases of non-reserved words are
file-names, condition-names, mnemonic-names, and procedure
names.

1.4 FORMAT NOTATION

Throughout this publication, "general formats" are
prescribed for various clauses and statements to guide the
programmer in writing his own statements. Thev are
presented in a uniform system of notation, explained· in the
following paragraphs.

1. All words printed entirely
reserved words. These
preassigned meanings. In
capital letters represent
those words.

in capital letters are
are words that have

all formats, words in
actual occurrences of

2. All underlined reserved words are required unless
the portion of the format containing them is itself
optional. These are kev words. If anv key word is
missing or is incorrectly spelled, it is considered
an error in the program. Reserved words not
underlined may be included or omitted at the option
of the programmer. These words are optional words;
thev are used solely for improving readability of
the program.

3. The characters < > = (although not ur,derlined) are
required when such formats are used.

4. All ounctuation and other special characters
represent actual occurrences of those characters.
Punctuation is essential where it is shown.
Additional ounctuation can be inserted, according
to the rules· for punctuation specified in Section
1.2. In general, terminal periods a�e shown in
formats in the manual because thev are required;
semicolons and commas are not usuaily shown because
thev are optional. To be separators, all commas,
semicolons and periods must be :ollowed by a space
(or blank).

FUNDAMENTAL CONr.EP'T'S OF COBOL Page 1-4

5, Words printed in lower-case letters in formats
represent generic terms (e.g., data-names) for
which the user must insert a valid entry in the
source program.

6. Any �art of a statement or data description entry
that is enclosed in brackets is optional. Parts
between matching braces ({}>represent a choice of
mutually exclusive options.

7. Certain entries in the formats consist of a
capitalized word(s) followed by the word "Clause"
or "Statement." These designate clauses or
statements that are described in other formats, in
appropriate sections of the text.

8. In order to facilitate reference to lower-case
words in the explanatorv text, some of them are

followed by a hyphen and a digit or letter. This
modification does not change the syntactical
definition of the word,

9. Alternate options may be
the mutually exclusive

explained
choices

by
by

separating
a vertical

stroke, e.g.:

ARF.A I AREAS is equivalent to{ AREA\
AREASJ

10. The ,,lliosis (..•) indicates that the immediately
preceding unit may occur once, or any number of
times in succession. A unit means either a single
lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or
h.races. If a term is enclosed in brackets or
braces, the entire unit of which it is part must be
repeated when repetition is specified.

11. Optional elements may he indicated by parentheses
instead of brackets, provided the lack of formality
represents no substantial bar to clarity.

12. Comments, restrictions, and clarification on the
use and meaning of everv format 11re contained in
the appropriate sections of this manual.

FUNDA,'\ENTAL CONCEPTS OF COBOL Page 1-5

1.5 LEVEL NU�SERS AND DATA-NAMES
--- --

For purposes of Processing, the contents of a file are
divided into logical records, with level number 01
initiating a logical record description. Subordinate data
items that constitute a loqical record are grouped in a
heirarchv and identified with level numbers 02 to 49, not
necessarily consecutive. Additionally, level number 77
identifies a "stand alone" item in Workinq Storage or
Linkage Sections; that is, it does not have subordinate
elementary items as �oes level 01. Level 88 is usen to
define condition-names and associated conditions. A level
number less than 10 may be written as a single digit.

Levels allow specification of subdivisions of a record
necessary for referring to data. Once a subdivision is
soecified, it may be further subdivided to permit more
detailed data reference. �his is illustrated by the
following weeklv timecard record, which is divided into four
major items: name, emplovee-number, date and hours, with

more specific information aopear!nq for name and date.

TIME-CARD

LAST-NA.'1E
NAME � rI RS"'-IN IT

MIDDLE-INIT
E"'IPLOYEE-NUI-'

"lONTH
WEEKS-END-DATE� DAY-NUMBER

YEAR
HOURS-WORKED

Subdivisions of a record that are not themselves further
subdivided are called elementarv items. Data items that
contain subdivisions are known as group items. When a
Procedure statement makes reference to a qrouo item, the
reference applies to the area reserved for the entire group.
All elementary items must be nescrihed with a PICTURE or
USAGE IS INDEX clause. Consecutive logical records (01)
subordinate to any given file represent implicit
redefinitions of the same area w'lereas in the
Workina-Storaqe section, each record (01) is the definition
of its own memory area.

Less inclusive groups are assigned numerically higher
numbers. Level numbers ot items within groups need
consecutive. A group whose level is k includes all
and elementarv items described under it until a level
less than or equal to k is encountered.

Separate entries are written in the source program for

level
not be
groups
number

each
level. To illustrate level numbers and group items, the
weekly timecard record in the previous examole mav be
described (in palt} bv Data Division entries having the
followinq level numbers, data-names and ?ICTURE definitions.

�UNDAMENTAL CONCEP�S OF COBOL

01 TIME-CARD.
02 NAME.

03 LAST-NAME PICTURE X(l8).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.

05 MONTH
05 DAY-NUMBER
05 YEAR

0 2 HOURS-l-lORKED

PIC 99.
PIC 99.
PIC 99.

PICTURE 99V9.

Page 1-6

A data-name is a word assigned by the user to identify a
data item used in a program. A data-name always refers to a
region of r.ata, not to a particular value. The item
referred to often assumes a number of different values
durinq the course of a proqram.

A data-name must begin with an alphabetic character. A
data-name or the key word FILLER must be the first word
following the leve� number in each Record Description entry,
as shown in the following general format:

level number { rlata-name}
FILLER

�his data-name is the rlefining name of the entry and is used
to refer to the associated data area (containing the value
of a data item).

If some of the characters in a record are not used in the
processing steps of a oroqram, then the data description of
these characters need not inclurle a data-name. In this
case, FILLER is writ�en in lieu of a data-name after the
l'?vel number.

1. 6 FILE NAMES

A file is a collection of data records, such as a printed
listing or a region of floopy disk, containinq indivirlual
records of a similar class or application. A file-name is
defined by an FD entry in the Data Division's File Section.
FD is a reserved word which must be followed by a unique
programmer-supplied word called the file-name. Rules for
comoosition of the file-name word are irlentical to those for
data-names (see Section 1. 3). References to a _file-name
appear in Procedure statements OPEN, CLOSE and READ, as well
as in the Environment Division. CAUTION: File names are
not to he confused with file ID's as described in Section
3 .13. 2.

FUNDf1.�IZNTAL CONCEP'T'S OF rOBOL

1 �
-• I CONDITION-NMrnS

rage l- 7

A condition-name ls defined in level 88 entries within the
D�ta Division. It is a na�e assigned to a s�ecific value,
s�t or range of values, within the complete set of values
that a data item may assume. Rules for formation of name
words are specified in Section 1.3. Explanations of
condition-name declarations and procedural statements
employing them are given in the chapters devoted to Data and
Procedure nivisions.

l. 8 !.<NEMONIC-lU•-'IES

A mnemonic-name is assigned in the Environment Division for
reference in �CCEPT or DISPLAY statements. It assigns a
user-defined word to an im�lementor-chosen name, such as
PRINTER. A mnemonic-name is com?osed according to the rules
in Sect:·ion 1.3.

1. 9 LI'l'EFALS

;,.. literal
data-nar::e
if.entity.

is a constant that is not identified by a
in a proqram, but is completely defined by its own

A literal is either non-numeric or numeric.

Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation
marks or aoostrophes and may consist of anv combination of
characters in the ASCII set, except quotation marks or
a?ostroohe, respectively. All spaces enclosed by the
quotation marks are included as part of the literal. A
non-numeric literal must not exceed 120 characters in
length.

The following are examples of non-numeric literals:

"ILLEGAL CON'T'ROL CARD"

'CHARACTER-STRING'

"DO's & DON'T'S"

Each character of a non-numeric literal (following the
introductory delimiter) may he anv character other than the
delimiter. That is, if the literal is bounded by
apostroohes, then auotation ("I marks mav be within the
literal, and �ice versa. Length of a non-n�meric literal
exclurles the f.elimiters; �inimum length is one.

A succession of two "delimiters" within a literal is

FUNDAMEN�AL CONCEP�S OF COBOL Page 1-8

interpreted as a single representation of the delimiter
within the literal.

Non-numeric literals may be "continued" from one line to the
next. When a non-numeric literal is of a length such that
it cannot be contained on one line of a coding sheet, the
following rules apply to the next line of coding
(continuation line):

1. A hvphen is placed in column 7 of the continuation
line.

2. A delimiter is placed in Area B preceding the
continuation of. the literal.

3. All spaces at the end of the previcus line and any
spaces following the delimiter in the continuation
line and preceding the final celimiter of the
literal are considered to be part of the literal.

4. On anv continuation line, Area A should be blank.

Numeric Literals

A numeric literal must contain at least one and not more
than 18 0i9its. A numeric literal may consist of the
characters O through 9 (optionally preceded by a sign) and
the 0ecimal point. It may contain only one sign_ character
and only one decimal point. The sign, if present, must
appear as the leftmost character in the numeric literal. If
a numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere within
literal, except as the rightmost character.
literal does not contain a decimal point, it
to be an integer.

the numeric
If a numeric

is considered

The following are examples of numeric literals:

72 +lOll 3.14159 -6 -.333 0. 5

Bv use of the Environment specification DECIMAL-POINT IS
COMMA, the functions of characters period and comma are
interchanged, putting the "European" notation into effect.
In this case, the value of "pi" would be 3,1416 when written
as a numeric literal.

1.10 FIGURATIVE CONSTANTS

A figurative constant is a soecial tvpe of literal. It
reoresents a value to which a standard data-name has been
assigned. A figurative constant is not bounded by quotation
marks.

FUNDAMENTAL CONCEPTS OF COBOL Page 1-9

ZERO may he used in manv places in a program as a numeric
available to
representing

literal. Other figurative constants are
provide non-numeric data; the reserved words
various characters are as follows:

SPI-.CE

LOW-VALUE

HIGH-VALUE

QllOTE

the blank character represented
by "octal" 40

the character whose "octal"
reoresentati0n is 00

the character whose "octal"
representacion is 177

the quotation mark, whose "octal"
rei:>resentation is 42 (7-8 in
punched cards)

ALL literal one or more instances of the
literal, which must be a one
character non-r.umeric literal or
a figurative constant, in which
case ALL is redundant but
serves for readability.

The plural
acceptable
figurative
associated
statement.

forms of these figurative constants are
to the compiler but are equivalent in effect. A

constant represents as many instances of the
character as are required in the context of the

A figurative constant may be used anywhere a literal is
called for in a "general format" exceot that whenever the
literal is restricted to being numeric, the only figurative
constant permitted is ZERO.

l.ll STRUCTURE OF A PRO(;RAM

Every COBOL source orogram is divided into four divisions.
Each division must be placed in its proper sequence, and
each must beqin with a division header.

The four divisions, listed in sequence, and their functions
are:

IDEN�JFICATION DIVISION, which names the
program.

ENVIRONMENT DIVISION, which indicates the
computer equipment and features to be used
in tl-ie oroqram.

DATA DIVISION, which defines the names and

FUNDAMENTAL CONCEPTS OF COBOL

characteristics of data to be processed.

PROCEDURE DIVISION, which consists of
statements that direct the processing of
data at execution time.

Page 1-10

It is very difficult for COBOL to compile source code if the

Division headers are omitted or are accidentally commented

out. In this case, unpredictable events may occur.

The followinq skeletal coding defines program component

structure and order.

FUNDAMENTAL CONCEP'PS OF COBOL

IDENTI?ICATION DIVISION.

PROGRA.�-ID. program-name.

[AuTHOR. comment-entry ...]

[INS'l:'ALLATION. comment-entry •••]

[DATE-,,RITTEN. comment-entry ..•)

[DA�E-CO�PILED. comment-entry •••)

[SECURI'l:'Y. comment-entry .••)

ENVIROllMENT DIVISION.

[CONFIGURATION SECTION.)

[SOURCE-COMPUTER. entry]

[OBJECT-COMPUTER. entry)

[SPECIAL-NAMES. entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

[I-0-CONTROL.

DAT.",. DIVISION.

[FILE SECTION.

entrv

entry •.•])

[file descrintion entry

record descriction entry .••] .••]

[WORKING-STORAGE SECTION.

[data item d2scripticn entry •••) ...]

[LINKAGE SECTION.

[data item description entry •.•] ...]

[SCRESN SECTION.

[screen-description-entry .•• J ••• J

Page 1-11

FUNDAMENTAL CONCF.P�S OF COBOL Page 1-12

PROCEDURE DIVISION [USING identifier-1 ••.).

[DECL,\RA TIVES.

[section-name SECTION. USE Sentence.

[paragraph-name.

END DECLARATIVES.]

[sentence) .••] .••) ••.

[[section-name SECTION. [segment number)l

[paragraph-name. [sentence] .•.] .•.] .•.

1.12 r.ODING RVLES

Since Microsoft COBOL is. a subset of American National
Standards Institute (ANSI) COBOL, programs may be written on
standard COBOL coding sheets, and the following rules are
aoplicahle.

1. Each line of code should have a six-digit sequence
number in columns 1-6, such that the punched cards
are in ascending order. Blanks are also permitted
in columns 1-6.

2. Reserved words for division, section, and paragraph
headers must begin in Area A (columns 8-1).).
Procedure-names must also apoear in Area A (at the
point where they are defined). Level numbers may
appear in Area A. Level numbers 01, 77 and level
indicator ''FD'' must begin in Area A.

3.

4.

All other proqram elements should
columns 12-72, governed by the
statement punctuation.

be confined to
other rules of

Columns 73-80 are
Frequently, these
deck identification.

ignored by the compiler.
columns are used to contain the

5. Explanatory comments may be inserted on any line
within a source proqram by placing an asterisk in
column 7 of the line. The line will be produced on
the source listing but serves no other purpose. If
a slash (/) appears in column 7, the associated
card is treated as comments and will be printed at
the top of a new page when the compiler liHts the
program.

6. Anv proqram element may be "continued" on the
following line of a source program. The rules for
continuation of a non-numeric ("quoted") literal

FUNDk�ENTAL CONCEP�S OF COBOL Page 1-13

ar2 explained in Section 1.9. Anv other word or
literal or other program element is continued by
placing a hyphen in the column 7 position of the
continuation line. The effect is concatenation of
successive word parts, exclusive of all trailing
spaces of the last predecessor word and all leading
spaces of the first successor word on the
continuation line. On a continuation lir.e, Area A
must be blank.

7. Any tab characters in a line are expanded as if
there were tab stops at every eighth column past
column 1, except that the first tab stop is in
column 7, just past the six sequence-number
columns. Subsequent tab stops are columns 17, 25,
33, etc. as determined by the general rule.

1. 13 QUALIFICATION OF NAMES

When a data-name, condition-name or paragraph name is not
unique, rererer.ce thereto may be accomplished uniquely by
use of qualifier names. For example, if there were two or
more items named YEAR, the qualified reference

YEAR OF HIRE-DATE

might differentiate between year fields
TERMINATION-DATE.

in HIRE-DATE and

Qualifiers are preceded by the word OF or IN; successive
data-name or condition-name qualifiers must designate
lesser-level-numbered groups that contain all preceding
names in the composite reference, i.e., HIRE-DATE must be a
group item {or file-name) containing an item called YEAR.
Paragraph-names may be cualified by a section-name.

The maximum number of qualifiers is one for a
paragraph-name, rive for a data-name or condition-name.
File-names and mnemonic-names must be unique.

A qualified name may only be written in the screen section
or Procedure Division. A reference to a multiply-defined
paragraph-name need not be qualified when referred to from
within the same section.

FUNDAMENTAL CONCEPTS OF COBOL

1.14 COPY STATEMENT

Page 1-14

The COPY statement is used to logically embed the text of a
disk file (other than the source file) in the source code
input to the Microsoft COBOL compiler. The [ormat of the
COPY statement is:

COPY text-name

where text-name is a disk file name in the
by the operating system in use. Foe
BDEF.COB is a text file containing the
code:

05 B
10 Bl PIC X.
10 82 PIC X.

Then a source file containing

05 A.
10 Al PIC 9.

COPY BDEF. COB
05 C.

10 Cl PIC 7..

f.ormc::t reqt!ired
example, supp0se

following source

will compil� exactly as if the following had been co�ed:

05 A.
10 Al PIC 9.

05 B.
10 Bl PIC x.

10 B2 PIC x.

05 c.

10 Cl PIC z.

The portion of a source line containing a COPY statement
must contain onlv spaces from the end of text-na�e to the
end of the line.

CHAPTER 2

IDi.':NTIFICATION AND ENVIRONMENT DIVISIONS

2.1 IDENTIFICAT:ON DIVISION

Eve y COBOL
DIV SIO'N.
pre= ssigned

program begins with the header: IDENTIFICATION
This division is divided into paragraphs having
names:

PRCGRAM-ID. program-name.
i'.Ut'HCf;.. coinmen ts.
r�:STALl..:ATION. comments.
DATE-WR!TTEN. comments.
D�T2-COMPILED. comments.
SECURITY. comments.

Only the PROGRAM-ID paragraph is required, and it must be
the first paragraph. Program-name is any alphanumeric
string of characters, th� first of which must be alphabetic.
Only the first 6 characters of program-name are retained by
the compiler. The program-name identifies the object
ore,ara;;1 and is contained in headings on compilation
ii stings.

The cont�nts of anv other paragraphs are of no consequence,
s�rving only as <lcc�mentary re�a�ks.

The Environxent Division
expressing those aspects
dependent upon physical
compucer. It is required

specifies a standard
of a COBOL program

characteristics of a
in every progra�.

t'he general format of the Environment Division is:

ENVIRONMEN'1:' DI\II:3ION.

CON:'IGC:RA'l:'IO!'l SECTION.

method of
that are

specific

SOURC:E-COMFUTER. Compute,r-name [WITH DEEUGG:.:NG MODE].

OBJECT-COMf-UTER. Computer-name

IDENTIFICATION AND ENVIRONMENT DIVISIONS

[ME}10RY SIZE integer WORDS J CHARACTERS
[PROGRAM COLLATING SEQUENCE IS ASCII].

Page 2-2

MODULES]

SPECIAL-NAMES. [PRINTER IS mnemonic-name]

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].

ASCII IS{STANDARD-1}
NATIVE

INPUT-OUTPUT SECTION.

FILE-CONTROL. (file-control-entry} .•.

I-0-CONTROL.

U
RECORD

] [SAME SORT
SORT-MERGE

AREA FOR file-name •••] •••

2.2.1 CONFIGURATION SECTION

The CONFIGURATION SECTION, which has three possible
paragraphs, is optional. The three paragraphs are
SOURCE-COMPUTER, ORJECT-COMPUTER, and SPECIAL- NAMES. The
contents of the first two paragraphs are treated as
commentary, except for the clause WITH DEBUGGING MODE, if
present (see Section 4.22). The third paragraph,
SPSCIAL-NAMES, relates implementor names to user-defined
names and changes default editing characters. The PRINTER
IS phrase allows definition of a name to be used in the
DISPLAY statement with UPON.

In case the currency symbol is not supposed to be the Dollar
Siqn, the user may specify a single character non-numeric
literal in the CURRENCY SIGN clause. Howe?er, the
designated character may r.ot be a quote mark, nor ar.y of the
characters defined for Picture representations, nor digits
(0-9).

The "European" convention of separating integer and fraction
positions of numbers with the comma character is specified
by employment of the clause DECIMAL-POINT IS COMMA.

Note that the reserved word IS is required in entries for
currency sign definition and decimal-point convention
specification.

The entry ASCII IS NATIVE/STANDARD-I specifies that data
representation adheres to the American Standard code for
information interchange. However, this convention is
assumed even if the ASCII-entry is not specifically present.
In this comoiler, NATIVE and STANDARD-I are identical, and
refer to the character set representation specified in

IDENTIF'ICATION AND ENVIRONMENT DIVISIONS

Appendix IV.

2.2.2 I�PUT-OUTPUT SECTION

Page 2-3

The second section of the Environment Division is mandatory
unless the program has no data files; it begins with the
header:

INPUT-OUTPUT SECTION.

This section has
I-0-CONTROL. In
file assignment
buffering.

two paragraphs: FILE-CONTROL and
this section, the programmer nefines the

parameters, including specification of

2.2.2.l FIL�-CONTROL ENTRY (SELECT ENTRY) -

For each file having records described in the Data
Division's File Section, a Sentence-Entry (beginning with
the reserved word SELSCT) is required in the FILE-CONTROL
paragraph. The format of a Select Sentence-Entry for a
sequential file is:

SELECT file-name ASSIGN TO DISK I PRINTER

[�£'.?ERVE integer AREAS I AREA]

[FILE STATUS IS data-name-1]

[ACCESS MODE
SEQUSNTIAL]

IS SEOUENTIAL] [ORGANIZATION IS [LINE]

The SELECT entry must begin to the right of Area A of the
source line. All phrases after "SELEC� filename" can be in
anv ord�r. Both the ACCESS and ORGANIZATION clauses are
optional for regular sequential input-outuut processfng.
For Indexe� or R�lative files, alternate formats are
availa�le for this section, and are explained in the
chapters on Indexed and Relative files.

Two forLlats are available for sequential disk files. One is
the regular form which is requested by ORGANIZATION IS
SEQUENTIAL, and the other is requested by ORGANIZATION IS
LINE SEQUENTIAL. Both forms assume the records in the file
are variable-lenq�h. The regular Sequential Organization is
that of a two-byte count of the record length followed by
the actual record, for as manv records as exist in the file.
The Line Sequential Organization has the record followed by
a carriage return/line feed delimiter, for as many records
as exist in the file. No COMP or COMP-3 information should
be written into a Line Sequential file because these data

IDF.NTIFICATION AND ENVIRONMENT DIVISIONS Page 2-4

items may contain the same binary codes used for carriage
return and line feed which therefore would cause a problem
when subsequently reading the file. Both organizations pad
any remaininq space of the last physical block with
Control-Z characters, indicating end-of-file. All records
are placed in the file with no gaps; they span physical
block boundaries.

The RESERVE claus� is not functional in Microsoft COBOL, but
is scanned for correct syntax. One physical block buffer is
always allocated to the logical record area assigned to it.
This allows logical records to be spanned over physical
block boundaries. For files assigned to PRINTER, the
logical record area is used as the physical buffer as well.

In the FILE STATUS entry, data-name-1 must refer to a
two-character Working-Storage or Linkage item of category
alphanumeric into which the run-time data management
f.acil1tv Places status information after an I-0 statement.
The le:t-h�nd character of data-name-1 assumes the values:

• 0. for su_ccess fu 1 completion
'1. for End-of-File condition
'2' for Invalid Key (only

for Indexed and Relative files)
'3' for a non-recoverable (!-0) error

The right-hand character of data-name-1 is set to '0' if no
further status information exists for the previous I-0
oneration. The following combinations of values are
possible:

File Status Left File Status Right �1ean i ng

• 0. '0' O.K.
'l' '0' EOF
'3' 'C' Permanent error
'3. '4' Disk space· full

In an OPEN INPUT or OPEN I-0 statement, a File Status of
f 3� I

means 'File Not Found. '

For values of status-right when status-left has a value of
'2', see the chapters on Indexed or Relative files.

2.2.2.2 I-0-CONTROL PARAGMPH -

�he SAME AREA clause is optional. Only the SAME RECORD AREA
form is functional in Microsoft COBOL. The other forms are
checked for correct syntax but do not cause any sharing of
physical buffer space.

The SAME RECORD AREA form causes all the named files to

IDENTIFICATION AND ENVIRONMENT DIVISIONS Page 2-5

share the same logical record area in order to conserve
memory space.

The format of the SAME AREA entry is:

[
RECORD

]

SAME SORT AREA FOR
SORT-MERGE

filename .•.

All files named in a given SAME AREA clause need not have
the same organization or access. However, no file may be
listed in more than one SAME AREA clause.

�he SORT and SORT-MERGE options are allowed onlv in those
versions of Microsoft COBOL supporting the SORT facility.

CHAP'l'ER 3

DATA DIVISION

The Data Division, which is one of the recruired divisions in
a program, is subdivided into four secti�ns: File Section,
Working-Storage Section, Linkage Section, and Screen
Section. Each is discussed in Sections 3.13-3.16, but
first, aspects of data specification that apply in all
sections will be described.

3 .1 OJI.TA ITEMS

Several types of
proqrams. 'T'hese
paragraphs.

3.1.1 � Items

data items can be described in COBOL
data items are described in the following

A group item is defined as one having further subdivisions,
so that it contains one or more elementarv items. In
addition, a group item mav contain other groups.· An item is
a group item if, and only if, its level number is less than
the level number of the immediately succeeding item. If an
item is not a group item, then it is an elementary item.
The maximum size of a group item is 4095 characters.

3.1.2 Elementarv Items

An elementary item is a data ite:;, containing no subordinate
items.

Alohanumeric Itern: An alphanumeric item consists of any
combination cfcharacters, making a "character string" data
field. If the associated picture contains "editing"
cha�acters, it is an alphanumeric edited item.

Reoort (Edited) Item: A reoort item iG an edited "numeric"

DATA DIVISION Page 3-2

item containing only digits and/or special editing
characters. It must not exceed 30 characters in length. A
report item can be used only as a receiving field for.
numeric data. It is designed to receive a numeric item but
cannot be used as a numeric item itself.

3.1.3 Numeric Items

Numeric items are elementary items intended to contain
numeric data only.

External Decimal Item: An external data item is an item in
which one computer character (byte) is employed to rep�esent
one digit. A ruaximum number of 18 digits is permitted; the
exact number of digit positions is def:ned by writing a
specific number of 9-characters in the PICTURE description.
For example, PIC'T'URE 999 defines a 3-digit item. That is,
the maximum decimal value of the item is nine hundred
ninetv-nine.

1f the PICTURE begins with the letter S, then the item also
has the capabilitv of containing an "operational sign." An
operational sign �oes not occ�py a separate character
(bvte), unless the "SEPARATE" foi:-m of SIGN clause is
included in the item's description. Reqai:-dless of the form
of reoresentation of an operational sign, its purpose is to
P=ovide a sign that functions in the normal algebraic
manri.er.

'!'he USAGE of an external decimal item is DISPLAY (see USAGE
clause, Section 3.4).

Inte�!_ Decimal Item: An internal decimal item is stored
in pacl-:ed decim.:!l forr.iat. It is attained by inclusion of
the COMPUTATIONAL-3 USAGE clause.

A packed decir.ial item �efined by n 9's in its PICTURE
occupies 1/2 of (n + 2) bytes in memorv. All bytes except
the riohtmost contain a oair of digits, and each digit is
repres�nted hv the bina�v equival�nt of a valid digit value
from O to 9. The item's low order digit and the operational
sign are found in the rightmost byte of a packed item. For
this reason, the compiler consiners � pecked item to have an
arithm€tic sign, even if the original PICTURE lacked an
S-character.

Binary Item: Ab nary item uses the
reoresent an in eger in the range
occupies one 16-h t word. The leftmcst
�rea is the opera ional sign. A binary
USAGE IS cm�PUTAT ONi\L.

base 2 system to
-32768 to 32767. It
bit of the reserved
item is specifi�d by

Index Data-Item: An in0ex-data item has no PICTURE; USAGE

DATA DIVISION Page 3-3

IS INDEX. (Refer to Chapter 6, "Table Handling by the
Indexing Method.")

3.2 DATA DESCRIP�ION ENTRY

A Data Description entrv specifies the characteristics of
each field (item) in a data record. Each item must be
described in a separate entry in the same order in which the
items appear in the record. Each Data Description entry
consists of a level number, a data-name, and a series of
independent clauses followed by a period.

The general format of a Data Description entry is:

level-number {data-name } FILLER (REDEFINES-clause) (JUSTIFIED-clause)

(PIC'PURE-clause)

(OCCURS-clause)

(US!-.GE-clause)

(BLANK-clause)

(SYNCHRONIZED-clause)

(VALUE-clause) (SIGN-clause).

When this format is applied to specific items of data, it is
limited by the nature of the data being described. The
format allowed for the description of each data type appears
below. Clauses that are not shown in a format are
specifically forbidden in that format. Clauses tLat are
mandatory in the description of certain data items are shown
without parentheses. The clauses may appear in any order
except that a REDEFINES-clause, if used, should come first.

Group �em Format

level-m,mber
/ data-name} j FIP,ER (REDEFINES-clause)

(OCCURS-clause)

Example:

(SIGN-clause).

01 GROUP-NI\ME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

NOTE

The USAGE clause may be
written at a group level to
avoid repetitious writing of
it at the subordinate �lement
level.

(USAGE-clause)

DATA DIVISION Page 3-4

3. 3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEMS (also called a character-string item)

level-number {
data-name l

. FILLER J (REDEFINES-clause) (OCCURS-clause)

PICTURE IS an-form (USAGE IS DISPLAY) (JUS�IFIED-clause)

(VALUE IS non-numeric-literal)

Exam9les:

(SYNCHRONIZED-clause).

02 MISC-1 PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

REPORT ITEM (also called a numeric-edited item)

data-name
level-num�er FILLER (RSDEFINES-clause)

PIC7TJRF. IS reoort-form (1?LANK WHEN ZERO)

(OCCURS-clause)

(USAGE IS DISPLAY)

(VALUE IS non-numeric literal) (SYNCHRONIZED-clause).

Exar:1plc:

C2 XTOTAL PI<::TIJRE $999,999.99-.

level-number
{

nata-name} .f_U,_LER (REDEFINES-clause)

PICTURE IS numeric-form (SIGN-clause)

(USAGE-clause)

Examples:

(VALUE IS numeric-literal)

(OCCURS-clause)

(SYNCHRONIZED-clause).

02 HOUHS-h'OHKED PICTURE 99V9, TJSAGE IS DISPLAY.
02 HOURS-SCHEDULED PIC S99V9, S!GN IS TRAILING.

11 TAX-RATE PIC S99VY99 VALUE 1.375, COMPUTATIONAL-3.

DATA DIVISION

BINARY ITEM

level-number {
data-name} FILLER (REDEFINES-clause)

PICTURE IS numeric-form

USAGE rs COMPUTATIONAL!COMPIINDEX

(OCCURS-clause)

(VALUE IS numeric-literal) (SYNCHRONIZED-clause).

Examples:

NOTE

A PICTURE or VALUE must not be given for
an INDEX Data Item.

02 SUBSCRIPT COMP, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATIONAL.

3.4 USAGE CLAUSE
--- ----

The USAGE clause specifies the form in which numeric data is
represented.

The USAGE clause may be written at any level. If USAGE is
not specified, the item is assumed to be in "DISPLAY" mode.
The general format of the USAGE clause is:

{

COMPUTATIONAL

)
USAGE IS iNDEX

DISPLAY
COMPUTATIONAL-3

INDEX is explained in Chapter 6, Table Handling.
COMPUTATIONAL, which mav be abbreviated COMP, usage defines
an integer binary field. COMPUTATIONAL-3, which mav be
abbreviated COMP-3, defines a oacked (internal decimal)
field.

If a USAGE clause is given at a group level, it applies to
each elementary item in the group. The USAGE clause for an
elementary item must not contradict the USAGE clause of a
group to which the item belongs.

Page 3-5

OATA DIVISION

3.5 PICTURE CLAUSE

Page 3-6

The PICTURE clause specifies a detailed description of a:1
elementary level data item and may include specification of
soeci1!l reoort editinq. The reserved word PICTURE may b�
a�previate� PIC.

The general format of the PICTURE clause is:

I
an-form l

PICTURE IS numeric-form
re!)oi:t-form

'

There are three possible types of
Numeric-form and Report-form.

pictures: An-form,

An-Form Ootion: This O?tion applies to alphanumeric
(characterstrinq) items. 'l'he PICTURE of an alphanumeric
item is a combina�ion of data description characters X, A or
9 and, optionally, editinq characters B, 0 and/. An X
i;idicates that the cha�acter position may contain any
character from the computer's ASCII character set. A
Picture that contains at least one of the combinations:

(a) A and 9, or
(b) X anc1 9, or
(c) X and .b,,

in any order is considered as if every 9, A or X character
were X. The characte�s B, 0 and/ may be used to insert
blanks or zeros or slashes in the item. This is then called
an alphanumeric-edited item.

If the string has only A's and B's, it is considered
alphc>.betic; if it has or.ly 9's, it is numer:ic (see below).

�u�eric-Form Option: The ?ICTURE of a numeric item may
Cc)ntain a valid combination of the following characters:

9

V

The character 9 indicates that the actual
or conceptual Jiqit position contains a
numeric character. The maximum number of
9's in a PICTURE is 18.

The o�tional character V indicates the
position of an assumed decimal point.
Since a numeric item cannot contain an
actual decimal ooir.t, an assumed decimal
point is used t� crovide the comoiler
�ith information �oncerning the ;caling
Alignment of items involved in compu
tations. Stol'.age is never reserved for
the char�ctec v. Only one v is permitted
in anv single PICTURE, and is re-
dunr.ar.� if lt js the rightmos� cheracter.

I:'ATA DIVISION

s

p

The optional characte: S indicates that
the item has an operational sign. It must
be the first character of the PICTURE.

See also, SIGN clause, Section 3.12.

The character P indicates an assumed
decimal scaling position. It is used
to specify the location of an assumed
decimal point when the point is not
within the number that appears in the
data item. The scaling position character
P is not counted in the size of the data
item; that is, memory is not reserved
for these positions. Bowever, scaling
position characters are counted in
determining the maximum number of digit
positions (13) in numeric edited items
or in items that appear as operands in
arithmetic statements. The scaling
position character P may appear only
to the left or right of the other char
acters in the strinq as a cor.tinuous
string of P's within a PICTURE
description. �he sign character S and
the assumed decimal point v are the
only characters wr-ich may appear to
the left of a leftmost strinq of P's.

Since the scaling position character P
implies an assumed decimal point {to
the left of the P's if the P's are left

most PIC'TIJRE characters and to the
right of the P's if the P's are
rightmost PICTURE characters), the
assumed decimal point symbol Vis re
dundant as either the leftmost or
rightmost character within such a
PICTURE description.

Page 3-7

Report-Form Ootion: This option
suitable as �ited" receiving
a numeric value. The editinq
combined to describe a report item

describes a data item
field for presentation of
characters that may be
are as follows:

9 V Z CR DB , $ + * R O - P /

The characters 9, P and V have the same meaning as for a
numeric item. The meanings of the other allowable editing
characters are described as follows:

�he decimal point character specifies
that an actual decimal point is to be
inserted in the indicated position and
the source item is to be aligned accord
ingly. Numeric character positions to
the right of an actual decimal point in

DATA DIVISION

a PICTURE must consist of characters of
or.e type. The necimal poir.t character
must not be the last character in the
PICTURE character string. Picture
character 'P' may not be used if '
is used.

Z,* The characters Z and * are called
replacement characters. Each one reore
sents a digit position. During execu
tion, leading zeros to be placed in
positions defined by z or * are
suppressed, becomina blank or *. Zero
suppression terminates upon encountering
the decimal point (. or V) or a non-zero
digit. All dig.it positions to be modi
fied must be the same (either Z or *),
and contiguous starting from the left.

CR,DB

Z or * may appear to the right of an
actual decirr.al Point only if all diait
?Ositions are the same.

CR and DB are called credit and debit
symbols and mav aopear only at the right
end of a PICTURE. These symbols occupy
two character positions and indicate
that the specified symbol is to appear
in the indicated positions if the value
of a source item is r.egative. If the
value is oositive or zero, spaces will
appear instead. CR and DB and + and -
are mutually exclusive.

The comma specifies insertion of a comma
between 0igits. Each insertion character
is counted in the size of the data item,
but does not represent a digit position.
The comma mav also appear in conjunction.
with a floating string, as described be
low. It must not be the last character
in the PICTURE character string.

Page 3-8

A floatina strinq is defined as a leadinq, continuous series

of one of either S or + or -, or a string composed of one
such character ir.terr-upted by one or r.ore insertion commas
and/or decimal points. For ex2mple:

$$,$$$,$$$
++++

--,---,--

+ (8). ++
SS,SS$.SS

A floating string containing N + 1 occurrences of Sor + or
defines N dic;it positions. When :noving a numeric value

DATA, DI'/ISION Page 3-9

into a report item, the appropriate character floats from
left to right, so that the develo?ed report item has exactly
one actual S or + or - immediately to the left of the most
significant nonzero digit, in one of the positions indicated
by $ c::: + or - i'l the PICTURE. Bla:-iks are placed in all
character positions to the left of the sinsle developed S or
+ or -. If the most significant digit a?pears in a position
to the right of positions defined by the floating strir.g,
then the developed item contains $ or + or in the
rightmost position of the floating string, and
non-significant zeros may follow. The presence of an actual
or implied decimal point in a floating string is treated as
if all digit positions to the right of the point were
indi·::at<::d by the PICTURE character 9. In the following
examples, b represents a blank in the developed items.

PICTURE

$$$999
--,---,999
$$$$$$

Numeric Value

14

-456

14

Develooed Item

bb$014
bbbbbb-456
bbb$14

A floating string need not constitute the entire PICTURE of
a report item, AS shown in the preceding examples.
Restrictions on characters that may follow a floating string
are given later in the description.

When a comma appears to the right of a floating string, the
string character floats through the comma in order to be as
close to the leading digit as possible.

+ - �he character + or - may appear in a
PIC'l'lJRE either singly or in a floating
string. As a fixed sign control

B

I

0

character, the + o� - must appear as the
last sy;nbol in the PICTURE. The plus sign
indicates that the sign of the item is
indicated by either a Plus or minus
placed in the character position, de
pending on the algebraic sign of the
n�meric value placed in the rePort field.
The minus sign indicates that blank or
minus is placed in the c,1aracter !?()Si tion,
depending on whether the algebraic sign
of the numeric value placed in the report
field is positive or negative, cespectively.

Each appearance of Bin a Picture repre
sents a blank in the final edited value.

Each slash in a Picture represents a
slash in the final edited value.

Each appearance of 0 in a Picture
repres�nts a position in the final edited

DATA DIVISION Page 3-10

value where the digit zero will appear.

Other rules for a reoort (edited) item PICTURE are:

1. The appearance of one type of floating string
precludes anv other floating string.

2. There must be at least
character.

one digit position

3. The appearance of a floating sign string or fixed
plus or minus insertion character precludes the
appearance of anv other of the sign control
insertion character, namely, +, -, CR, DB.

4. The characters to the right of a decimal point up
to the end of a PICTURE, excluding the fixed
insertion characters +, -, CR, DB (if present), are
su�ject to the following restrictions:

5.

a. Only one type of digit oosition character
mav appear. That is, Z * 9 and floating-string
diqit ?<)Sition characters $ + - are all 6,
mutually exclusive.

b. If one of the numeric character
positions to the right of a decimal point is
represented by + or - or $ or z, then all the
numeric character positions in the PICTURE must
be represented hy the same character.

The PIC'!'URE character 9 can
left of a floating
cha.:acter..

never
string,

aooear to the
O!". replacement

Additional notes on the PICTURE Clause:

1. A PICTURE clause must only be used
elementary level.

at l:he

2. An integer enclosed in parentheses and following X

9 $ z P * B or + indicates the number of
consecutive occurrences of the PICTURE character.

3. Characters V and P are not counted in the space

allocation of a data item. CR and OB occupy two
character positions.

4. A maximum of 30 character positions is allowed in a
PICTURE character string. For example, PICTURE
X(89) consists of five PICTURE characters.

5. A PIC'!'URE must contain at least one of the
characters A z * X 9 or at least two consecutive
appearances of the + or - or $ characters.

DATA DIVISION Page 3-11

6. 7he characters '.' S V CR and DB can appear only
once in a PICTURE.

7. When DECIMAL-POINT rs COMMA is specified, the
explanations for period and comma are understood to
apply to comma and period, respectively.

The examples below illustrate the use of PICTURE to edit

data. In each example, a movement of data is implied, as
indicated by the column headings. (Data value shows
contents in storage; scale factor of this source data area
is given by the Picture.)

Source Area

PICTURE

9 (5)
9 (5)
9 (5)
9(4)V9
V9(5)
S9 r 5)
S9 (5) -00001
S9 (5)
S9 (5)
9 (5)
9 (5)
S9 (5)
S999V99
S999V99

3. 6 VALUE CLAUSE

Receiving Area

Data PICTURE Edited Data
Value

12345 $$$,$$9.99 $12,345.00
00123 $$$,$$9.99 $123.00
00000 SSS,$$9.99 $0.00
12345 $$$,$$9.99 $1,234.50
12345 $$$,$$9.99 $0.12
00123 �------.99 123.00
-------.99 -1.00
00123 +++++++.99 +123.00
00001 -------.99 1.00
00123 +++++++.99 +123.00
00123 -------.99 123.00
12345 ******* .99CR **12345.00
02345 zzzvzz 2345
00004 zzzvzz 04

The VALUE clause specifies the initial value of
working-storage items. The format of this clause is:

VALUE IS literal

The VALUE clause must not be written in a Data Description
entry that also has an OCCURS or REDEFINES clause, or in an
entry that is subordinate to an entry containing an OCCURS
or REDEFINES clause. Furthermore, it cannot be used in the
File or Linkage. Sections, except in level 88 condition
descriotions.

The size of a literal given in a VALUE clause mu�t be less
than or equal to the size of the item as given in the
PICTURE clause. The positioning of the literal within a
data area is the same as would result from specifying a MOVE
of the literal to the data area, except that editing
characters in the PICTURE have no effect on the

DATA DIVISION Page 3-12

initialization, nor do BLANK WHEN ZERO or JUSTIFIED clauses.
The type of literal written in a VALUE clause depends on the
type of data item, as specified in the data item formats
earlier in this text. For edited items, values must be
specified as non-numer.ic literals, and must be presented in
edited form. A figurative constant may be given as the
literal.

When an initial value is not specified, no assumption should
be made regarding the initial contents of an item in
Working-Storage.

The VALUE clause mav be specified at the group level, in the
form of a correctlv sized non-numeric literal, or a
figurative constant. In these cases the VALUE clause cannot
be stated at the subordinate levels with the group.
However, the value clause should not be written for a group
containing items with descriptions including JUSTIFIED,
SYNCHRONIZF.D and USAGE (other than USAGE IS DISPLAY). (A
form used in level 88 items is explained in Section 3.16)

3.7 REDEFINES CLAUSE

The REDEFINES clause specifies that the same area is to
contain different data items, or provides an alternative
groupinq or description of the same data. The format of the
REDEFINES clause is:

REDEFINES data-name-2

When written, the REDEFINES clause should be the first
clause followina the data-name that defines the entry. The
data description entry for data-name-2 should not contain a
REDEFIMES clause, nor an OCCURS clause.

When an area is redefined, all descriptions of the area
remain in effect. Thus, if B and C are two separate items
that share the same storage area due to redefinition, the
procedure statements MOVE X TO B or MOVE Y TO C could he
executed at any point in the program. In the fit st case, f3
would assume the value of X and take the form specified by
the description of B. In the second case, the same physical
area would receive Y according to the description of C.

For purposes of discussion of redefinition, data-name-1 is

termed the subject, and data-name-2 is called the object.
The levels of the subject and object are denoted by s and t,
respectively. The following rules must be obeyed in order
to establish a proper redefinition.

1. s must eoual t, hut must not equal 88.

DA't'A DIVISION Page 3-13

2. The object must be contained in the same record (01
group level item), unless s=t=0l.

3. Prior to definition of the subject and subsequent
to definition of the object there can be no level
numbers that are numerically less than s.

The length of data-name-1, multiplied by the number of
occurrences of data-name-1, may not exceed the length of
data-name-2, unless the level of data-name-1 is 01
(permitted only outside the File Section). Data-name-1 and
entries subordinate to data-name-1 must not contain any
value clauses, except in level 88. In the File Section,
multiple level 01 entries subordinate to any given FD
represent implicit redefinitions of the same area.

3.8 OCCURS CLAUSE

The OCCURS clause is used in defining related sets of
repeated data, such as tables, lis·ts and arravs. It
specifies the number of times, up to a maximum of 1023, that
a data item with the same format is repeated. Data
Description clauses associated with an item whose
description includes an OCCURS clause apply to each
repetition of the item being described. When the OCCURS
clause is used, the data name that is the defining name of
the entry must be subscripted or indexed whenever it aopears
in the Procedure Division. If this data-name is the name of
a group item, then all data-names belongir.q to the group
must be subscripted or indexed whenever they are used.

The OCCURS clause must not be used in any Data Description
entry having a level number 01 or 77. The OCCURS clause has
the following format:

OCCURS integer '.!'IMES [INDEXED BY index-name ..•]

The maximum size of a table is 4095 bytes.

Subscriotina: Subscripting provides the facility for
referring to d�ta items in a tahle or list that have not
been assigned individual data-names. Subscripting is
determined hy the appearance of an OCCURS clause in a data
description. If an item has an OCCURS clause or belongs to
a grouo having an OCCURS clause, it must be subscripted or
indexed whenever it is used. See the chapter on Table
Handling for explanations on Indexing and Index Usage.
(Exception: the tabie-name in a SEARCH statement must be
referenced without subscripts.)

A subscript is a positive nonzero integer whose value
determines an element to which a reference is being made
within a table or list. The subscript may be represented

DATA DIVISION Page 3-14

either by a literal or a data-name that has an integer
value. Whether the subscript is represented by a literal or
a data-name, the subscript is enclosed in parentheses and
appears after the terminal space of the name of the element.
A subscript must be a decimal or binary item. (The latter
is strongly recommended, for the sake of efficiency.)

At most, three OCCURS clauses may govern any data item.
Consequently, one, two or three subscripts may be required.
When more than one subscript is required, they are written
in the order of successively less inclusive dimensions of
the data organization. Multiple subscripts are separated by
commas, viz. ITEM (I, J).

Example:

01 ARRAY.
03 ELEMENT, OCCURS 3, PICTURE 9(4).

The above example would be allocated storage as shown below.

ELEMENT (1)
ARRAY

ELEMENT (2) chara
digit

ELEMENT (3)

, co:istinq �f �w:v
� cters; each item has

-

4
s.

-- - - -

A data-name may not be subscripted if it is being used for:

1. a subscript

2. the defining name of a data description entry

3. data-name-2 in a REDEFINES clause

4 • a qua 1 if i er

3.9 SYNCHRONIZED CLAUSE

The SYNCHRONIZED cla•;se was designed in order to allocate
space for data in an efficient manner, with respect to the
computer central "memory." However, in this compiler, the
SYNCHRONIZED specification is treated as commentary only.

The format of this clause is:

SYNC J SYNCHRONIZED (LEFT I RIGHT]

DATA DIVISION Page 3-15

3.10 BLA�K WHEN ZERO CLAUSE

The BLANK WHEN
fieldis to
value moved to
used with a
report field.

ZERO clause specifies that a report (edited)
contain nothing except blanks if the numeric
it has a value of zero. When this clause is
numeric picture, the field is considered a

3.11 JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause is only applicable to unedited
alphanumeric (character string) items. It signifies that
values are stored in a right-to-left fashion, resulting in
space fill on the left when a shott field is moved to a
longer Justified field, or in truncation on the left when a
long field is moved to a shorter JUSTIFIED field. The
JUSTIFIED clause is effective only when the associated field
is employed as the "receiving" field in a MOVE statement.

The word JUST is a permissible abbreviation of JUSTIFIED.

3.12 SIGN CLAUSE

For an external decimal item, there
manners of representing an operational
controlled by inclusion of a particular
clause, whose general forffi is:

are
sign;

form

four possible
the choice is
of the SIGN

[SIGN IS] TRAILING LEADING [SEPARATE CHARACTER]

The following chart summarizes the effect of four possible
forms of this clause.

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte
LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
wEADING SEPARATE Stored in separate leftmost byte

When the above forms are written, the PICTURE must begin
with s. If no S appears, the item is not signed (and is
capable of storing only absolute values), and the SIGN
clause is prohibited. When S appears at the front of a
PICTURE but no SIGN clause is included in an item's
descri�tion, the "default" case SIGN IS TRAILING is assumed.

The SIGN clause mav be written at a group level; in this
case the clause specifies the sig�'s format on anv signed

DA't'A DIVISION

subordinate external decimal item.
phrase increases the size of the
The entries to which the SIGN
implicitly or explicitly described

Page 3-16

The SEPARATE CHARACTER
data item by 1 r.haracter.

clause apply must be
as USAGE IS DISPLAY.

(Note: When the CODE-SET clause is specified for. a file,
all signed numeric data for that file must be described with
the SIGN IS SEPARATE c).ause.)

3. l3 LEVEL 88 CONDITION-NAMES

The level 88 condition-name entry specifies a value, list of
values, or a ranqe of values that an elementary item may
assume, in which case the named condition is true, otherwise
false. The format of a level 88 item's value clause is

VALUE IS

VALUES ARE

literal-1 [literal-2 ...]

literal-1 THRU literal-2

A level 88 entry must be preceded either by another level 88
entry (in the case of several consecutive condition-names
pertaining to an elementary item) or by an elementary item
(which may be FILLER). INDEX data items should not bo
followed by level 88 items.

Every condition-name pertains to an elementarv item in such
a way that the condition-name may be qualified by the name
of the elementary item and the elementary item's qualifiers.
A condition-name is used in the Procedure Division in Place
of a simple relational condition. A condition-name- may
certain to an elementarv item (a conditional variable)
�equirinq subscripts. In · this case, the r.ondition-name,
when wcitten in the Procedure Division, must be subscripted
according to the same requirements as the associated
elementary item. The type of literal in a condition-name
entry must be consistent with the data type of the
conditional variable. In the following example,
PAYROLL-PERIOD is the conditional variable. The picture
associated with it limits the value of the 88 condition-name
to one digit.

DATA DIVISION

02 FAYROLL-PERiOD PIC'I'URE IS 9.
es WEEKLY VALUE IS l.
88 SEMI-MON1'nLY VALUE IS 2.
88 MONTHLY '.1ALUE IS 3.

Using the above description, the following
condition-name test may be written:

IF MON'l'HLY GO TO DO-MONTHLY

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MON'l:'HLY.

Page 3-17

procedural

For an edited elementary item, values in a condition-name
entry must be expressed in the form of non-numeric literals.

A VALUE clause may not contain both a series of literals and
a range of literals.

3.14 FJLE SEC�!ON, FD ENTRIES (SEQUENTIAL I-0 ONLY)

In the FILE SECTION of the Data Division, an FD entry (file
nefinition) must appear for every Selected file. This entry
precedes the descriptions of the file's record structure(s).

The general format of an FD entry is:

FD file name LABEL-clause [VALUE-OF-clause]

[DATA-RECORD(S)-clause] [BLOCK-clause] [RECORD-clause]

[CODE-SET-clause] [LINAG� clause].
After "FD filename,• the order of the clauses is immaterial.

3.14.1 LABEL CLAUSE

�he format of this required FD-entry clause is:

LABEL RECORD I RECORDS IS I ARE OMITTED I STANDARD

The OMIT7ED option specifies that no labels exist for the
file; this must be specified for files assigned to PRINTE�.

The STANDARD option specifies that labels exist for the file
ann that the labels conform to system specifications; this
must be specified fer files assigned to DISK.

DATA DIVISION

3.14.2 VALUE OF CLAUSE
--- - ---

Pctge 3-18

The VALUE OF clause appears in any FD entry for a
DISK-assigned file, and contains a file ID expressed as a
data-name or COBOL-tvpe "quoted" literal of at most 16
characters. The general form is:

VALUE OF FILE-ID IS {
data-name

l
"literal"

Examples:

VALUE OF FILE-ID "A:MASTER.ASM"
VALUE OF FILE-ID IS "D0:X201A.L"
VALUF. OF FILE-ID "F0:IN\TNT.LST"

(CP/M DOS)
(OTC)
(Altair:)

A reminder: i.f a file is ASSIGNed to PRINTER, it is
unlabeled and the VALUE clause must not be included in the
associated FD. If a file is ASSIGNed to DISK, it is
necessary to include both LABEL RECORDS STANDARD and VALUE
clauses in the associated FD. See the Utility Software
Manual for file ID formats for specific operating systems.

3.14.3 DATA RECORD(S) CLAUSE

�he optional DATA RECORDS clause identifies the records in
the file by name. �his clause is documentary only, in this
and all COBOL systems. Its general format is:

DATA
f RECORD IS

l l RECORDS ARE
data-name-1 [data-name-2 .•. J

The presence of more than one data-name indicates that the
file contains more than one type of data record. That is,
two or more record descriptions may apply to the same
storage area. The order in which the data-names are listed
is not significant.

Data-name-1, data-name-2, etc., are the, names of data
records, and each must be preceded in its record description
entry by the level number 01, in the appropriate file
declaration (FD) in the File Section.

DATA DIVISION

3.14.4 BLOCK C�AUSE

Page 3-19

ThE? BLOCK CONTAn;s clause is used to specify characteristics
of physical records in relation to the concept of logical
records. The general format is:

SL_9CK CONTAINS integer-2
J C!-1.A::sACTERS l
l RECORDS

Files assigned to PRINTER must not have a BLOCK clause in
the associated FD entry. Furthermore, the BLOCK clause has
no effect on disk files in this COBOL system, but it is
examined for correct syntax. It is normally applicable to
tape files, which are not supported by this COBOL.

When used, the size of a physical block is usually
RECORDS, except when the records are variable
exceed the size of a physical block; in these
size should be expressed in C�ARACTERS.

stated in
in size or
cases the

When the BLOCK CONTAINS clause is omitted, it is assumed
that records are not blocked. When neither the CHARACTERS
nor the RECORDS option is specified, the C�ARACTERS option
i.s assumed. When the RECORDS option is used, the compiler
assumes that the block size provides for integer-2 records
of maximum size and then p:ovides additional space for any
required control characters.

3.14.5 RECORD CLAUSE

Since the size cf each data record is defined fully by the
set of data description entries constituting the record
(level 01) declaration, this clause is always optional and
documentary. The format of this clause is:

RECORD CONTAINS [integer-! TO] integer-2 CHARACTERS

Integer-2 should be the size of the biggest record in the
file declaration. If the records are variable in size,
Integer-! must be specified and equal the size of the
s1t1allest record·. The sizes are given as character positions
required to store the logical records.

3.14.6 CODZ-SET �LAUSE

The format of this clause is:

CODE-SE� IS ASCII

�he CODE-SET clQuse, which should be specified only for

DATA DIVISION Page 3-20

non-mass-storage files, serves only the purposes of
documentation in this compiler, reflecting the fact that
both internal and external data are represented in ASCII
code. However, any signed numeric data description entries
in the file's record should include the SIGN IS SEPARATE
clause and all data in the file should have DISPLAY USAGE.

3.14.7 LINAGE CLAUSE

For a file assigned to PRINTER, the LINAGE clause provides a
means of specifying the dize of the orintable portion of a
page, called the "page body." The number of lines i.n the
page body is soecified along with, optionally, the size of
the top an� bottom margins �nd the line number �ithin the
page body at which a footing area begins. The general
format is:

{
data-name-1

} {
dnta-name-2

} LINAGE IS . LINES, [WITH FOO'l'TNG AT . 1nteger-l 1nteger-2

[LINES AT TOP .] [LINES AT BOTTOM) . \
data-name-3

}
(data-r.ame-4)

J
integer-3 l integer-4

All data-names must refer to unsigned numeric
items. Integer-1 must be greater than zero,
must not be greater than i.nteger-1.

integer data
and integer-2

The total page size is the sum of the values in each phrase
eY.cept for FOOTING. If TOP or BO'I"l'OM margins are not
specified, their size is assumed zero. The footing area
comprises that part of the page body between the line
indicated by the FOOTING value, and the last line of the
page body, inclusive.

The values in each phrase at the time the file is opened (by
the execution of an OPEN OUTPUT statement) soecifv the
number of lines that comprise each of the sections of the
first logical page. Whenever a WRITE statement with the
ADVANCING PAGE phrase is executed or a "page overflow"
condition occurs (see the WRITE statement), the values in
each phrase, at that time, will be used to specify the
number of lines in each section of the next logical page.

A LINAGE-COUNTER is created by the presence of a LINAGE
clause. The value in the LINAGE-COUNTER at any given time
represents the line number at which the Printer is
positioned within the current page body. LINAGE-COUNTER may
be referenced hut mev not be modified bv Procedure Division
stace�ents. It i5 automatically modiiied durinq execution
of a WRITE statement, �ccording to the following rules:

DATA DIVISION Page 3-21

1. When the "ADVANCING PAGE" phrase of the WRITE
statement is specified or a "page overflow"
condition occurs (see the WRITE statement), the
LINAGE COUNTER is reset to one.

2. When the "ADVANCING identifier or integer" phrase
is specified, LINAGE-COUNTER is incremented by the
ADVANCING value.

3. When the ADVANCING phrase is not
LINAGE-COUNTER is incremented by one.

3.15 WORKING-STORAGE SECTION

specified,

The second section of the DATA DIVISION begins with the
header WORKING-STORAGE SECTION. This section describes
records and other data which are not part of external data
files but which are developed and processed internally.

Data description entries in this section may employ level
numbers 01-49, as in the File section, as well as 77. Value
clauses, prohibited in th� File section (except for level
88), are permitted throughout the Working-storage section.

3.16 LINKAGE SECTION

The third section of the Data Division is defined by the
header LINKAGE SECTION. In this section, the user describes
data by name and attribute, but storage space is not
allocated. Instead, these "dummy" descriptions are applied
(through the me�hanism of the USING list on the Procedure
Division header) to data whose addresses are oassed into a
subprogram by a call upon it from a separately compiled
program. Consequently, VALUE clauses are prohibited in the
Linkage Section, except in level 88 condition-name entries.
Refer to Chapter 5, Inter-Program Communication, for further
information.

] .17 SCREEN SECTION

The fourth section of the DATA DIVISION is used to define
CRT screen formats and is comoosed of screen data
description entries. As in the FILE and WORKING-STOR�GE
sections, descriptions may be grouped through the assignment
of appropriate level numbers. Thus there are two types of
screen items. Elementary screen items define the individual
disolay and/or data entrv fields within the screen layout.
Group screen items are used to name any group of elementary

DATA DIVISION i'age 3-22

screen items ACCEPTe� or DISPLAYed with a single PROCEDURE
DIVISION statement. The format of a qroup screen
description entrv is:

level-number screen-name [AUTO) [SECUREl,

level number must he an integer in the range 01 througn 49.
screen-nal"le must co:iform to the rules for section 1. 3. The
oroup screen description entry must he followed by one er
more subordinate sc::-e�r. items as indicated by increasing
level-nurnhers. If AUTO or SECURE is coded for a group
sc?: een i tern, the effect is as if AUTO or SECURE has beer.
coded for evey elementary screen item subordinate to that
group screen item.

The format of an elementary screen item is:

level-number [screen-name]
[BLANK SC RES�:]
[LINE-NUM:3ER -I�: [r'I-US) integer -11
[COLlJMN NU�lBER IS-[?LUS) integ,?::- -2)
[BLANK LINE]

[BELL]
--

[\
(!HGHLIGHT]

l][BLINK)

[BLANK WHEN ZEROj

[
fJ!)STIFIED \

-
--\ ,JUST j RIGHT)

[AU't'OJ
[SECURE)

litecal-1]

{ {literal-2 }![FROM ident.ifier-1
picture-string\

identHier-2 J) 7

l[USING identifier-3)

level-number and screen-naT-e �re sub��ct to the 3�me rul�s
as in the group scr�en �es�ription. The or�er of clal1ses in
the elementary s�reen data eesc�iotion entry is not
significant, except that screen-name, if present, must
immediately follow level-number. If PICTURE is coded, then
either USING or at least nne of FRO� and �O must be present.
AUTO and SECURE may only be given if PICTURE is specified.

The clauses specifi�<l with each eler�ent�ry �creen data
description can �ffect data input a�d data display
ooeratlons when ACCEP� and DISPLAY statements are executed
at runtime. The effects of each specification are as

JJ

DATA DIVISION Page 3-23

follows:

1. BLANK SCREEN causes the entire screen to be erased
and the cursor to be placed at the home position
(line 1, column 1).

2. LINE and COLUMN affect the screen location
associated with an elementary screen item. As the
SCREEN SECTION is processed at compile time, a
current cursor position is maintained so that each
elementary screen item can be identified with a
particular region of the screen. When a level 01
screen item is ecountered, the current screen
position is reset to line 1, column 1. Then, as
each elementary screen data description is
processed, the current position is adjusted for the
size of each definition encountered. Therefore, by
default, successively defined fields appear end to
end in successive areas of the CRT screen. The
position current at the start of any elementary
screen data description may be changed by means of
the LINE and COLUMN specifications. If neither
LINE nor COLUMN is coded, the current screen
position is not changed. If COLUMN is coded
without LINE, the current screen line is not
adjusted. If LINE is coded without COLUMN, COLUMN
l is assumed. The LINE integer or COLUMN integer
clause without PLUS causes the specified integer to
be taken as the line or column at which the current
screen item should start. The LINE PLUS integer or
COLU�'iN PLUS inteqer clause causes the specified
integer to be added to the current screen line or
column, and the result to be used as the line or
column at which the current screen item should
start. If LINE (COLUMN) is given without integer-1
(integer-2), LINE PLUS l (COLUMN PLUS 1) is

assumed.

3. BLANK LINE causes erasure of the screen from the
current cursor pcsition to the end of the current
line.

NOTE

�he following functions are always executed
in the order shown bf:!low, regardless of the
order in which they are specified.

1. BLANK SCREEN

DATA DIVISION Page 3-24

2. LINE/COLUMN positioning

3. BLANK LINE

4. Display or accept of data

4. BELL will sound the terminal's audio alarm, if the
terminal is so equioed.

5. HIGHLIGHT and BLINK are synonymous. They cause a
screen item to appear on the CRT highlighted by
flashing, high intensity, inverted video, or some
other method provided by the particular type of
terminal hardware in use.

6. BLANK WHEN ZERO causes a screen item to be
disolaved as spaces if its value is zero.

7. JUSTIFIED and JUST specify that opera tor-keyed
data or date from a FROM field, USING field, or
literal will be aliqned with the right bounaary of
the screen item when it is disolayed on the screen.

8. VALUE IS literal explicitly soecifies the
character string which should be displayed on the
screen when the screen item being defined is
referenced by a DISPLAY statement. A screen item
for which VALUE is specified is ignored by all
AC�EPT statements.

9. PICTURE specifies the format in which dat:a is to
be presented on th� screen. It is coded according
to the rules for WORKING-STORAGE PICTURE clauses
described in section 3.2. Durinq a DISPLAY
statement, tliE' con::ents of a FROM or USING fieJ.d
are MOVEd to an implicit temporary item with the
specified PICTURE b0fore being disolayed on the
screen. Duri.nq ,rn ACCEPT state�ent, the c1isplaved
contents of the field being entered are punctuated
so as to conform with the given PICTURE format.

10. FROM, TO, and USING describe relationsips between
a screen item and literals and/or fileds in the
FILE, WORKING-STORAGE, and/or LINKAGE sections. On
DISPLAY of a screen item, a MOVE occurs from any
FROM or USING literal or field to a temporary item
defined by the screen item's PICTURE. The
resulting contents of the temporary item are then
exhibited on the screen. On an ACCE�T of the
screen item, the runtime system implicitly MOVEs
the ACCEPTed data to any TO or USING field
specified for the item.

DATA DIVISION Page 3-25

11. AUTO specified that when a f!.eld has been filled
by ooerator input, the cursor automatically skips
to the next input field, rather than waiting for a
terminator character to be typed. If there are no
more input fields remaining, the ACCEPT is
terminated.

12. SECURE suppresses the echoing of input characters.
Instead, an asterisk is displayed for each data
character ACCEPTed.

3.18 DATA DIVISION LIMITATIONS

There is a limitation on the number of items in the
Working-Storage, Linkage, and File sections of the Data
Division. In those imolementations of Microsoft COBOL which
have the Communicatio�s Level I facility, the number of CDs
is relevant also. The sum:

W + 4095 + F + L + C
4096

must be less than or equal to 14, where W is the size of
Working-Storage in bytes, F is the number of files described
in th� File Section, L is the number of level 01 or 77
entries in the Linkage Section, and C is the number of CD's
in the Communications Section. Furthermore, the maximum
number of files which may be open in the same run unit (main
program linked together with an arbitrary number of
subprograms) is 14.

CHAPTER 4

PROCEDURE DIVISION

In this chaoter, the basic conceots of the Procedure
Division are- explained. Aclvanced topics (such as indexing
of tables, indexed file accessing, interprogram
comm�nication and Declaratives) are discussed in subsequent
chapters.

4. l STA"'El'iENTS, SENTENCES, PROCEDURE-NAMES

The Procedure !X)rtion of a source Program specifies those
procedures needed to solve a given EDP problem. These steps
(computations, logical decisions, etc.) are expressed in
statements similar to English, which employ the concept of
verbs to denote actions, and statements and sentences to
describe procedures. The Procedure portion must begin with

the heaner:

PROCEDURE DIVISION

A statement consists of a verb followed by appropriate
operands (data-names or literal�) and other warns that are
necessary for the completion of the statement. The two
types of statements are imperative and conditional.

An imperative statement specifies an unconditional action to
be taken by the object program. An imperative statement
consists of a v2rb and its operands, excluding the IF and
SEARCH conditional statements and anv statement which
contains an INVALID KEY, AT END, SIZE ERROR, or OVERFLOW
clause.

Conditional Statements

A conditional statement stipulates a condition that is
tested to determine whether an alternate path of program
flow is to be taken. The IF and SEARCH statements provide
this capability. Any I/0 statement having an INVALID KEY or

PROCEDURE DIVISION Page 4-2

AT END clause is also considered to be conditional. When an
arithmetic statement possesses a SIZE ERROR suffix, the
statement is considered to be conditional rather than
imperative. STRnlG or.: UNSTRING statements hc>,ving an
OVERFLOW clause are also conditional.

Sentences

A sentence is a single statement er a series of statements
terminated by a period and followed by a space. If desired,
a semi-colon or comma may be tJsed between statements in a
sentence.

?aragraphs

A paragraph is a lor,ica1 entity consistinq of zero, one or
more sentences. Each paragraph must begin with a
paragraph-name.

Paragraph-names and section-names are procedure- names.
Procedure-names follow the rules for name-=ormation. In
addition, a procedure-name may consist only of digits. An
all-digit Procedure-name may not consist or more than 18
digits; if it has leaoir.g zeros, they are all significant.

s�ctions

A section is composed of one or more successive pacagraohs,
and mus� begin with a section-header. A section header
consists of a section-name conforminry to the rules for
procedure-name formation, followed by the word SECTION, en
optional segment number, and a period. A section header
must appear on a line by itself. Each section-name must be
unique.

4.2 ORGAN!ZA�ION OF THE PROCEDURE �IVISION
-· ---

The PROC:EDURE part. c,f a program may be subclivicied in thcee
possible ways:

1. The Procedure Division consists onlv of car�graphs.

2. The Procedu�e Division consists of a number of
paragraphs followed by a number of sections (edch
section subdiviced into on0 or more paragraphs).

3. The Proc�d�ce Division consists of a DECLARATIVES
portion anJ a series of sections (eacn section
subdivided into one or r.iore paragrapl-,s).

The DECLAR,\TIVES pi:nti-,:;,n c.,f the Procedure
optional; it provides a means of designat1ng a
be invoked in the event of an I/0 error. If

Division is
p�ocec1ure to
Declaratives

?�OCEDURE DIVISION Page 4-3

are utilized, only possibility 3 may be used. Refer to
Chapter 9 for a complete discussion.

4.3 MOVE STATE�ENT

The MOVE statement is used to rr�ve data from one area of
main storage to another and to Perform conversions and/or
editing on the data that is moved. The MOVE statement has
the following format:

MOVE { da ta-name-1} literal
TO data-name-2 [data-name-3 ...)

The data represented by data-name-1 or the specified literal
is moved to the area designated by data-name-2. Additional
receiving fields �ay be specified {data-name-3 etc.). When
a group item is a receiving field, characters are moved
without regard to the level structure of the group involved
and without editing.

Subscripting or indexing associated with data-name-2 is
evaluated immediately before data is moved to the receiving
field. The same is true for other receiving fields
{data-name-3, etc., if any). But for the source field,
subscripting or indexing {associated with data-name-1) is
evaluated only once, before any data is moved.

To illustrate, consider the statement

MOVE A {B) TO B, C (B),

which is equivalent to

MOVE
MOVE
MOVE

A {B) TO temp
temp TO B
temp TO C {B)

where temp is an intermediate result
automatically by the compiler.

field assigned

The following considerations pertain to moving items:

1. Numeric (external or
numeric literal, or
numeric or report:

internal decimal, binary,
ZERO) or alphanumeric to

a. The items are aligned by decimal points,
with generation of zeros or truncation
or. either end, as required. If source
is alphanumeric, it is treated as an
unsigned integer �nd should not be
longer than 31 characters.

PROCEDURE DIVISION

b. When the types of the source field and
receiving field differ, conversion to
the type of the receiving field takes
place. Alphanumeric source items are
treated as unsiqned integers with
Usage Display.

Page 4-4

c. The items may have special editing per

formed on them with suppression of zeros,
insertion of a dollar sign, etc., and
decimal point alignment, as specified
by the receiving area.

d. One should not move an item whose PICTURE
declares it to be alphabetic or aloha
numeric edited to a numeric or report
item, nor is it possible to move a numeric
item of any sort to an alphabetic item
though numeric integers and numeric report
items can be moved to alphanumeric items
with or without editing, but operational
signs are not moved in this case even if
"SIGN IS SEPARATE" has been specified.

2. Non-numeric source and destinations:

a. The characters are placed in the receiving
area from left to right, unless JUSTIFIED
RIGHT applies.

b. If the receiving field is not completely
filled by the data beinq moved, the re
maining positions are filled with spaces.

c. If the source field is longer than the
receiving field, the move is terminated
as soon as the receivina field is filled.

3. When overlaoping fields are involved,
not predictable.

results are

4. Aooendix II shows, in tabular form, all permissible
combinations of source and receiving field types.

5. An item having USAGE IS INDEX cannot appear as an
ooerand of a MOVE statement. See SET in Chapter 6,
�ahle Handlinq.

PROCErnJRE DIVISION Page 4-5

Examples of Data Movement (b reoresents blank):

Source Field

PICTURE Value PICTURE

99V99 1234 S99V99
99V99 1234 99V9
S9V9 12- 99V999
XXX A2B xxxxx

9V99 123 99.99

4.4 INSPECT STATEMENT

Receiving Field

Value before MOVE

9876-
987
98765
Y9X8W
87.65

Value after

1234+
123
0i200+
Jl.2Bbb
01. 23

The INSPECT statement enables the programmer to examine a
character-string item. Ootions permit various combinations
of the following actions:

1. counting appearances of a specified character

2. replacing a specified character with another

3. limiting the above actions by requiring the
appearance of other specific chara�ters

The format of the INSPECT statement is:

INPECT data-name-1 [TALLYING-clause] [REPLACING-clause]

where TALLYING-clause has the format

f CHAR.-'.CTERS
TALLYING data-name-2 FOR ALL I LEADING

(-
operand-3)

[BEFORE I !>,FTER INITIAL operand-4]

and REPLACING-clause has the format

REPLACIN1,

[BEFORE

f CHARAl.'1'ERS

} lAL� i LEADING I FIRST operand-5

AFTE� INITIAL operand-71

BY operand-6

Because data-name-1 is
characters by INSPECT,
INDEX, COMP, or COMP-3.
item.

to be treated as a string of
it must not be nescribed by USAGE IS

Data-name-2 must be a numeric nata

In the ahove formats, ooerand-n mav be a quoted literal of
length one, a figurative constant signifying a single
character, or a data-name of an item whose length is one.

MOVE

i

PROCEDURE DIVISION

TALLYING-clause and
omitted; if both
first.

REPLACING-clause �ay not
are present, TALLYING-clause

Page 4-6

both be
must be

TALLYING-clause causes character-by-character comparison,
from left to right, of data-name-1, incrementing data-name-2
by one each time a match is found. When an AFTER INITIAL
operand-4 subclause is present, the counting process begins
onlv after detection of a character in data-name-1 matching
operand-4. If BEFORE INITIAL ooerand-4 is specified, the
counting process terminates upon encountering a character in
data-name-1 which matches operand-4. Also going from l.eft
to right, REPLACING-clause causes replacement of characters
under conditions soecified by the REPLACING-clause. If
SEFORE INITIAL operand-7 is present, replacement does not
continue after detection of a character in data-name-1
matchinq operand-7. If AFTER INITIAL operand-7 is present,
replacement does not commence until detection of a character
in data-name-1 matching operand-7.

\-Ti th bounds on
RSPLACING is
following:

data-name-1 thus determined, TALLYING
done on characters as specified by

and
the

1. "CHARAC'T'ERS" imolies that every character in the
bounded data-name-1 is to be TALLYed or RE?LACEd.

2. "All operand" means that all characters in the
bounded data-name-1 which match the "operand"
character are to participata in TALLYING/REPLACING.

3. "LEADING operand" specifies that only characters
matching "opPrand" from the leftmost portion of the
bounded data-name-1 which are contigubus [such as
leading zeros) are to participate in TALLYING or
REPLACING.

4. "FIRST operand" specifies that only the
first-encountered character matching "operand" is
to narticipate in REPLACING. (This option is
unavailable in TALLYING.)

When both TALLYINC. and REPLACING clauses are present, the
two clauses �ehave as if two INSPECT statements were
written, the first containing only a TALLYING-clause and the
second containing only a REPLACING-clause.

In developing a �ALLYING value, the final result in
data-r.ame-2 1s equal to the tallied count plus the initial
value of data-name-2. In the first example below, the item
COUNTX is assumed to have been set to zero initially
elsewhere in the proqram.

INSPEC1' ITEM 1'/\LLYJNG COUN1'X FOR ALL "L" REPLACING LEADING
"A" BY "E" AFTER INITIAL "L"

?ROCEDURE DIVISION

Original (!'PEM):
Result (ITEM):
Final (COUNTX):

SALAMI
SALEMI

1

ALABAMA
.I\LEBAMA

1

Page 4-7

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION

Original (WORK-AREA): NEW YORK NY (length 16)
Original (DELIMITER): (space)
Original (TRANSFO��ATION): (period)
Result (WORK-AREA): NEW. YORK •• N. Y ...

NOTE

If anv data-name-1 or operand-n is described
as signed numeric, it is treated as if it
were unsigned.

4.5 ARITHMETIC STATEMENTS

There are five arithmetic statements: ADD, SUBTRACT,
MµLTIPLY, DIVIDE and COMPUTE. Anv arithmetic statement may
be either imperative or conditional. When an arithmetic
statement includes an ON SIZE ERROR soecification, the
entire statement is termed conditional: because the
size-error condition is data-deoendent.

An ex&mple of a conditional arithmetic statement is:

ADD l TO RECORD-COUNT, ON SIZE E:�ROR MOVE ZERO ']"()
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a si,-e error occurs (in this oase, it is
apparent that RECORD-COUNT has Picture 99, and cannot hold a
value of 100), both the MOVE and DISPLAY statements are
executed.

The three statement components that mav appear in arithmetic
statements (GIVING oocion, ROUNDED ootion, and SIZE ERROR
option) are discussed in detail later in this section.

Basic �ules for Arithmetic Statements
--- ---

l. All data-names used in arithmetic statements must
be elementary numeric data items that are defined
in the Data Division of the croaram, except that
ooerands of the GIVING option may be report
(numeric edited) items. Index-names and
index-ite�s are not 9ermissible in these arithmetic
statements (see Chapter 6).

PROCEDURE DIVISION Page 4-8

2. Decimal point alignment is supplied automatically
throughout the computations.

3. Intermediate result fields generated for the
evaluation of arithmetic expressions assure the
accuracy of the result field, except where
high-order truncation is necessary.

4.5.l SIZE ERROR OPTION

If, after decimal-ooint alignment and any low-order
rounding, the value of a calculated result exceeds the
largest value which the receiving field is capable of
holding, il size error condition exists.

The optional SIZE ERROR clause is written immediately after
any arithmetic statement, as an extension of the statement.
The format of the SIZE ERROR option is:

ON SIZ� ERROR imperative statement

If the SIZE ERROR option is present, and a size error
condition arises, the value of the resultant data-name is
unaltered and the series of. imperative statements specified
for the condition is- executed.

If the SIZE ERROR option has not been specified and a size
error condition ariHes, no assumption should be made about
the final result.

An arithmetic statement, if �ritten with SIZE ERROR option,
is not an imperative statement. Rather, it is a conditional
statement and is prohibit�d in contexts where only
imperative statements are allowed.

4.5.2 ROUNDED OPTION

If, after decimal-point alignment, the number of places in
the fraction of the result is greater than the number of
places in the fractional part of the data item that is to be
set equal to the calculated result, truncation occurs unless
the ROUNDED option has been specified.

When the ROUNDED ootion is specified, the least
digit of the resultant data-name has its value
1 whenever the most si�nificant digit of the
greater than or equal to 5.

significant
increased by

excess is

Rounding of a computed negative result is performed by
rounoinq the ;ihsolute Vi'!lue of the computed result and then

PROCEDURE DIVISION Page 4-9

making the final result neqative.

The following chart illustrates the relationship between a
calculated result and the value stored in an item that is to
receive the calculated result, with and without rounding.

Item to Receive Calculated Result I

Calculated PICTURE Value After Value After
Result Roundinq Truncating

-12.36 S99V9 -12.4 -12.3
8.432 9V9 8.4 8. 4

35.6 99V9 JS.6 35.6
65.6 S99V 66 65
.0055 SV999 .006 .005

Illustration of Rounding

When the low order integer positions in a
resultant-identifier are represented by the character 'p' in
its picture, rounding or truncation occurs relative to the
.rightmost integer position for which storage is allowed.

4.5.3 GIVING OPTION

If the GIVING option is written, the value of the data-name
that follows the word GIVING is made equal to the calculated
result of the arithmetic operation. The data-name that
follows GIVING is not used in the computation and may be a
report (numeric edited) item·.

4.5.4 ADD STATEMENT

The ADD statement adds two or more numeric values and stores
the resulting sum. The ADD statement general format is:

[numeric-literal\
ADD \ data-name-1 J

I TO l
\ GIVING I da ta-r,ame-n [ROU�;DED] [SIZE-ERROR-clause]

When the TO option is used, the values of all the data-names
(including data-name-n) and literals in the statements are
added, and the resulting sum replaces the value of
data-name-n. When the GIVING option is used, at least two
data-names and/or numeric literals �ust be coded between ADD
and GIVING. The sum of the values of these data-names and

PROCEDURE DIVISION Page 4-10

liter�ls (not including data-name-n} replaces the value of
data-name-n.

The following are examples of proper ADD statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the sum of
DEPOSIT, and BALANCE being placed at BALANCE,
second would result in the sum of REGULAR-TIME and
earnings being placed in item GROSS-PAY.

4.5.5 SUBTRACT STATEMENT

INTEREST,
while the

OVERTIME

The SUBTRACT statement subtracts one or more numeric data
items from a specified item and stores the difference.

The SUBTRACT staten�ent general format is:

SUBTRACT {data-name-1)
numeric-literal-1 ... FROM

{data-name-m [GIVING dntft-name-n)
}numeric literal··m GIVING data-name-n

[ROUNDED] [SIZE-ERROR-clause]

The effect of the SUBTRACT statement is to sum the values of
all the operands that precede FROM and subtract that sum
from the value of the item following FROM.

The result (difference)
is a GIVING option.
data-name-m.

is stored in data-name-n, if there
Otherwise, the result is sto�ed in

4.5.6 MULTIPLY STATEMENT

The MULTIPLY statement multiplies two numeric data items and
stores the product.

The general format of the MULTIPLY statement is:

MULTIPLY {data-name-1 }

BY

numeric-literal-1

{data-name-2 [GIVING data-name-3))numeric-literal-2 GIVING data-name-3

[ROUNDED] [SIZE-ERROR-clause]

PROCEDURE DIVISION Page 4-11

When the GIVING option is omitted, the second operand must
be a data-name; the product replaces the value of
data-name-2. For example, a new BALANCE value is computed
by the t:tatement MUL'rIPLY 1.03 BY BALANCE. (Since this
order might seem somewhat unnatural, it is recommended that
GIVING always be written.)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric values and stores
the quotient. The general format of the DIVIDE statement
is:

DIVIDE
--- { data-name-1) { BY) { c1ata-name-2

}numeric-literal-1 INTO numeric-literal-2

[GIVING data-name-3] {ROUNDED] (SIZE-ERROR-clause]

The BY-form signifies that the first operand (data-name-1 or
numeric-literal-1) is the dividend (numerator), and the
second operand (data-name-2 or numeric-literal-2) is the
divisor (denominator). If GIVING is not written in this
case, then the first operand must be a data-name, in which
the quotient is stored.

The INTO-form signifies that the first operand is the
divisor and the second operand is the dividend. If GIVING
is not written in this case, then the second operand must be
a data-name, in which the quotient is stored.

Division by zero always causes a size-error condition.

4.5.8 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic expression and
then stores the result in a designated numeric or report
(numeric edited) item.

The general format of the COMPUTE statement is:

COMPUTE data-name-1

numeric-lite:a: l {
data-name-2 I

arithmetic-expression)

(ROUNDED] ... =

[SIZE-ERROR-clause]

An example of such a statement is:

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *

(1 + 1.5 * (HOURS - 40) / 40)

PROCEDURE DIVISION Page 4-12

An arithmetic expression is a proper combination of numeric
literals, data-names, arithmetic operators and parentheses.
In general, the data-names in an arithmetic expression must
designate numeric data. Consecutive data-names (or
literals) must be separated by an arithmetic operator, and
there must be one or more blanks on either side of the
operator. The operators are:

+ for addition
- for subtraction
• for multiplication
/ for division
** for exponentiation to an integral power.

When more than one operation is to be executed using a given
variable or term, the order of precedence is:

1. Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

Parentheses may be used when the normal order of operations
is not desired. Expressions within parentheses are
evaluated first: parentheses may be nested to any level.
Consider the following expression.

A + B / (C - D • E)

Evaluation of the ahove expression is performed in the
following ordered sequence:

1. Compute the product D times E, considered as
intermediate result Rl.

2. �ompute intermediate result R2 as the difference C
- Rl.

3. Divide B by R2, providing intermediate result R3.

4. The final result is computed by addition of A to
R3.

Without parentheses, the expression

A + B / C - D * E

is evaluated as:

Rl B / C

R2 A + Rl
R3 D * E

PROCEDURE DIVISION Page 4-13

final result= R2 - R3

When parentheses are employed, the following punctuation
rules should be used:

L A left parenthesis is preceded by one or more
spaces.

2. A right parenthesis is follo#ed by one or more
spaces.

The expression A - B - C is evaluated as (A - B) - C. Unary
operators are permitted, e.g.:

COMPUTE A= +c + -4.6
COMPUTE X = -Y
COMPUTE A, B(I) = -C - D(3)

4.6 GO TO STATEMENT

The GO TO statement transfers control from one portion of a
program to another. It has the following general format:

GO TO procedure-name [... DEPENDING ON data-name]

The simple forn, GO TO procedure-name changes the path of
flow to a designated paragraph or section. If the GO
statement is without a procedure-name, then that GO
statement must be the onlv one in a paragraph, and must be
,,ltered (see 4.12) prior to its execution.

The more general form designates N procedure-names as a
choice of N paths to transfer to, if the value of data-name
is 1 to N, respectively. Otherwise, there is no transfer of
control and execution proceeds in the normal sequence.
Data-name must be a numeric elementary item and have no
positions to the right of the decimal point.

If a GO (non-DEPENDING) statement a�oears in a sequence of
imperative statements, it must be che last statement in that
sequence.

4. 7 STOP STATEr,·JENT

The STOP statement is used to ter�inate or delay execution
of. the object program.

The tormat of this statement is:

STOP { RUN 1
literal)

PROCEDURE DIVISION Page 4-14

STOP RUN terminates execution of a program, returning
control to the operatinq system. If used in a sequence of
imperative statements, it must be the last statement in that
sequence.

The form STOP literal nisolays the specified literal on the
console and suspends execution. Execution of the prog�am is
resumed only after operator intervention. Presumably, the
operator performs a function suggested by the content of the
literal, prior to resuminq program execution by pressing the
carriage return key.

4.8 ACCEP� STATEMENT

The ACCEPT statement is used
obtain low-volume input at
available:

Format 1:

by a processing
runtime, Three

program to
formats are

ACCEPT identifier-1 l DATE

}
FROM . Q_AY

'J'It-'E
{ 1._INE !',"UMBERl ESCAPE KEY

Format 2:

ACCEPT inentifier-2

Format 3:

ACCEPT position-spec identifier-3

Format 4:

SP.Z\CE-FILL
ZERO-FILL

{

LEFT-JUS1'IFY)
RIGHT-JUSTIFY

[WITH TR,\ILING-SIGN � ••• jPROMPT
I UPD/1.TE
/ LENGTH-CHECK

AUTO-SKIP
BEEP

ACCEPT screen name [ON ESCAPE imperative-statement)

The function of each form of the ACCEPT statement is to
acquire data from a sou�ce external to the orogram and place
it in a spAcified receivinq fi�ld or set of receiving

PROCEDURE DIVISION Page 4-15

fields. The forms differ primarily in the data source with
which they are designed to interface. The format 1 ACCEPT
obtains date or time information from the operating system
clock. The next two form�ts of ehe ACCEPT statement receive
data keyed in by an ooerator at the system console device.
For format 2, this device is assumed to be a teletype, a
glass teletype, or a CRT terminal in scrolling mode. For
format 3, it is assumed that the input device is a video
terminal and that scrolling is not desired. The format 4
ACCEPT receives an entire data entry form (as defined in the
SCREEN SECTION) when it has been completed by the terminal
operator. Note that an ordinary CRT terminal is suitable as
an input device for a format 2, 3, or 4 ACCEPT, although the
effects on the appearance of the screen will differ as
indicated in the discussion below. The effects of the
various WITH phrase options of the format 3 ACCEPT statement
are summarized in Section 4.8.3.3.

4.8.l FORMAT 1 ACCEP� STATEMENT

Any of several standard values may be cbtained at execution
time by use of the format 1 ACCEPT statement.

The formats of the standard values are:

DATE - a six digit value of the form YYMMDD
(year, month, day).

Example: July 4, 1976 is 760704

DAY - A five digit "Julian date" of the
form YYNNN where YY is the two low
order digits of year and NNN is
the day-in-year number betw�en 1
and 366.

TIME - an eiqht digit value of the
form HHMMSSFF where HH is from 00
to 23, MM is from 00 to 59, SS is
from O to 59, and FF is from 00 to
99; HH is the hour, MM is the min
utes, SS is the seconds, and FF
represents hundredths of a second.

LINE NUMBER - The ACCEPT ... FROM LINE NUMBER statement is
provided for compatibility, but in the Microsoft COBOL
system, the valu,:; of LINE NUMBER is always zero.

ESCAPE KEY - a two digit code generated by the key that
terminated the mcst recently executed format 3 or format 4
ACCEPT state�ent.
Indentifier-1 can be interrogated to deterine exactly which
key was typed.
Input may be terinated by any of t�e following keys,

PROCEDURE DIVISION Page 4-16

and cause the ESACPE KEY value to be set as shown:

Backtab (terminates only
Escape

format 3 ACCEPTS) 99

Field-terminator (of the last
format 4 ACCEPT is used)

Function key

01
field if 00

02-nn

All key codes are defined in the CRT driver for the terminal
being used (refer to Appendix A of the Microsoft COBOL
User's Guide). On most terminals, backtab may be entered as
CONTROL-B or �; escape is the ESCAPE or ALT key;
field-terminator may be entered as CARRIAGE RETURN, LINE
FEED, TAB, ENTER, NEW LINE, or CONTROL-· I; and the functions
keys are usually CONTROL-A, CONTROL-C, and CONTROL-X,
generating ESCAPE KEY values of 02, 03, and 04 respectively.
If input is terminated as a result of using the AUTP-SKIP
option (i.e., no terminator key is stt·uck), the ESCAPE KEY
value is set to 00.

Identifier-1 should be an unsigned numberic interger whose
length agrees with the content of the system-defined data
item. If not, the standard rules for a MOVE govern storgage
of the source value in the receiving item (identifier-1).

4. l:l. 2 f'ORMA'l' 2 ACCEPT STATE�1ENT

Format 2 of the ACCEPT statement is used to accept a string
of input characters from a scrolling device such as a
teletype or a CRT in scrolling mode. When the ACCEPT
statement is executed, in�ut characters are read from the
console device until a carriage return is encountered, then
a carriage return/line feed pair is sent back to the
console. The input data string is considered to consist of
all char11cters keved prior to (but not including) the
carriage return.

For a Format 2 ACCEPT with an alphanumeric receiving field,
the input data string is transferred to the receivina field
exactly as if it were being MOVEd from an alphanumeri� field
of length equal to the number of characters in the string.
(That is, left justification, space filling, and right
truncation occur by default, and right justification and
left truncation occur if the receiving field is described as
JUSTIFIED RIGHT.) If the receiving field is
alphanumeric-edited, it is treated as an alphanumeric field
of eoual length (as if each character in its PICTURE were
"X"), so that no insertion editing will occur.

For a Format 2 ACCEPT with a numeric or numeric-edited
receivina field, the input clata string is subjected to a
valirlity test which depends on the PICTURE o(the receiving
field. (If the receiving field is aescribed as COMP, its

PROCEDURE DIVISION Page 4-17

PICTURE is tr':ated as "S9 (5)" for purp0ses of this
discussion.) 'rhe digits O through 9 are considered valid
anywhere in the input data string.

The decimal point character (period or comma, depending on
the DECIMAL POINT IS clause of the CONFIGURATION SECTION) is
considered valid if:

1. it occurs only once in th� innut data string, and

2. if the ?IC'r'URE of the receiving field contains a
fractional digit position, that is, a "9", "Z",
"*", or floating insertion character which appears
to the right of either an assumed decimal point
("V") or an actual decimal point (".").

1'he o;::,erational

valid only as
string and only
contains or.e of
"DB".

sign

the
if
the

characters "+" and "-" are considered

first or last character of the input
the PICTURE of the receiving field
sign indicators "S", "+", "-", "CR", or

All other characters are considered invalid. If the
data string is invalid, the message "INVALID NUMERIC
-- PLEASE RETYPE" is sent to the console, and another
data string is read.

input
INPUT
input

When a valid input data string has been obtained, data is
transferred to the receiving field exactly as if the
instruction being executed were a MOVE to the receiving
field from a hypothetical source field with the following
characteristics:

1. a PICTURE of the form 59 ... 9V9 .•. 9

2. USAGE DISPLAY

3. a total length equal to the number of. digits in the
input data string

4. as many digit oositions to the: right of the assumed
decimal point as there are digits to the right of
the explicit decimal point in the input data string
(zero if there is no aecirnal po�nt in the input
data string)

5. current contents equal to the string of digits

embedded in the input data string

6. a separate sign with a current negative status if

the input data string contains the character
and a current positive status otherwise.

PROCEDURE DIVISION Page 4-18

4.8.3 FORMAT 3 ACCEPT STATEMENT

Format 3 of the ACCEPT statement is used to accept data into
a field from a non-scrolling video terminal. The following
syntax rules must be observed when the format 3 ACCEPT is
used:

1. identifier-3 must reference a data item whose
length is less than or equal to 1920 characters

2. the options SPACE-FILL and ZERO-FILL may not both
be specified in the same �CCEPT statement

3. the options LEFT-JUSTIFY and RIGHT-JUSTIFY may not
both be specified within the same ACCEPT statement

4. if identifier-3 is described as a numeric-edited
item, the UPDATE option must not be specified

5. the TRAILING-SIGN option may be specified only if
identifier-3 is described as an elementarv numeric
data item. If identifier-3 is described as
unsigned, the TRAILING-SIGN option is ignored

6.

7.

for alphanumeric or
identifier-3, t!ie SPACE-FILL
the ZERO-FILL option is not
LEFT-JUSTIFY option is assumed
option is not specified

for numeric or numeric-edited
ZERO-FILL option is assumed
option is not specified.

4.8.3.l Data Input Field -

alphanumeric-edited
option is assumed if
specified, and the
if the RIGHT-JUSTIFY

identifier-3, the
if the SPACE-FiLL

The position-spec and receiving field (identifier-3)
specifications of the formct 3 ACCEPT statement are used to
define the location and ch�racteristics of a data input
field on the screen of the console video terminal.

Location of the Data In� field

The position-spec is of the form

[w, [[l in<ege,-1]]

integer-2

lcoL
,-

, l
L

[{] integer-3] 7

integer-4 J

PROCEDURE D!VIS!ON Page 4-19

The openinc 3nd closing parenthese3 and the comma separating
the two ma:io,r bracketed grou;:,s are required. The
;:>osition-spec specifies the pos1t1on on the console CRT
screen at which the data input field will begin. LIN and
COL are COBOL special registers. Each behaves like a
numeric data item with USAGE COMP, hut they may be
referenced by every COBO& program without being declared in
the DATA DtVISION.

If LIN is specified, the data input field will begin on the
screen row whose number is equal to the value of the LIN
special register, incremented (or dec.:remented) by integer-1
if "+ integer-1" (or " integer-1") is specified. If
integer-2 is specified, the data input field will begin on
the row whose number is integer-2. If neither LIN nor
i�teger-2 is specified, the daca input field will begin on
the screen row containing the current cursor position.

If COL is specified, the data input field will begin in the
screen column whose number is equal to the value of the COL
special register, incremented (or Cecremented) by integer-3
i� •+ integer-3 (or integer-3") is specified. If
integer-� is specified, the data input field will begin in
the screen column whose number is integer-4. If neither COL
nor integer-4 is soecified, the dat� input field will begin
in the screen column containing the current cursor position.

Characteristics of the Data.!..':!.� Iield

The characteristics (other than position) of the data input
field on the CRT scceen are determined by the receiving
field's PIC'T'lJRE S?ecificatior. (which is treated as S9(5) in
the case of an item whose USAGE is COMF). For alohanumeric
or alphanumeric-edited 1dentifier-3, the data input tield is
simply a string of data input chan1cter positions starting
at the screen location specified by position-spec. '!'he
length of the data input field in character positions is
equal to the length of the receivina field in memory.

For numeric or numeric-edited identiEier-3, the data input
field may contain anv or all nf the following: integer
digit positions, +'ractic-,nal •hgtt ::::.'Jsiti.ons, sion oosition,
decimal point position. There -�ill be one dic;it.position
for each ''9'', 11 l'', �'*'' ''P", or non-initial flontir1g
insertion symbol (a floating L,sertion symbol is a "+", "-",
or "$" which is not the last symbol in a PICTURE character
string) in che PIC'c'URE of i<ier.tifier-3. Each digit [)OSition
in the data input field is a fractional digit position if
the corres[)onding PICTURE character is to the right of an
assumed rlecimal point ("V") or actual deciinal ooint (".") in
the PICTURE of identifier-3. Otherwise it is an integer
digit ;x,sition. There will be one sign position if
i.c9entifier-3 is described as signec, and no sign position
ocherwise. 'i'herc! will be one decimal point position if

PROCEDURE DIVISION Page 4-20

there is at least one fractional digit position, and no
decimal point position otherwise.

The data input positions which are defined will occupy
successive character positions on the CRT screen beginning
with the position specified by position-spec. If
TRAILING-SIGN is specified in the ACCEPT statement, the data
input positions will be in the following sequence: integer
digit positions (if any), decimal point position (if any),
fractional digit positions (if any), sign position (if. any).
If TRAILING-SIGN is not specified, the data input positions
will be in the following sequence: sign position (if any),
inteqer digit position!' (if any), decimal point position (if
any), fractional digit positions (if any).

4.8.3.2 Data Input Anq Dat� 'T'ransfer -

A character entered into the data input field by the
terminal operator may be treated either as an editing
character, a terminator character, or as a data character.
When a terminator key is typed, the ACCEPT is terminated and
the ESCAPE KEY value is set as described in Section 4.8.1.
This value can be interrogated by using a format l ACCEPT
statement FRO� ESCAPE KEY.

The editing characters are line-delete, forward-space,
backspace, and rubout. On most terminals, these characters
may be entered as control-U, control-F, control-H, and DEL
(or RUB) respectively. The action of the editing characters
is described later iD this section; for now, only data
characters will be considered.

Alohanumeric Receiving Fiel�

Consider first the eKecution of the format 3 ACCEPT
statement with an alphanumeric or alphanumeric-edited
receiving field. An alphanumeric-edited receiving field is
treated as an alphanumeric field of the same length (as if
every character in its PICTURE were "X"). Specifically, no
insertion editing will occur.

The initial appearance of the data input field depends on
the specifications in the WITH phrase of the ACCEPT
statement. If UPDATE is specified, the current contents of
identifier-3 are displayed in the input field. In this case
all data input positions will be treated as if they were
keyed by the terminal operator. If UPDATE is not specified,
but PROMP'T' is specified, a oeriod (". ") is displayed in each
inout data position. If neither UPDATE nor PRO'.·l!'T is
specified, the data input field is not changed. The cursor
is olaced in the first dat.2. input position, and characters
are accepted as they are keyed by the operator until a

PROCEC.lJRE DIVISION Page 4-21

term�nat.or character (normally carriage return) is
encountered.
statement, the
operator kevs a
input position.

If AUTO-SKIP is speci:ied in the ACCEPT
ACCEPT will also be terminated if the

character into the last (rightmost) data

As each input character is received, it is echoed to the CRT
screen, except that non-displayable characters are echoed as
"?". If all positions of the data input field are filled,
additional input is ignored until a terminator character or
editing character (listed above) is encountered. If
RIGHT-JUSTIFY was specified in the ACCEPT statement, the
operator-keyed characters are shifted to the rightmost
positions of the data inout field when the ACCEPT is
terminated. All unkeved character oositions are filled on
termination; the fiil character i; either space (if SPACE
FILL is in effect) or zero (if ZERO-FILL was specified).

The contents oE the receiving field will be the same set of
characters as appear in the input field; however, the
justificatron of operator-keyed characters will be
controlled by t!1e JUSTIFIED specification in the receiving
field's data description, not by the RI-,HT- or LEFT-JUSTIFY
option of the ACCEPT. Excess oositions of the receiving
field will be filled with spaces or zeroes based on the
SPACE- or ZERO-FILL specification in th€ ACCEPT statement.

Numeric Receiving Field

Next, consider the execution of a format 3 ACCEPT statement
with a numeric or numeric-edited receiving field. As
described above, the data input field on the console CRT
screen may contain integer digit positions, fractional digit
positions, o� both. First assume that both are present;
the other cases will be treated as variations.

As with the alphanumeric ACCEPT, the data input field may be
initialized ... ,. a way determined by the WITH options
specified in the ACCEPT statement. If UPDATE is specified
(not ?ermitted for a numeric-edited receiving field), the
integer arrd fractional parts of the data input field will be
set to the integer and fractional parts of the decimal
representation of the initial value of the receiving field,
with leading and trailing zeroes included, if necessary, to
fill all digit positions. Except for leadi�g zeroes, these
initialization characters are treated as ooerator-keved
data. If U?DATE is not specified, but ?ROMPT i; specifi�d,
a zero will be disolayed in each input digit ?<JSition. In
either of these cases (UPDATE or ?ROMPT) a decimal point
will be displayed at the decimal ooint position.

lf r.either UPDATE nor ?ROMP"' is specifi�d, t!'le inout fielci
on the screen will not be initialized, exceot for the sign
position. The sign position is always initialized :_:,ositive

PROCEDURE DIVISION Page 4-22

except when UPDATE is specified, in which case it is
initialized according to the sign of the current contents of
the receiving field. On most systems, a positive sign
position is shown as a space, and a negative sign position
is shown as a minus sign.

The cursor is initially placed in the rightmost integer
digit position, and characters are accepted one at a time as
they are keyed by the operator. A received character may be
treated in one of several ways. !f the incoming character
is a digit, previously keyed digits are shifted one position
to the left in the input field and the new digit is
displayed in the rightmost integer digit position. !f all
integer digit positions have not been filled, the cursor
remains on the ri9htmost digit position and another
character is accepted. If the entire integer part of the
input field has been filled and AUTO-SKIP was specified, the
integer part is terminated and the cursor is moved to the
leftmost fractional digit position. If the integer part has
been filled and AUTO-SKIP was not specified, the cursor is
moved to the decimal point position, and any further digits
keyed are ignored until the integer part is terminated with
a decimal point.

If the character entered is one of the siqn characters "+"
or " ", the sign position is changed to a positive or
negative status respectively. Cursor position is not
affected.

If the character entered is � decimal point character, the
integer part is terminated and the cursor is moved to the
leftmost fractional digit position.

If the character enterec is a field terminator (normally
carriage-return), the ACCEPT is terminated and the cursor is
turned off. Any other character is ignored.

When the integer oart is terminated, the cursor is placed in
the leftmost fractional digit position, and operator-keyed
characters are again accepted. Digits are simply echoed to
the terminal. The sitjn characters "+" and "-" are treated
exactlv as they were while integer pa�t digits were being
entered. The field terminator character terminates the
ACCEPT. (If AUTO-SKIP is in effect, filling the entire
fractional part also terminates the ACCEPT.) Other
characters are ignored. After all digit positions of the
fractional part have been filled, further digits are also
ignored.

If no fractional cUqit positions are present, the decimal
point is ignored as an input character, and entry of integer
part digits may be terminated only by terminating the entire
ACCEPT. If no integer digit positions are present, the
cursor is initially Placed in the leftmost fractional digit
position anJ entry of the fractional part digits proceeds as

PROCEDURE DIVISIUN Page 4-23

<it-:scrih-=d above4

On terminaticn of the format 3 ACCEP� of a numeric or
numeric-edited item, data is transferred to the receiving
field. The exact form of the data in the receiving field
after P.Xecution of the ACCEPT is as described in the last
paragraph of the discussion of the format 2 ACCEPT, where
the role of the "input data string" mentioned in that
paragraph is taken by t�e string of characters displayed in
the data input field. After termination, if SPACE-FILL is
in effect, leadinq zeroes in the integer part of the data
input field (not in the receiving field) will be replaced by
spaces, and the leading operational sign, if present, will
be moved to the rightmost space thus created.

Editing Characters

The editing characters (line-delete, forward-space,
backspace, and tubout) mav be used to change data which has
alreadv been keyed (or supplied by the COBOL runtime system
as B result of a WITH UPDATE specification). Entering the
line-delete character will cause the ACCEPT tc be restarted
and all data keved by the operator or initially present in
the receiving field to be lost. The data input field on the
console screen will be re-initialized if PROMPT is in
effect. Otherwise, the data inout field will be filled with
spaces or zeroes according to the SPACE-FILL or ZERO-FILL
specification.

Typing the forward-space or backspace characters will move
the cursor forward or back one data tnout oosition in the
case of an alphanumeric or alphanumeric-edited receiving
field, or one c1igit oositJ:.£1:l in the case of a numeric or
numeric-edited receiving field. In no case, however, will
th� forward-space or backspace characters move the cursor
outside the rctnqe of positions including (1) the positions
already keyed by the operator (er filled by COBOL runtime
support wilen l1I'f'H UPDATE is specified), and (2) the
rightmost data input position which the cursor has occupied
during the execution of this ACCE?T. If che cursor is moved
to a position of this range other ::han the rightmost, and a
legal data character is entered, ic is dis?layed at the
current cursor pcsi.ti0n and the cur.soc is rnoved forward cne
data position (alphanur,eric or alphanume?:ic-edited) or digit
position (numeric or nur,eric-edited).

�ypina the rubout character effectively cancels the last
data character entered. The cursor is moved back one data
position (digit r,>osition if the receiving field is numeric
or numeric-edited) and a fill character (space or zero) is
displayed under the cursor (except when the cursor is to the
left of the decimal point for a numeric ACCEPT. �hen no
fill character is displayed and the cursor is not moved, but
the digit at the cursor oosition is deleted and all digits

PROCEDURE DIVISION Page 4-24

to the left of it are shifted one position to the right.)
The rubout character has no effect unless the cursor is in
position to accept a new data character; in other words, it
has no effect if backspace character(s) have been used to
move the cursor back over already keyed positions.

4.8.3.3 WITH Phrase Summary -

The following list summarizes the effects of the WITH phrase
specifications for a format 3 ACCEPT with an alphanumeric or
alphanumeric-edited receiving field:

1. SPACE-FILL causes unkeyed character positions of
the data input field and the receiving field to be
space-filled when the ACCEP� is terminated.

2. ZERO-FILL causes unkeyed character positions of the
data input field and the receiving field to be set
to ASCII zeroes when the ACCEPT is terminated.

3. LEFT-JUSTIFY is treated by this
commentary.

compilet· as

4. RIGHT-JUSTIFY causes operator-keyed characters to
occupy the rightmost positions of the data input
field after the ACCEPT is terminated. Note that
the justification of transferred data in the.
receiving field is controlled by the JUSTIFIED
declaration or default of the receiving field's
data description, not by the WITH RIGHT-JUSTIFY
phrase.

5. PROMPT causes the data input field on the screen to
be set to all periods (".") before input characters
are accepted.

6. UPDATE causes the data input field
initialized with the initial contents
receiving field and the initial data to be
as operator-keyed data.

to be
of the
treated

7. LENGTH-CHECK causes a field terminator character to
ignored unless everv data input position has been
filled.

8. AUTO-SKIP forces the ACCEPT to be terminated when
all clata input positions have been filled. A
terminator character explicitly keyed has its usual
effect.

9. BEEP causes an audible
ACCEPT is initialized
accept operator input.

alarm to sound when the
and the system is ready to

PROCEDURE DIVISION Page 4-25

The following list summarizes the �ffects of the WITH phrase
specifications for the format 3 ACCEPT with a numeric or
numeric-edited receiving field:

l. SPACE-FILL causes 1Jnkeyed digit posit ions of the
data input field (not of the receiving field) to
the left of. the (possibly implied) decimal point to
be space-filled when the ACCEPT is terminated and
any leading operational sign to be displayed in the
rightmost space thus created.

2. ZERO-FILL causes all unkeyed digit positions of the
data input field to be set to zero when the ACCEPT
is terminated.

3. LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect for a
numeric or numeric-edited receiving field.

4. TRAILING-SIGN causes the operational sign to appear
as the rightmost position of the data input field.
Ordinarily the sign is the leftmost position of the
field.

5. PROMPT causes the data input field positions to be
initialized as forlows before input characters are
accepted: digit positions to zero, decimal point
position (if any) to the decimal point character,
and sign position (if any) to space.

6. UPDATE causes the data input field to be
initialized to the current contents of the
receiving field and this initial data to be treated
like operator-keved data.

7. LENGTH-CEECK causes a received decimal point
character to be ignored unless all integer digit
positions have been keved and a field terminator
character to be ignored unless all digit positions
have been keved.

8. AUTO-SKIP causes the integer part of the ACCEPT to
be terminated when all integer digit oositions have
been keved and the entire ACCEPT to be terminated
when ali digit positions have been keyed.

9. BEEP causes an audible
ACCEPT is initialized
accept operator input.

alarm to sound when the
and the system is ready to

PROCEDURE DIVISION Pag� 4-26

4.8.� Examples Using The Format 3 ACCEPT Statement

Example 1:

Receiving Field:
OS RS-DISCOUNT PIC X (8).

Initial Contents: Set-up
ABCDEFGH prior to executing

ACCEPT Statement:
ACCEPT (1, 1) RS-DISCOUNT WITH PROMPT

At Start of ACCEPT:
- ---

.

Operator Enters N:

N • .. Executing
the ACCEPT

Operator Enters ONE:
NONE

Operator Enters Carriage Return:
NONEbbhb

Final Contents Result
of Receivi� Field:

I
-

NONEbbbb

PROCE:DU'rtE DIVISION Page 4-27

Example 2:

Receiving Field:
10 VEND-NAME PIC X (12).

Initial Contents: Set-up

ACME WIDGETS prior to executing

ACCEPT Statement:
ACCEPT (1, 1) VEND-NAME

WITH PROMPT UPDATE.

At Start cf ACCEPT:
ACME WIDGETS

{If operator enters carriage return here, the receiving field
will not be changed.)

Ooerator Enters Line-delete: Executing
. the ACCEPT

Ooeratcr Enters XYZ:
XYZ .•....•••

Ooerator Enters �arriage Return:
XYZbbbbbbbbb

Final r.ont�nts
ofReceiving Field: Result

XYZbbbbbbbbb

PROCEDURE DIVISION

Example 3:

Receiving Field:
05 CREDIT PIC S9(4)V99

Initial Contents:
+

111111

ACCEP� Statement:
ACCEP� (LIN + 4, CL - 3) CREDIT

WITH PRO:'-1PT TRAILING-SIGN.

At Start of ACCEPT:

0000.00b
-

oeerator Enters 8:
0008.00b

oeerator Enters 7:
0087.00b

-

oeerator Enters -:
0087.00-

Ooerator Enters 6:
0876.00-

Operator Enters N:
0876.00-

Operator Enters . .

0876.00-
-

oeerator Enters 5:
0876.50-

Operator Enters Carriage
0876.50-

Final Contents
of Receiving Field:

0876 50

Return:

Page 4-28

Set-up
prior to executing

Executing
the AC'.CEPT

Result

PROCEDURE DIVISION

4.8.S FORMAT 4 I\CCEP'l' Statement
---- --

Page 4-29

Format 4 of the ACCEPT statement causes a transfer of information
from the operator's console to all TO and/or USING fields
specified in the SCREEN SECTION definition of screen-name or any
screen item subordinate to screen-name. Screen items having only
VALUE literals of FROM fields or literals have no effect on the
operation of the ACCEPT statement. Each such transfer consists
of an implicit format 3 ACCEPT of a field defined by the
appropriate screen item's PICTURE followed by an implicit MOVE to
the associated TO or USING field. If an escape key is typed
during aata inout, the entire ACCEPT is terminated and the ON
ESCAPE statement" is executed.

If an escape key is typed during data input, the entire ACCEPT is
terminated without moving the cu::rent field to the associated TO
or USING item, the ESCAPE KEY value is set ot 01, and the ON
ESCAPE statement is executed. If a function key is typed, the
appropri�te ESCAPE KEY value is set and the entire ACCEPT is
terminated. If a field-terminator key (carriage return, tab,
etc.) is typed, the ESCAPE KEY va.lue is set to 00 and the cursor
moves to the next input field defined under screen-name, if one
exists. If the current field is the last field, the entire
ACCEP'l' is terminated. If the backtab key is typed, the current
field is terminated and the cursor moves to the previous input
field define under screen-name. If the current field is the
first field, the cursor does not move from that field. When a
field is terminated by a function key, field-terminator key, or
backtab key, the contents of the current field are moved to the
associated TO or USING item, except in the case where no data
characters and no editing characters have been entered in that
field. This allows the operator to tab forward or backward
through the input fields without affecting the contents of the
receiving items.

All the editing and validation features described in section
1.8.3.2 for the format 3 ACCEPT applv to the format 4 ACCEPT as
well. Several SCREEN SECTION specifications listed in Section
3.17 correspond to the format 3 ACCEPT options: AUTO corresponds
to AUTO-SKIP; BELL corresponds to BEE?; and JUSTIFIED
corresponds to RIGHT-JUSTIFY. Furthermore, if an input field
soecifies the USING clause or both a FROM and TO clause, The
A2CEP� will be executed with the UPDATE option. Format 4 ACCEPT
statements always use the PROMP'l' a:id 'J'RAI LING-SIGN options when
executing the individual format 3 ACCE?Ts.

If the screen item's PICT"JRE specifies a numeric-edited or
alphan.imer ic-edi ted ;.nput field, \:i1e ACCEPT is executed as if the
field were numeric or alphanumeric, respectively. When the field
is terinated the data is edited according to the PICTURE and
i:edisplayed in the specified screen position. In this case, the
�USTIFIED clause has no effect.

Moves Erom screen fiel�s to receiving items follow the standard
Microsoft COBOL rules for MOVE statements, exceot that moves from

PROCEDURE DIVISION Page 4-30

numeric-edited fields are allowed. In this case, the data is
input as if the Eiel� were numeric and the move uses only the
sign, decimal point, and digit characters.

The format 4 ACCEPT does not cause the display of any text or
prompting lahel information. See the discussing of DISPLAY in
section 4.9.

4.9 DISPLAY STATEMENT

The DISPLAY statement provides the capability of outputting
low-volume data at runtime without the complexities of file
definition. The format of the DISPLAY statement is:

DISPLAY {�position-spec] 1
illii!i

i

'1l ... [UPON mnemonic-name)
)

screen e

The DISPLAY statement must be coded in accordance with the
following rules:

1. identifier must reference a data item whose length
is less than or equal to 1920 characters

2. mnemonic-name must be defined in the PRINTEn IS
clause of the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION

3. screen-name must be defined in the SCREEN SECTION
of the DATA DIVISION.

The DISPLAY statement will cause output to be sent to the
system console device unless UPON mnemonic-name is
specified, in which case output will be sent to the printer.
Each display-item (that is, each occurrence of identifier,
literal, or ERASE) wi12. be processed in turn as described in
the paragraphs helow: then, if no position-spec is coded in
the entire DISPLAY statement, a carriage return/line-feed
pair will be sent to the receiving device.

4.9.l Position-spec

For each display-item, if position-spec is specified, the
cursor is positioned prior to the transfer of data for this
item. position-spec is of the form:

PROCEDUR:C: DIVISlOH Page 4-31

lLIN [\: \ inceg«-�j

1nceger-2

COL fl{: } integer-3]
j

l
integer-4

The opening and closing parentheses and the comma separating
the two major bracketed groups are required. The
position-spec specifies the position on the console CRT
screen at which the cursor will be placed. LIN and COL are
COBOL soecial registers. Each behaves like a numeric data
jtem with USAGE COMP, but they may be referenced by every
COBOL program without heing declared in t�e DATA DIVISION.

If LIN is specified, the cursor will be placed on the screen
row whnse number is eaual to the value of the LIN scecial
register, incrementen (o; decremented} hy integer-1 if "+
integer-1" {or "- integer-1"} is specified. If integer-2 is
specified, the cursor will be placed on the row whose number
is inceger-2. If neither LIN nor integer-2 is specified,
the curs�r will be placed on the screen row containing the
current cursor pasitior.,

If: COL is specified, the cursor will be placed in the screen
column whose number is equal to th::: value of the COL special
register, incremented (or decremented} by integer-3 if •+
inteqer-3" (or "- integer-3"} is soecified. If integer-4 is
specified, the cursor will be placed in the screen column
whose number is integer-4. If neither COL nor integer-4 is

specified, the cursor will be placed in the screen column
containing the current cursor position.

4.9.2 Identifier, Literal, And E?�SE

If identifier or literal is s�ecified for a given
di.splay-ite-m, the contents of identifier or the value of
literal are sent to the receivinq device. Since the data
transfer occurs without conversion or reformatting, it is
recommended that numeric data Qe moved to numeric-edited
fields for ourooses of DISPLAY.

If ERASE is o.oecifieri anc if positiJn-soec is coded for this
or a previous displav-item, the console screen will be
cleared Crom the current cursor position to the end of the
screen. The initial cursor position for the next
nisplay-item will be that specified by the r-,osition-soec
coded in the :<':RASE nisplav-item, if present, or the position
in which the cursor was left by the previous display-item.
If ERASE is soecified and no oosition-spec has been
encountered up to this point in the DISPLAY statement, no
action will be taken.

PROCEDURE DIVISION

4.9.3 Screen-name

Page 4-32

The DISPLAY screen-name statement causes a transfer of
information from screen-name (or each elementary screen item
subordinate to screen-name) to the console CRT screen. For
each such screen item having a VALUE, FROM, or USING
soecification the specified leteral or field is the so�rce
of the displayed data. For a field having only a TO clause,
the effect is as if FROM ALL " " (period) had been
specified. The source data is MOVEd implicitly to a
temoorary item defined by the appropriate screen item's
PICTURE (or by the length of the data in the case of a V�LUE
literal). Then an implied identifier-type DISPLAY of the
constructed temporary is executed as modified by teh
positioning and control clause coded in the definition of
the appropriate screen item. See Section 3.17, SCREEN
SECTION.

4 .10 PERFORM STATEMENT

The PERFORM statement permits the execution of a separate
body of program steps. Two formats of the PERFORM statement
are available:

Ootion 1

PERFORM range

Option 2

[{integer }
data-name TIMES]

{index-name}
PERFO�� range [VARYING data-name FROM

amount-! BY amount-2] UNTIL condition.

(A more extensive version of option 2 is available for
varying 2 or 3 items concurrently, as explained in Appendix
VI.)

In the above syntactical presentation,
definitions are assumed:

the following

1. Range is a paragraph-name, a section-name, or the
construct procedure-name-! Tl!RU orocedure-name-2.
(THROUGH is synonymous withTHRU.) If only a
paragraph-name is specified, the return is after
the paragraph's last statement. If only a
section-name is specified, the return is after the
last statement of the last paragraph of the
section. If a range is specified, control is
returned after the approoriate last sentence of .a

PROCEDURE DJVISIOH Page 4-33

paragraph
vali<:l only
the;n up;
through.

or section. These return points are
when a PERFOR� has been executed to set

in other cases, control will pass right

2. The generic operands amount-1 and amount-2 may be a
numeric literal, index-name, or data-name. In
practic·=, these amount specifications arc
frequently integers, or data-names that contain
integers, and the specified data-name is used as a
subscript within the range.

In Option 1, the designated range is performed a fixed

number of times, as determined by an integer or by the value
of an integer data-item. If no "TIMES" phrase is given, the
range is performed once. When any i'ERFOP-M has finished,
execution proceerls to the next statement following the
Pl:'.RFORM.

In Option 2, the range is performed a variable
times, in a stco-wise progression, varying from
value of 8ata-name = amount-1, with increments of
until a specified condition is met, at which time
�roceeds to the next statement after the PERFOR�.

number of
an initial

amount-2,
execution

'l'he condition in an Option 2 PERFOR"! is evaluated prior to
each attempted execution of the range. Consequently, it is
possible to not PERFORM the range, if the condition is met
at the outset. Similarly, in Option 1, if data-name .=:_0, the
range is not performed at all.

At run-time, it is
?ERFO�� ranges whose

illegal to have concurrently
terminus point3 are the same.

active

4 .11 !_XIT STATEMENT

The BXIT statement is used where it is necessary to provide
an endpoint for a procedure.

The format for the EXI� statement is:

EXIT.

EXIT must
paragric<.ph
provides
tr"ansfer
section.

ap�ear in the source program as a one-word
preceded by a paragraph-name. An exit paragraph

an end-point to which preceding statements may
control if it is decided to bypass some part of a

PROCEDURE DIVISION

4.12 ALTER STATEMENT

Page 4-34

The ALTER statement is used to modify a simple GO TO
statement elsewhere in the Procedure Division, thus changing
the sequence of execution of program statements.

The ALTER statement general format is:

ALTER paragraph TO [PROCEED TO] procedure-name

Paragraph (the first operand) must be a COBOL paragraph that
consists of only a simple GO TO statement; the ALTER
statement in effect replaces the former operand of that GO
TO by procedure-name. Consider the ALTER statement in the
context of the following program segment.

GATE. GO TO MF-OPEN.
MF-OPEN. OPEN INP!IT MASTER-FILE.

ALTER GATE TO PROCEED TO NORMAL.
NORMAL. READ MASTER-FILE, AT END GO TO

EOF-MASTER.

Examination of the ahove code reveals the technique qf
"shutting a gate," providing a one-time initializing program
step.

4 .13 IF STATEMENT

The IF statement permits the programmer to specify a series
of procedural statements to be executed in the event a
stated condition is true. Optionally, an alternative series
of statements may be specified for execution if the
condition is false. The general format of the IF statement
is:

IF condition {!JEX� SEN'l'ENCE '[ELSE
{

statement(s)-2
}]statement(sl-lf NEXT SENTENCE

The "ELSE NEX'l' SENTENCE" phrase may be omitte� if it
immediately 9recedes the terminal period of the sentence.

Examples of IF statements:

l. IF BALANCE � 0 GO 'l'O NOT-FOUND.

2. IF T LESS THAN 5 NEXT SEN'l'ENCE ELSE GO TO T-1-4.

3. IF ACCOUNT-FIELD SPACES OR NAME
SKIP-COUNT ELSE GO TO BYPASS.

SPACES ADD l TO

The first series of statements is executed only f the
designated condition is true. The second ser es of
statements (ELSE p11rt.) is executed o:-1ly if the des gnated

PROCEDURE DIVISION Page 4-35

condition is false. The second series (ELSE part) is
terminated by a sentence-ending period unless it is "ELSE
NEXT SENTENCE", in which case more statements may be written
before the period. If there is 110 ELSE �art to an IF
statement, then the first series of statements must be
terminated hy a sentence-ending period. Refer to Appendix
III for discussion of nested IF statements.

Regardless of whether the condition is true or false, the
next sentence is executed after execution of the appropriate
series of statements, unless a GO TO is contained in the
imperatives that are executed, or unless the nominal flow of
program steps is superseded because of an active PERFORM
statement.

4.13.1 Conditions

A condition is either a simple condition or a compound
condition. The four simple conditions �re the relational,
class, condition-name, and sign condition tests. A simple
relational condition has the following structure:

operand-I relation operand-2

where "operand" is
figurative-constant.

a

A compound condition may be
conditions, of any sort, by the

data-name, literal, or

e.g., A < B OR C = D. �efer to

formed by connecting two
logical operator AND or OR,

Appendix I for further
parenthesization, NOT, or permissible forms involving

"abbreviation."

The simplest "simple relations" have three basic forms,
expressed by the relational symbols equal to, less than, or
greater than (i.e., = or < or >).

Another form of simple relation that may be used involves
the reserved word NOT, preceding anv of the three relational
symbols. In summary, the six simple relations in conditions
are:

Relation

<

>.

NOT
NOT <
NOT >

Meaning

equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

It is worthwhile to briefly discuss how relation conditions

PROCEDURE DIVISION Page 4-36

can be compounded. The reserved words AND or OR permit the
specification of a series of relational tests, as follows:

1. Individual relations connected by AND specify a
compound condition that is met (true) only if all
the individual relationships are met.

2. Individual relations connected by
compound condition that is met (true)
the individual relationships is met.

OR specify a
if� one of

The following is an example of a compound relation condition
containing both AND and OR connectors. Refer to Appendix I
for formal specification of evaluation rules.

IF X = Y AND FLAG = 'Z' OR �1ITCH = 0 GOTO PROCESSING.

In the above example, execution will be as
depending on vario�s data values.

Data Value Does Execution Go
X y FLAG SWITCH to PROCESSING?

10 10 'z' , Yes i

10 11 I z t l No
10 11 t z I 0 Yes
10 10 'P' 1 No

6 3 IP' 0 Yes
6 6 'P' l No

follows,

Usages of reserved word phrasi.ngs EOUAL TO, LESS THAN, and
GREATER �HAN are accepted equivalents of = <>respectively.
Any form of the relation may be preceded by the word IS,
optionally.

Before discussing class-test, sign-test, ar.d
condition-name-test conditions, methods of performing
comparisons will be discussed.

Numeric Comparisons: The data operands are compared after
alignment of their decimal positions. The results are as
defined mathematically, with any negative values being less
than zero, which in turn is less than any positive value.
An index-name or index item (see Chapter 6) may appear in a
comparison. Comparison of any two numeric operands is
permitted reqardless of the formats specified in their
respective USAGP- clauses, and regardless of length.

Character Comparisons: Non-equal-length comparisons are
permitted, with spaces being assumed to extend the length of
the shorter item, if necessary. Relationships are defined
in the ASCII code; in particular, the letters A-Z are in an
ascending sequence, and digits are less than letters. Group

P�OCEDURE DIVISION Page 4-37

items are treat,:;,:] simpl, as characters •.;her, compared. Refer
to Appendix IV for all ASCII character re�resentations. If
one ooerand is numeric and the othar is not, it must be an
integc� and have an implicit or explicit USAGE IS DISPLAY.

Returning to ouc discussion of simple conditions, there are
three ad�itional forms of a simple condition, in addition to
the rel�tional form, namely: class test, condition-name
test (88), and sign test.

A class test condition

data-name IS [NOT]

has the following syntactical format:

!, NUMERIC I
, ALPH,'1.BETIC)

This condition specifies an examinatlon of the data item
content to determine whether all characters are proper digit
represer,tati,:,ns c:egardless of any op-::ratior.al sign (when the
test is for NUMERIC), or only alphabetic or blank space
characters :�hen the test is for ALPHAEETIC). The NUMERIC
test is valid only for a group, a�cimal, or character item
(not having an c:l;?habetic PICTURE). The ALPHABE7IC test is
valid only for a group or character item (Picture an-form).

A sign test has the following syntactical tor�at:

data-name IS [NOT] NEGATIVE I �ERO I POSITIVE

This test is equivalent to comparing data-name to zero in
O(der to determine the truth of the stated condition.

In a condition-name test, a conditional variable is tested
to determine whether its value is equal to one of the values
associated with the condition-name. A condition-name test
is expressed by t�� following synt&�tical format:

condition-na1ne

whe::e conci tion--nai.ie is defined by ., lev,?l 88 Data Division
entry.

4.14 Q.PEN STA'IEY:ENT (SEOUENTIAL I-�

The OPEN statement must be executed prior to commencing file
processing. The general format of an OPEN statement is:

{
(�'/PUT l

l
OPEN J I--0 file-name .•. ...

lOUTPUT
l EXTEND,

For a s�quential INPU� file, opening initiates reading the
file's first records into memory, so that subsequent READ

PROCEDURE DIVISION Page 4-38

statements may be executed without waiting.

For an OUTPUT file, opening makes available a record area
for development of one record, which will be transmitted to
the assigned output device upon the execution of a WRI'l'E
statement. An existent file which has the same name will be
superceded by the file created with OPEN OUTPUT.

An OPEN I-0 statement is valid only for a DISK file; it
permits use of the REWRI�E statement to modify records which
have been accessed by a RZAD statement. Th0 WRITE statement
mav not be used in I-0 mode for files with sequential
organization. ThP file must exist on disk at OPEN time; it
cannot be created by OPEN I-0.

When the EXTEND phra�e is specified, the OPEN statement
positions the file immediately following the last logical
record of. that file. Subsequ�nt WRITE statements
referencing the file will add records to the end of the
file. Thus, processinci proceeds as though the file had been
opened with the OUTPUT phrase and pesitioned at its end.
EXTEND can be used only for sequential or line sequential
files.

Failure to precede (in terms of time sequence) file reading
or writing by the execution of an OPEN statement is an
execution-time error which will cause a�normal termination
of a program run. S,;e the Microsoft coaoL user's Guide.
Furthermore, a file cannot be opened if it has been CLOSEd
"WITH LOCK."

Sequential files opened for INPUT or I-0 access must have
been written in the appropriate format described in the
User's Guide for such files.

4 .15 READ STATE.''1ENT (SEQUENTIAL I-0)

The READ statement makes available the ne�t logical data

record of the desianated file [rom the assigned device, and
updates the value o� the FILE STATUS data item, if one was
specified. The general format of a READ statement is:

READ file-name RECORD [INTO data-name]
[llT END imperative st.:1tement. .• J

Since at some time the end-of-file will be encountered, the
user should include the AT END clause. The reserved word
END is followed by &ny number of imperative statements, all
of which are executed onlv if the end-of-file situation
arises. The last statement i� the AT END series rr.ust be
followed by a period to indicate the end of the sentence.
If end-of-file occurs but there is no AT END clause on the
READ statement, an applicable Declarative procedure is

PROCEDUR2 D!VISIC�J Page 4-39

If r.either AT END nor Declarative exists and
FILE STA�US icem is specified for the file, a run-time
error is processed.

no
I/0

When a data record to be read exists, successful execution
of the READ statement is immediately followed by execution
of the next sentence.

When more than one level 01 item is subordinate to a file
definition, these records share the same storage area.
Therefore, the user must be able to distinguish between the
tvoes of records that are oossi�le, in order to determine
e��ctlv which type is cur�ently available. This is
accompiished with a data comparison, using an IF statement
to test a field which has a unique value for each type of
record.

The INTO option permits the user to specify that a copy of
the data record is to be placed into a designated data field
in addition to the file's record �rea. The data-name must
not be �cfined in the File section.

Also, the INTO phrase s�ould not be used when the file has
records of various sizes as indicated by their record
descriptions. Any subscripting or indexing of data-name is
evaluated after the data has been read but before it is
moved to nata-name. Afterward, the data is availabl8 in
both the file record and data-name.

In the case of a blocked input file (such as disk files),
not every READ statement perf.orms a physical transmission of
data from an external storage device; instead, READ may
simply obtain the next logical record from an input buffer.

If tLe actual record is shorter than the file record area,
t:he file record area is padded on tl.2 right with spaces.

·I'he general torr.tat of a i·lRITE statement is:

WRITE record-name

I/ , 1cm, "R '1 I , _ . � \
ADVANCINGu BEFORE)

(AT { 'SND-OF-PAGE t
toP j

[FROM data-name-1]

/operand LINE(S) }]
\ PAGE

imperative-statement]

Ignoring t!:'le ADVANCING o,:,tion for the moment, we proceed to
explain the main functions of the NRITE statement.

PROCEDURE DIVISION Page 4-40

In COBOL, file output is achieved by execution of the WRITE
statement. Depending on the device assigned, "written"
output may take the form of printed matter or magnetic
recording on a floppy disk storage medium. The user is
reminded also that you READ file-name, but you WRITE
record-name. The associated file must be open in the OUTPUT
mode at time of execution of a WRITE statement.

Record-name must be one of the level 01 records defined for
an output file, and may be qualified by the filename. The
execution of the WRITE statement releases the logical record
to the file and updates its FILE STATUS item, if one is
specified.

If the data to be output has been developed in
Working-Storage or in another area (for example, ir. an input
file's record area), the FROM suffix permits the us0r to
stipulate that the designated data (data-name-1) is to be
cooied into the record-name area and then cutout from there.
Record-name and data-name-l must refer to separate storage
areas.

When an attempt is made to write beyond the externally
defined boundaries of a sequential file, a Declacative
procedure will be executed (if available) and the FILE
STATUS (if available) will indicate a boundary violation.
If neither is available, a runtime error occurs.

The ADVANCING option is restricted to line printer output
files, and permits the programmer to control the line
spacinc.i on the ;:,aper in the printer. Operand is either an
unsigned integer literal or data-name; values from O to 120
are pe�mitted:

0

l

2

3

Single spacing
if there is
statement.

<;:_arria� Control 1'.ction

No spacing
Normal single spacing
Double spacing
Triple spacing

(i.e., "after advancing 1 line")
no BEFORE or AFTER option in

is assumed
the WRITE

Use of the key word AFTER implies that the carriage control
action precedes printing a line, whereas use of BEFORE
implies that writing precedes the carriage control action.
If PAGE is specified, the data is printed ?.E?OP.E or AFTER
the printer is reoositioned to the next physical page.
However, if a LINAGE clause is associated with the file, the
repositioning is to the first lin� that can be written on

Page 4--n

th€ �ex� logic�l ?age as specified i11 the LINAGE clause.

If tt:e S:i!J-C?-PI,GF. phrase is s[)ec�fied, \:he LINAGE clause
�iUSt be 3pecif�ea in the file eescri?tion entry for the
associated file. EOP is equivalent to END-OF-PAGE.

An end-of-page condition is re�ched whenever a WRITE
st2te���t wit�: the E�D-OF-PAGE phrase causes printing or
sp�cinq within the footing area of a page body. This occurs
w�1..::n �uc!-: c; �-rRI�E statement causes the LINAGE-COUNTER to
t":'('f1Jc.:l or ,2x.::eed the value speci:'i-:c.:i by the FOOTING valce, if
sn�cifi�d. In this case, after the WRITE statement is
��ecuted, the imperative st�te�ent !n the END-0?-?AGE phrase
is execut2d.

J..,, "pag� over f.low :-e condition is reached -..,he:1eveI'.' a WRITE
statement: cun:--.ct be �ully accorr.:nodated withi n the current
pl1ge baCy ., rrh i:: occ:.1r s w�:en a WRIT'E s ta temen t would cal!se
th,= !...I�4\G:::-co-u:-tTER to excl?ed the vr.:.).ue spe:;ified as the size
c!: thi2 pC:�i� toOy i.1� the L!NAGB c la1..:s,2.. In this case, the
:-r:cc�d .:.s pr .:.nt2C bef:::ire or a£tc.::r (de�")tn:�ir�g Uii th� 9h!."'2se
uced) the ?!int2r is repositioned �tJ the first li�e of the
�ext logical page. The imper�cive state�ent in the
END-OF-?hGE clause, if specified, is executed after the
recor.d is writ,_e:r. and the printer hz.s been repositioned.

Clearly, if no FCOTI�G v2lue is specified in the LINAGE
clc·...as.:., c,r if C.he en�-of-pag-2 and overflc� conditions occur
cir: · 1 i -r.\''k"'l.t""-l!S� v then cnlv the o�,,terflo-....., condi tio:1 is
;. ;= ·;�;;;�i;:· � .. I

U�o� co�pJ_0tion of the prccessi�� c� a file, a CLOSE
s�aternent must be executed, 6aus��s the sys�em to make �he
propgr dispositi,�� �f �te file. Wh��ev2r a fil(! is cJ.osed,
o-: has :1ev-sr bee�-1 O?<?:ted, RE.A.D, RE�\1::�:TE, or WRITE st<1tements
ca!1not be �xecuted properly: a runtime error would occur,
a�crting the run.

{ f.�l2-r . .:.::ce

::.t the LL'-:::?: suf·�ix is us-2d, the !:iJ.e
a�r:.:-.s the c'...lrrer.c job. If LOCK
i��ediacely after a file-name,
�2--0?2�cc1 la�er in the progr��J,
ji=t�t�s t�e r.�c��sity.

then
if

is not re-openable
is not S?ecified

that file may be
the progr . .::.m logic

An attempt tc execute a CLOSE stateme�t for a file that is
�ct �urrently 09�n is a runtime e:;or, and causes exacution
to be ni::;cont:r.,;o;;d.

PROCEDURE DIVISION Pege 4-42

Examples of CLOSE statements:

CLOSE MSTER-FILE-IN WITH LOCK, WORK-FILE;
CLOSE PRINT-FILE, �AX-RA7E-FILE, JOB-PARAMETERS WITH LOCK

4 .18 REWRITE STAT-EMENT (SEQUENTIAL I-0)

The REWRITE statement replaces a logical record on a
sequential DISK file. The general format is:

REWRITE record-r.ame [FROM data-1:ame]

Record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.
Record-name and data-name must refer to separate storage
areas.

At the time of execution of this statement, the file to
which record-name belongs must be open in the I-0 mode (see
OPEN, Section 4.14).

If a FROM �art is included in this statement, the effect is
as if MOVE data-name �·o record-name were executed jm:t Prior
to the REWRITE.

Execution of RE-..;RITE replaces the record that wvs accessed
by the most recent READ statement; sa1a prior READ must
have been completr.>d successfully. If the !'.ecord whi::h is
rew!'.iting the record in the file is longer than the file's
record, only as many bytes as will fit are actually
rewritten. On the other hand, if the record which is
rewriting the record in the file is shorter than the file's
record, unpredictable information will be written after the
record, until the beginning of the next record in the file.

4.19 GENERAL NOTE ON _!.LQ ERRO� HAND�ING

If an I/0 error occurs, the file's FILE STATUS item, if one
exists, is set to the appropriate two-character code,
otherwise it assumes the value "00".

If an I/0 erro!'. oc�urs and is of the type that is pertinent
to an AT SND or INVALID KEY clause, then the imperative
statements in such a clause, if present on the statement
that gave rise to the error, are executed. But, if there is
not an appropriate clause (such clauses may not appear on
Open or Close, for example, and are optional for other I/0
statements), then the logic of proqcam flow is as follows:

?c::ge 4-43

1 . . 1f th�re is an associated Declaratives ERROR
proced 1Jr2 (see Sectior, 9), it is perfo=med
a�!tomatically; user-writl�n logic must determine
1,,,,,at a.ctior. is taken bec,ause oE the existence of
the error. Up�n return froni the ERROR proce�ure,
r]cr�al p�ogra� flow to tl1e nexL sentence (following
t�! 2 I/0 statcwc .. nt) :s allc,;,,e::d.

2. If no D��laratives ER?CR p�oc�dure is applicable
hut there is an associated FI�E STATUS item, it is
presum2d that the user may base actions upon
�.-�sting the ST.!\TUS i tern, so normal flow to the next
s��tence is allowed.

C�ly if on2 of the �bove
D<:clar2:� ·.;es ERI,OR 9roc2au:--e·, or Le,:;ta;)le FILE s�.�Tr.rs ite::1)
exists: t:e!1 t�A �un-ti�e e�ror har�iler �eceives co�trol;
th12 lcc·a�i\.:,n , .. n. th� i;:.:rror (source p�ogrr1m lir.c nurr.ber) is
�oted, and tha run is terminated u�b!10r1nally.w

c:rgc.niz:.:tion
F�eJ.a.t::.. \·e �

a?ply to processin0
1s S2q�c�tial, Lin�

4. 20 ST·RING STATLMENT

of anv file, whether
Seq,�ential, !ndexed or

·�h12 ST��INC 3tz.tement allows con.-::;.:itenatj_::>n of
se:-i.di;;s Cf�ta il\:-r:1 valu8s into a sl�29le receiving
g0�eral fo�Rat 0f tl)is stateme�t is:

multi?le
ite!r.. The

S'tRIK'G � 0?·2rand-l
\

DELIMl'l'ED SY
. _,)

j
operana-,:1

>
(SIZE J;

I�TO ia��tifi�r-1 [WITH POINTER identifier-2]

!� this form2�,
literal, one-cha�act�r figurative 8or1stant, or data-name.
'
1 Ide�ti�ier-J" is t�e receiving data-lta� r�ame, which must
b,"? al��c:n:..-;:::c.:-ic •...;it�,out editing .::;r,nbols or the JUSTIFIED
clause. •r:centifier-2;' is a co1.d1t.er and must be an
e].e�entdcy r.cm��:c int�ger �ata item of sufficient size
(:JJ�us l) to ?Oint t:=i p...'1si.tio�1s wit!"1in iCe:1tifier-l.

the �efault value of the
lo.:Jir.2-l :::>nintec is cr:t::� li:be l•.:>gi.cc.l ?Oin-.:.er v.::1lue
d�signates the t·:.:.-:gi:;nir.g :x;:sition ,._--,(t:;e receiving fit?ld
into whic� dat3 olace��nt h� ins. During �ovement to the
receiving fiel�, ihe criteri fo, t�rmi.nation of an
i��ividual s0urc� are co�tro led by t�e ''DELIMITED BY"
phrase:

PROCEDURE DIVISION Page 4-44

DELIMITED BY SIZE: the entire source field is moved
(unless the receiving field becomes full)

DELIMITED BY operand-2: the character string specified
by operand-2 is a "Key" which, if found to match a
like-numbered succession of sending characters,
terminates the function for the current sendinq operand
{and causes automatic switching to the next sending

operand, if any).

If at any point the logical pointer (which is automatically
incremented by one for each character stored ir.to
identifier-1) is less than one or greater than the size of
identifier-1, no further data movement occurs, and the
imoerative statement given in the OVERFLOW phrase (if anv)
is executed. If there is no OVERFLOW phrase, control ls
transferred to the next executable statement.

There is no automatic space fill into any positio!"l of
identifier-1. That is, unaccessed positions are unchanged
upon completion of the STRING statement.

Upon completion of the STRING statement, if there
POINTER phrase, the resultant value of identifier-2
its original value plus the number of characters
during execution of the STRING statement.

4.21 ONSTRING STATEMENT

was a
equals

moved

The UNSTRING statement causes data in a single sending field
to be separated into subfields that are placed into multiple
receivina fields. The general format of the statement is:

UNSTR!NG identifier-!

[DELIMITED BY [ALL] operand-1 [OR [ALL] operand-2] ...]

INTO {identifier-2 [DELIMITER IN identifier-3]
[COUNT IN identifier-4]}

[WITH POINTER identieier-5!
[TALLYING IN identifier-6)
[ON OVERFLOW imperative-statement]

Criteria for separation of subfields may be given in the
"DELIMITED BY" phrase. Each tiine a succession of characters
matches one of the non-numeric literals, one-character
fiau�ative constants, or data-item values named by
operand-i, the current coll�ction of sending characters is
terminated and moved to the next receivi�g fi�ld suecified
by the INTO-clause. When the ALL phrase is specified, more
than one contiguous occurrence of operanc1-i in identifier-1
is treated as one occu�rence.

PROC�DUR£ nrvrs:o�

�7t1en two ,,r mo�e delimiters exist, an ;OR' condition exists.
Esch �elimiter is compared to the sending field in the order
s92cifi�d in th0 �NSTR!NG statement.

Ide::tif ie.·r-1 �n:1st be .� group Oc cha;:-acter strir.g
l.J.2.pr:�n�:::e:ic) ::..tern.. Wh<2n
�per&�,ci-i, that oper�nd must
sc:;i:--,g ite:n.

a �2L�-item is employed as any
also be a gro�p or character

Receiving fields (identifier-2) m21 be any of the following
CY?�S of iter.1s:

1. an un2dited alphabetic item

2. a chau:cter-st:ring (alpham:�ei:ic) ite;n

3. a g..:oup i t12m

lt. c.ri e:,:t·�rn�l d!JCi!nal itei:'l (r.umeri.c, usage C!SPLAYj
;,i�.OS·2 t1�(;�J:."'(E docs r"tOt c::-r,tairi c:ny P character.

�hGn a�y cx�:�i���ion e�=ou�t2:s t�� c=ntiguous eeliLli�£rs,
the c�rr��c recciv�ng a-p2 , c either space or ze:o fillQd
6epe�rling 0� its type. If there i� d ''DE�IMITEC BY H ptras�
in the Ut!STI!INC sta�er�ent, t��n c�e:e �1ay be "DELI�ITER !N n

phrases fo1.lowi�g 2ny receivi�g it�m {identi�ier-2)
!i!er.tioned in the INT-0 cl3use. In this case, tl-�e
char2ct2r(s) that delimit the data moved into identifier-2
are i-�����ives sto�ed ln iriGntif�er-3, wh�ch sho�ld be an
2lph����2ric it2:�� ?urther�o=e, i[a �co�NT IN� ph�ase is
ocese�t, the n�mber cf charact2rs that were �eve� into
identifis�-2 is �oved �o identifi2r-4, which mus� be an
elern�ntary �����ic int�ger item.

If th��e is a npoINTER� phcase, th�n iaentifier-5 must be an
i�teqi-r nJseric ite�, nnd its initial value becomes the
i?"1itJi:l lc.\gi.cal p(.:inte:::- v2,lue (ot:1:;;_wi::;2, a logical ?Oi:1ter
�blue of c11e is �ssu�e�). ��� examination of source
chara·::t.ers besi.n.s at the F,Csition in iGer-.tif�er-1 specifi<2d
i:.,v the lcqica::.. oointeri upo-:-1 corr:oletion of tht-? Ui.�STXING
s�ate��nt, �he fi:1�1 lngical poln�er ;al�� will be copied
bacK ij1�G i<ientifier.-5.

If at any time the v�l�e of the J.cqical pointer is less than
c�e o: exceeJ� the size of idencificr-:, then overflow is
said to .Jccl·,r :::·:d cont:::)l pc.s.ses ()Ver to the impP.rative
s ta. te!-ner:. ts s i •; :.-· r! in -ch�;; :'ON OV��?:'..iCW l't claLl.Ze, if a�y.

Overflow 2lsn o�Cl;rs wh2n �ll
�ille� prio! to �x�1a:Jsti�� t�e

re���ving fields
sot..:rce :ield.

have

During the cn1Jrs2 of
�atchina d�J.i�iter
st:inq �s develo?�d
a delimite� or by

source field scanning (looki g for
s�q ences), � �ari ble lc�gth c� =acter

wh�c , �hen c0��?�et d by recognit on of
acqu rinq as ��i:V c aracters as t e size

PROCEDURE DIVISION Page 4-46

of the current receiving field can hold, is then moved to
the current receiving field in the standard MOVE fashion.

If there is a "TALLYING !N" phrase, identifier-6 must be an
integer numeric item. The number of receiving fielGs acted
�pon, plus the initial value of identifier-6, will be
produced in identifier-6 upon completion of the UNSTRING
statement.

Any subscripting or indexing associated with identifier-1,
5, or 6 is evaluated only once at the beginning of the
UNSTRING statement. Any subscripting associated with
ooerands-i or i�er.tifie�-2, 3, 4 is evaluated imm�diately
before access to the data-item.

4.22 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode may be set or reset dynamically.
When set, procedure-names are printed on the user's console
in the order in which thev are executed.

Execution of the READY TRACE statements sets the tr.ace mode
to cause orintinq of every section and paragra?h name each
time it: is enterecl. The RESET TRACE statem·�nt i:1hibi ts such
printing. A printed list of proced11re-r.ames in the order of
their execution is invaluable in detection of a program
malfunction; it aids in detection of the point at which
actual program flew departed from the expected program flow.

Another debugging feature mav be required in order to reveal
c,: i ti cal data
the procedure.
facility.

values at specifically designated points in
The EXHIBIT statement provices this

The statement form

EXHIBIT NAMED {(position-spec] {
i�entifer

} } l1ter:al

ERAS;:;
..• [UPON mnemonic-name]

produces a printout of values of the indicated literal, oc
data items in the format data-name value. For more
details concerning the 3yntax, see the DISPLAY statement.

Statements EXHIBIT, REi\DY '!'RACE and RESET TRACE ar<?
extensions to ANS-74 standard COBOL designed to provide a
convenient aid to program debugging.

Programming Note: It is often desirable to include such
statements on sour,:e lines that contain D in column 7, so
that they are ignored by the compiler unless WITH DEBUGGING
MODE is included in the SOURCE-COMPU�ER paragraph.

C:HAP'l'.'ER 5

INTER-PROGRAM COMMUNICATION

Separately corn iled COBOL program modules may be combined
into a s ngle executable program. Inter-program
communication s made possible through the use of the
LINKAGE Section of the Data Division (which follows the
Working-Storage Section, and by the CALL statement and the
USI�G list appendage to the Procedure Division header of a
subprogra.m module. The Linkage sec•_ion describes data made
available in memory from another program module. Record
description entries in the LINKAGE section orov1ae
data-names by which data-areas reserved in memory b� other
programs may be referenced. Entries in the LINKAGE section
do not reserve rnemorv areas because the data is assumed to
be present elsewhere in memory, in a CALLing program.

Any Record Description clause may be used to describe items
in the LINKAGE Section as long as the VALUE clause is not
specified for other than level 88 items.

5.1 CALL STATEMENT

The CALL statement format is

CALL literal USING data-name

Literal is a subprogram name defined as the PROGRAM-ID of a
separately compiled program, and is non-numeric. Data names
in the USING list are made available to the called
subprogram by passing addresses to the subprogram; these
addresses are assigned to the Linkag8 Section items declared
in the USING list of th3t subprogram. Therefore the number
of data-names specified in matching CALL and Procedure
Division USING lists mu�t be identical. Information passing
conventions at the machine language level are described in
the Microsoft COBOL user's Guide.

Page 5-2

NOTE

caller
is by

Correspondence between
and callee lists
posi�ion, not by
spelling of names.

identical

5.2 EXIT PROGRAM STATEMENT

�he EXI� PROGRA� statement, aopearing in a
suboroqram, causes control to be returned to
executable statement after CALL in the calling
This statement must be a oaragraph by itself.

5. 3 CHAIN STATEMEN'l'

called
the next
proqram.

The CHAIN statement is coded according to the following
format:

CHAIN
f literal

}
l ident i.fier-1

[USING identifier-2 ..•]

and
Each

the
of

Literal and identifier-1 must be alphanumeric,
icentifier-1 must contain a terminating space.
occurrence of identif.ier-2 must be defined in
WORKIMG-S�ORAGE or LINKAGE SECTION or in the record aicea
a file open at the time the CHAIN statement is executed.

When the CHAIN statement is executed, the value of literal
or identifier-1, up to but not includinq the first �pace
encountered (or the end of the literal), is interpreted as
the name of an executable program file in the format of the
approoriate operating svstem. The named orogram is loaded
into memory and executed. All program and data structures
of the CHAINinq proqram are permanently destroyed except
that the USING clause mav be used to transfer oarameters to
the CHAINed program. See·s�ction 5.4, PROCED0RE DIVISION
header with CALL and CHAIN.

The CHAINed program need not he a COBC>I. program.
it must he a main program.

5.4 PROCEDURE DIVISION HEADF.R WITH CALL AND CHAIN

If it is

The PROCEDURE DIVISION Header of a main Program is coded as:

PRO,EDURE DIVISION [CHAINING data-name ...].

INTER- PROGRAM CO/A�UNIC/,T ION Page 5-3

'!'he PT,C{:EDURE DI 'ITS ION header of " subprogram is writ ten as:

P!-l.OCEDU?E DIVISION USIN� [data-na;ne-2 .•.].

The various forms of the PROCEDURE DIVISION header describe
the linkaqe and Parameter initia1ization requirements of a
progra�. � main p�oqra� must be linked by itself or with
any numher of subprograms. It mav tr.en be run independently
or inv0ked by the execution of a CH�IN statement in anoth9r
program. A suhproqram must be linked with exactly one main
program and, optionallv, any number of other subprograms.
It may only be executed by the action of a CALL statement.
For a description of the linking process, see the Microsoft
COBOL User's Guide.

A CHAI?Jed or CAL�ed program should have a CHAINing list or
non-empty USING list if and only if the invoking CHAIN or
CALIJ st�c�ment h�s a USING list. Fu�the:�ore: the numbers
o.: e:-ib:ies in the lists should !::,;! eq,.:al, and pesitionally
corresoondinq e!ltries in the two lists sho•1ld reference data
items -of t�e same size and USAGE. Failure to conforrn to
these rules will not be diaqnosed and will cause
unpredictable results at runtime.

The values of the: data items named in the PROCEDURE DIVISIOt-:
header are established at program initialization time by
using the contents of positionally corresponding data items
named in the invoking CALL or CHAIM statement. In the case
of CALL, the identification is made by cassinq 90inters.
Therefore, if th,;, value of a data i tern nar.,ed in a PROCEDURE
DIVISION USING clause is changed during subprogram
execution, the corresponding data item ir. the CALLina
p=ogram will reflect the change after control is returned
fro� the su�pro9ram�

For a description of the formats in which Parameters are
passed by the CALL �nd CHAIN statements, se� the Microsoft
COBOL User's Guide.

CHAPTER 6

TABLE HANDLING BY THE INDEXING METHOD

In c.ddition
Char:,ter 3,
handli nq.

to the cap�bilities o� subscripting described in
COBOL provides the Indexing method of table

An index-naJ11e is neclared not by the usual method of level
number, �ame, and data descr i pti0n clauses, but implicitly
by appearance in the "INDEXED BY index-name" appendage to an
o:CURS clause. An index-name must be unique.

A� ind�_2: data item is 3n ite� defiend by the USAGE IS INDEX
phu,se. And index data item must not have a PICTURE. An
indaz name or index data item may only be referred to by a
SET oc SEARCH statement, a CALL statement's USING list or a
Procedure header USING list; or used in a relation
condition or as the variation item in a PERi.?ORH VARYING
stater.1ent, or in place of a subscri.Pt, In all cases the
process is equivalent to dealing with a binary word integer
subscript. Index-name must be initialized to some value
before use via SET, SEARCH or PERFORM.

6. 2 SET ST��TEM'E'NT

·The SE'l' st.atement permits the manipulation of
index items, or binarv subscripts for
purposes. Thee� are two formats.

Format 1:

SE'.'.' I
index-�,,me-1)

J

index-item-1
data-name-1

Format 2:

TO

l inclex-name-2
l inne_x-i tem-2

oat.a-name-:.!
integer-2

index-names,

table-handling

TABLE HANDLING BY THE INDEXING METHOD

SET index-name-3 {g�W�
y

BY} { f��:;:�::-
4}

Page 6-2

Format 1 is equivalent to moving the "TO" value (e.g.,
integer-2) to multiple receiving fields written immediately
after the verb SET.

Format 2 is equivalent to reduction (DOWN) or increase (UP)
applied to each of the quantities written immediately after
the verb SET: the amount of the reduction or increase is
specified by a name or value immediately following the word
BY.

In any SET statement, data-names are restricted to integer
items.

�.3 RELATIVE INDEXING

A user reference to an item in a table controlled by an
OCCURS clause is expressed with a proper number of
subscripts (or indexes), separated by commas. The whole is
enclosed in matching parentheses, for example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE (I, 2)

where subscripts are ordinary integer decimal data-names, or
integer constants, or binary integer (COMPUTATIONAL or
INDEX) items, or index-names. Subscripts may be qualified,
but not, themselves, subscripted. A subscript ma'{ be
signed, but if so, it must be positive. The lowest
acceptable value is 1, pointing to the first element of a
table. The highest permissible value is the maximum number
of occurrences of the item as soecified in its OCCURS
clause.

A fnrther capability exists, called relative
this case, a "subscript" is expressed as

name+ integer constant

indexing. In

where a space must be on either side of the plus or minus,
and "name" may be any proper index-name. Example:

XCOOE (I + 3, J - 1) •

Page 6-3

6. 4 S:-:ARCH S'l'Nl'EMENT ·-- FORMAT l.

A linear qearch of a t�ble may be done using the SEARCH
statemen�. The general format is:

SEARCP. table

['/ARYING iilentifier ! index--name]

[AT .?-_:ND imperative-statement-I]

{l·iHEl'J Condition-1 {NEXT SENTENCE
} } , imperat:ve-statement-2 •.•

'i'able ls t'.ie name of a data-item ::avi�g an OCCURS clause
that includes an INDEXED-BY list; "table" must be written
without subscripts or indexes because the nature of the
SEARCH statement causes automatic 'n,�iar.ion of an index-name
associated with a particular table.

'l·here are four possible VARYING cc:.ses:

l. ;�� VARYING phrase -- the first-listed index-name
for tl',e table is varied.

2. VARYING index-name-in-a-different-table the
first-listed index-name in the table's definition
is varied, implicitly, anci the index-name listed in
the VARYING phrase is varied in like manner,
simultaneously.

3. VARYING inC:ex-name-defined-for table
specific index-name is the only one varied.

this

4. VARYING integer-data-i t()m .. ·name both this
data-item and the first-listed index-name for table
are varied, simultaneously.

The term variation has the following interpretation:

1. The initial value is �ssumed to have been
established by an earlier statement such as SET.

2. If the initial value exceeds the maximum declared
in the aoclicable OCCURS clause, the SEARCH
ooeration tei::r,ir.ates at once; anrl if an AT EN::l
c�rase exists, the associated imperative
;tate�ent-1 is executed.

3. If the value of the ineex is within the range of
valid indexes (1.2,... :.ip tc and including the
maximum number of occurrences), then each
WHEN-condition is evaluated until one is true or
all ace found to be false. If one is true, its
associa�ed imper3tive statement is executed and the
SEA!'<CE operation terminates. If :ione is true, the
iridex i.s incremented by one and step (3) is

TABLE HANDLING BY THE INDEXING METHOD Page 6-4

repeated. Note that incrementation of index
applies to whatever item and/or index is selected
according to rules 1-4.

If the table is subordinate to another table, an index-name
must be associated with each dimension of the entire table
via INDEXED BY phrases in all the OCCURS clauses. Only the
index-name of the SEARCP. table is varied (along with another
"VARYING" index-name or data-item). To search an entire
t�o- or three-dimensional table, a SEARCH must be executed
several times with the other index-names set appropriatelv
each time, probably with a PERFORM, VARYING statement.

The logic of. a Format 1 SEARCH is depicted on page 84.

6. 5 SEARCH STATEMENT -- FORMAT 2

Format 2 SEARCH statements deal with tables of ordered data.
The general format of such a SEARCH ALL statement is:

SEARCH ALL table

WHEN condition

[AT El'-'D imperative-statement-1 ••.]

{imperative-statement-2 .• �
NEXT SENTENCE J

Only one WHEN clause is permitted, and the following rules
apply to the condition:

1. Only simple relational conditions or
condition-names may be employed, and the subject
must be properly indexed by the first index-name
associated with table (alona with sutflcient other
indexes if multiple OCCURS clauses apply).
Furthermore, each subject data-name (or th�
data-name associated with condition-name) in the
condition must be mentioned in the �EY clause of
the table. The KEY clause is an appendage to the
OCCURS clause having the following format:

ASr.ENDING ! DESCENDING KEY IS data-name

where data-name is the name defined in this Data
Description entry (following level number) or one
of the subordinate data-names. If more than one
data-name is given, then all of them must be the
names of entries suGordinate to this group item.
The KEY phrase indicates that the repeated data is
arranged in ascending or descending order according
to the data-names which are listed (in any given
KEY phrase) in d2creasinq order of significance.
More than one KEY phrase may be specifi8d.

TABLE HANDLING SY THE INDEXING METHOD Page 6-5

2. In a simple relational condition, only the equality
test (using relation or IS EQUAL TO) is
permitted.

3. Any condition-name variable (Level BB items) must
be defined as havinq only a single value.

4. The condition may be compounded bv use of the
Logical connector AND, but not OR.

5. I
0

n a simple relational cor.dition, the object (to
the right of the equal sign) may be a literal or an
identifier; the identifier must NOT be referenced
in the KEY clause of the table or--se indexed by the
first index-name associated with the table. (The
term identifier means data-name, including any
qualifiers and/or subscripts or indexes.)

Failure to conform to these restrictions may yield
unpredictable r�sults. Unpredictable results also occur if
the table �ata is, not ordered in conforrnance to the declared
KEY claus2s, oc if the keys referenced in the WHEN-condition
are not su,ficient to identify a unique table element.

In a Format 2 SBARCH, a nons�rial tvpe of search operation
may take place, relying upon the declared ordering of data.
The initial setting of the index-name foe table is ignored
and its setting is varied automatically during the
searching, always within the bounds of the maximum number of
occurrences. If the condition (WeENI cannot be satisfied
for any valid index value, control is passed to
imperative-statement-1, if the AT END clause is present, or
to the next executable sentence in the case of no AT �,D
clause.

If all the simple conditions in the single
are satisfied, the resultant index ,alue
occurrence that allows those conditions to be
control passes to imperatiye-statement-2.
final setting is not predictable.

WHEN-condition
indicr.1tes an

satisfied, and
Otherwise the

TABLE HANDLING BY THE INDEXING METHOD

Logic Diagram for Format l SEARCH

Increment
index(es)

T

'

/- - - --- /
I

/may be null
1

I
I

execute
imperative
state
ment(s)-1

execute
imperative
state
ment(s)-2

execute
imperative
state
ment(s)-3

Page 6-6

CHAPTER 7

INDEXED F!I.ES

7.1 DEFINITION OF I1'DEXED FILE ORGANIZATION - --

An indexed-file organization provides for recording and
acce3sinq r�cords of a "data tase" by keeping a directory
(called the c•:>ntrol index) of pointers that enable direct
locaticn of U{:Ords having parti-�ular unique kev values. An
inde·.<ed rile ;\1-Jst be assigned to DISK in its defining SE:::..ECT
sentence.

A file whose organization is indexed can be accessed either
sequentially, dynamically or randomly.

Sequential access provides access to data records in
ascending order of RECORD KEY val�es.

In the random access mode, the order of access to records is
controlled by the programmer. Ea-::h record desired is
accessed by placinq the value of its key in a key data item
prior to an access statement.

In the dynamic access mode,, the r>rogramrner's logic may
change from sequential access to random access, and vice
versa, at will.

7.2 SYNTAX CONSIDP.RATIONS

In =he Environment n�vision, the SELECT entry must specify
ORG,!.NIZATION IS INDE>:ED, �nd the ACCESS clause format :s

rlCCESS MODE IS gQUENTIAL I RANDOM i DYNAMIC.

Assign, Reserve, and File Status clause
identical to those specified in Section
rr,a;;.u;.ll �

formats are
2.2.l of this

1n -.-.he FD entry for 2ln INDEXED tile, both LABEL RECORDS
S'c'A,rnARD an<:! a VAl...UE O!:' FILE-ID clause must appe:ar. The
formats of Section 3.13 apply, except that only the

INDEXED FILES

DISK-related forms are applicable.

7.2.1 RECORD KEY CLAUSE
-- ----

Page 7-2

The general format of this clause, which is required, is:

RECORD KEY IS data-name-1

where data-name-1 is an item defined within the record
descriptions of the associated file description, and is a
group ite� or an elementary alphanumeric item. The maximum
key length is 60 bytes and the key should never be made to
contain all nulls.

If random access mode is specified, the value of data-name-1

designates the record to be accessed by the next DELETE,
READ, REWRITE or WRITE statement. Each record must have a
unique record key value.

7.2.2 FILE STATUS REPORTING

If a FILE STATUS clause appears in the Environment Division
for an Indexed organization file, the designated
two-character data item is set after every I-O statement.
The following table summarizes the possible settings.

Status Data
Item LEFT
Character

Successful
Completion (0)

At End (1)

Invalid
Key (2)

Permanent
Error(3)

Special

Cases (9)

File Status '21'
WRITES do not
file, or the key
INPUT or OPEN

Status Data Item RIGHT Chnrn<"'ter
No Further Sequence Duplicate No Record
Description Error Key Found

(0) (1) (2) (3)

X

X

X X X

X

X

arises if ACCESS MODE is SEQUENTIAL when
occur in ascending sequence for an Indexed
is altered pr io:: to REWRITE. In an OPEN
I-O statement, a File Status of '30' means

Disk Space
Full

(4)

X

INDEXED FIL2S Page 7-3

'File Not Found.' File Status '91' occurs on an OPEN INPUT
or OP2N I-0 statement for a relative or indexed file whose
structure has been destroyed (for example, by a system crash
during output to the file). When this status is returned on
an OPEN INPll'r, the file is considered to be open, and READS
mav be executed. On an OPEN I-0, however, the file is not
considered to be open, and all I/0 operations fail. The
other settings are self-explanatory.

Note that "Disk Space Full" occurs with Invalid Key (2) for
Indexed and Relative file handling, whereas it occurred with
"Permanent Error" (3) for sequential files.

If an error occurs at execution time and no AT END or
INVALID KEY statements are given and no appropriate
Declarative ERROR section is supplied and no FILE STATUS is
specified, the error will be displayed on the Console and
the program will terminate. See Section 4.19.

7. 3 PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES

The syntax of the sequential file OPEN statement (Section
4.14) also applies to Indexed organized files, except EXTEND
is inaoplicable.

The following table summarizes
and their permissibility in
option in effect. Where X
permissible, otherwise it is
ACCESS mode and OPEN option.

the availahle statement types
terms of ACCESS mode and OPEN

appears, the statement is
not valid under the associated

ACCESS Procedure O?:SN Ootion in Effect
MODE IS Statement Ir.put Output I-0 I

READ X X

WRITE X

SEQUENTIAL REWRITE X

START X X

DELETE X

R�l\D X X !
WRIT8 X X

I

i
RANDOM REWRITE X

START
DELE':'E X

READ X X

WRI�E X X

DYN1\M�C rt..Si·JRITE X

S'I'ART X X

DSLETE X

In addition to the above statements, CLOSE is permissible

INDEXED FILES Page 7-4

under all conditions;
is used.

the same format shown in Section 4.17

7.4 READ STATEMENT

Format 1 (Sequential Access):

READ file-name [NEXT] RECORD [INTO data-name-1]

[A� END imperative-statement .••]

Format 2 {Random or Dvnamic Access):

READ file-name RECORD [I1''!'Q data-name-1] !KEY IS data-name-2]

[INVALID KEY imperative-statement ..•]

Format 1 without NEXT must be used for all files having
SEQUENTIAL ACCESS mode. Format 1 with the NEXT option is
used f.or sequential reads of a DYNAMIC access mode file.
The AT END clause is executed when the loqical end-of-file
condition arises. If this clause is not written in the
source statement, an approoriately assigned Declaratives
ERROR section is given control at end-of-file time, if
a•,ailable.

Format 2 is used for files
files in nynamic-access
retrieved randomlv.

in random-access mode or
mode when records are to

for
be

In format 2, the INVALID
taken if the access �ev
kev in the file. If
appropriate Declaratives
given control.

KEY clause specifies action to be
value does not refer to an existent

the clause is not qiven, the
ERROR section, if supplied, is

The optional KEY IS clause must desiqnate the record key
item declared in the file's SELECT entrv. This clause
serves as documentation only. The user must ensure that a
valid kev value is in the designated kev field orior to
execution of a random-access READ.

The rules for sequential files regarding the INTO phrase
apply here as well.

7.5 WRITE STATEMENT

The WRITE statement releases a loqical record for an output
or inout-outout file; its general format is:

INDEXED FI L.t=:S

�RITE record-·name [FRO.I:! data-n.;me--1]

[INV��ID KEY imperative-statement •••]

Page 7-5

Just orior to executing the WRITE statement, a valid
(unique) value must be in that portion of the record-name
(or data-name-1 if FROM appears in the statement) which
serves as RECORD KEY.

In the event of an improper key value, the imperative
statements are executed if the INVALID KEY clause appears in

the tatement; otherwise an appropriate Declaratives ERROR
sect on is invoked, if applicable. The INVALID KEY

cond tion arises if:

l. for sequential access, key values are not ascending
from one WRITE to the next WRITE;

2. the kev value is not unique;

3. the allocated disk space is exceeded.

7.6 REWRITE S�ATEMENT

The Rc�RI�E statement logicallv reolaces an existing record;
the format of the statement is:

REWRITE record-name [FROM data-name]
[INVALID KEY imperative-statement ...]

For a file in sequential-access mode, the last READ
statement must �ave been successful in order for a REWRITE
statement to be valid. If the value of the record key in
record-name (or correspondinq part of data-name, if FROM
aopears in the statement) noes not equal the kev value of
the immediatelv previous read, then the invalid kev
condition exists and the imoerative statements are executed,
if Present; otherwise an aoplicable Declaratives ERROR
section is executed, if available.

For a tile in a random or dynamic access mocie, the record to
be reolaced is specified by the record key; no previous
READ is necessarv. The INVALID KEY condition exists when
the record ��y's value <ioes not equal that of anv record
stored in the file.

INDEXED FILES

7. 7 DELETE STATE!�ENT

Page 7-6

The DELETE statement loqically removes a record from the
Indexed file. The general format of the statement is:

DELETE file-name RECORD [INVALID KEY imperative-statement ••. }

For a file in the sequential access mode, the last
inout-output statement executed for file-name would have
been a successful READ statement. The record that was read
is deleted. Consequentlv, no INVALID KEY ohrase should be
specified for sequential-access mode files.

For a file having random or dvnamic access mode, the record
deleted is the one associated with the record key; if there
is no such matchina record, the invalid kev condition
exists, and control passes to the imperative statements in
the INVALID KEY clause, or to an applicable Declarative
ERROR section if no INVALID KEY clause exists.

7.8 START STATEMENT

The START statement enables an Indexed oraanization
be positioned for reading at a .5pecified kev value.
permitted for files open in either sequential or
access modes. The format of this statement is:

START file-name KEY ISl NOT LESS THAN data-namel,...
I GREATER THAN

}

J
l EQUAL 'T:'O

[INVALID KEY i�perative statement ... }

file to
This is
dynamic

Data-name must be the �eclared record kev and the value to
be matched by a record in the file must be pre-stored in the
data-name. When executing this statement, the file must be
ooen in the input or I-0 mode.

If the KEY phrase is not present, equality between a record
in the file and the record kev value is sought. If kev
relation GREATER or NOT LESS is specified, the file is
positioned for next access at the first record greater than,
or greater than or equal to, the indicated key value.

If no matchina record is found, the imperative statements in
the INVALID KEY clause are executed, or an approoriate
Declaratives ERROR section is executed.

CHAP"'ER 8

R!':LATIVB !"ILES

8.1 uSfINlTION OF RELATIVE FILE ORGANIZATION
---·-··--- - ------- --- -------

Relative org�nization is r�stricted to aisk files. qecocds
are differentiated on the basis of a relative record number
which ranqes from 1 to 32,767, or to a lesser maxim·Jm for --··a
smaller file. Unlike the case of an Indexed file, where the
identifvir,g '<ev fi0l.d occupies a oart of the datii record,
relativ(? record numbers are conc�ptual and are not embedded
in the data reco�ds.

A relative orcanization file may be accessed either

sequentiallv, dynamically or randomlv. In secuential access
rnode, records are accessed in the order of ascending record
nur.1bers.

In :andom access mo�e, the sequence
c0�trolled by the crogram, by placing
ke�, item� In dynamic access mode, the
rAndom and sequential access al will.

8.� SYNTAX CONSID!':RA'I'IONS

of record access is
a number in a r�lative

p�ogram mav inter-mix

In th� Sn�ironrnent Division, the SELECT entry
oq�.�'3]�02�� rs RELA?IVE, and the ACCF.SS claue-=

m•;st specifv
format i�

As�ign, Res�rve, and File Status clause formats are
ir.entical to those used for seauentially- or
indexed-er.g3nizcn files. The values of STATUS Key 2 when
STA.TiJS Key i egnals ''2' are:

'2' far atte�ot to W�I�G & duplicate kev

•3• for nonexistent record

'4' fer disk space full

RELATIVE FILES Page 8-2

In the associated FD entry, STANDARD labels must be declared
and a VALUE OF FILE-ID clause must be included.

The first byte of the record area associated with a relative
file should not be described as pa�t of a COMP or COMP-3
item by any record description for the file.

8.2.1 RELATIVE KEY CLAUSE

In addition to the usual clauses in the SELECT entry, a
clause of the form

RELATIVE KEY IS data-name-1

is required for random or dynamic access mode. It is also
required for sequential-access mode, if a START statement
exists for such a file.

Data-name-1 must be described as an unsigned binary integer
item not contained within any record description of the file
itself. Its value must be i::ositive anc nor.zero.

8.3 PROCEDURE DIVISION STATEMENT FOR RELATIVE FILES

Within the Procedure Division, the verbs OPEN, CLOSE, READ,
1,R!�E, REWRITE, DELETE, and START are available, just as for
files whose organization is indexed. (Therefore, the charts
in Sections 7.2.2 and 7.3 also apply to RELATIVE files.) �he
statement formats for OPEN and CLOSE (see Sections 4.14 and
'1.17) are apolicable to Relative files, except fo� the
"EX'l'SND" phrase.

8.4 READ STATEMENT

Format 1:

READ file-name [NEXT) RECORD [INTO data-name)

[AT END imperative statement ..•]

Format 2:
READ file-name RECORD [INTO data-name)

[INVALID KEY imperative statement ...]

Format 1 must be used for all files in sequential access
mode. The NEXT phraae must be present to achieve sequential
access if the file's declared mode of access is Dynamic.
The A'l' END clause, if qi�an, is executed when the logical

?age 8-3

cnd-cf-fi!.�
eppropriate
availabl�.

condition exists, or, if not qiven, the
D�claratives ERROR section is given control, if

?ormat 2 is used to achieve random access with declared mode
of access either Random or Dvnamic.

If a Relative Key is defined (in the file's SELEC7 entry),
successful execution of a format 1 READ statement uodates
the con ten ts of t!ie RELATIV£ KEY i tern ("da ta-narr.e-1") so us
to coacain the record nijmber of the record retrieved.

For a format 2 READ, the record that is retrieved is the one
whos� relative recor6 number is pre-stored in the RELATIVE
KEY it.?m. If no such record exists, how-:?ver, the INVA�ID
KEY condition arises, and is handled by (a) the imoerative
st2.terr,ents given in th,:, INVALID KEY portion of the READ, or
(b) an associated Declaratives section.

The rules for sequential files regarding the INTO phrase
apply her� as Yell.

8. 5 W�ITE STATSMENT

The forra�t of the W�ITE statement 1s the same for a Relative
file as fat an Indexed file:

!L�I�E recorG-nane (FROM dat�-raame]

[INVALID imperative state1nent . ..)

If acce:ss mode is sequential, then completion of a WRITE
statement causes the relative record number of the record
j ,is t output to be placed in the RELATIVE KEY i tern.

If access �ode is random or dynamic, th�n the user must
ore-set the value of the �ELA'!1 IVE KEY item in order to
assian the r�cord an ordinal (re:ative) n�rnber. The INVALID
KEY contjition arises if there already exists a record having
the specifiad ordinal number, or if the disk space is
0"!:-(ceed2d.

8. 6 R['.WRI'.r2 STATC?--�ENT
----- --

The fc,r;r:at of the RET�RI'!'E state;ni::nt is the sarile for a
Relative fil.e as Eo= an lndexe� file:

R�1lR.I'I1E record-name [FROM data-nan�e]

(INV.;e.L::!:r. KEY imPe�ative statement .•. J

RELATIVE FILES Page 8-4

For a file in sequential access mode, the immediately
previous action woul.ci have been a successful READ; the
record thus Previouslv made available is replaced in the
file by executing REWRI�E. If the previous RF.AD was
unsuccessful, a run-time error will ter.minate execution.
Therefore, no INVALID KF.Y clause is allowed for sequential
access.

For a file with dvnamic or random access mode declared, the
record that is rePlaced by executing REWRITE is the one
whose ordinal number is ere-set in the RELATIVE KEY item.
If no such item e�ists, the INVALID KEY condition arises.

8. 7 DELETE S�ATEMENT

The format of
Relative file

the DELETE statement
as for an Indexed file:

DELETE file-name RECORD

is

[INVALID KEY imper�tive statement •••)

the same for a

For a file in a sequential access mode, the immediately
previous action would have been a successful READ statement;
the record thus previously made available is logically
removed from the file. If the previous READ w;:is
unsuccessful, a run-time error will terminate execution.
Therefore, an INVALID KEY phrase may not be specified for
sequential-access mode files.

For a file �ith dyna�ic or rancom access mode declared, the
removal action certains to whatever record is designated by
the value in the RELATIVE KEY item. If no such numbered
record exists, the INVALID KEY condition arises.

8.8 START STATEMENT

The format of the START statement is the same for a Relative
file as for an Indexed file:

[(
GREATE'.:<. THAN l]START file-name KEY IS �OT LESS THAN data-name-1
EQUAL '1:0

[INVALID KEY imperative statement •.•]

Execution of this statement specifies the beqinning position
for reacinq operations; it is permissible only for a file
whose access mode is defined as sequential or dynamic.

Data-name may onlv be that of the Previously declared

RELA':'IVE FILP-S

�i::LATIVE KZY ite.n, and the number of the
muse be stored in it before START is
executing this statement, the associated
cur:ently open in IN?UT or I-0 mode.

Page 3-5

relative record
executed. When

file must be

If the KEY phrase is not p:eser.t, equalitv between a record
in the file and the record key value is sought. If kev
relation GREATER or NOT LESS is specified, the �ile is
position�d for next access at the first record greater than,
or greater than or equal to, the indicated key value.

If no such relative record i� found, the imoerative
statements in the INVALID KEY clause are executed, or an
appropriate Declaratives ERROR section is executed.

<::HAFTER 9

DECLARATIVES l',ND THE USE SENTENCE

�he Declaratives
procedures that
coding written
condition that
o�curs.

region provides a method of including
are executed not as part of the sequential

by the programmer, but rather w hen a
cannot normally be tested by the programmer

Al�hough the system automatically handles checking and
creation of standard labels and executes error recovery
routines in the case of input/output errors, additional
procedures may be specified by the COBOL programmer.

Since these crocedures are exec�ted only at the time an
erroc in reading or writing occurs, they cannot appear in
the regular sequence of procedural statements. They must be
written at the beginning of the Procedure Division in a
subdivision cal.led DECLARATIVES. Related ?rocedures are
preceded by a USE sentence that specifies their function. A
declarative section ends with the occurrence of anothe�
section-name with a USE sentence or with the key words END
DECLARA'l'IV3S.

'l'he key word;; DECLA?-ATIVES and END DECLARATIVES must each
begin in Area A and be followed by a period.

DECL,'l,F.1"\TIVEs_.

{section-naPie SEC?ION. USE se�tence .

{paragraph-name .. [sentence} ... }
. . . }

END DECLARATIVES.

The USE sentence defines the applicability of the associated
section or coding.

A USE sentence, w hen present, must immediately follow a
section heaGer in the Declarative oortion of the Procedure
Division and must be followed by a period followed by a

DECLARATIVES AND THE USE SENTENCE Page 9-2

space. The remainder of the section must consist of zero,
one or more procedural paragraphs that define the procedures
to be used. The USE sentence itself is never executed;
rather, it defines the conditions for the execution of the
USE procedure. The general format of the USE sentence is

USE AFTER STANDARD EXCEPTION

ON {file-name ... I INPUT

ERROR PROCEDURE

OUTPUT I I-O I EXTEND}.

The words EXCEPTION and ERROR may be used interchangeably.
�he associated declarative section is executed (by the
PEP.FORM mechanism) after the standard I-O recovery
procedures for the files designated, or after the INVALID
KEY or A'J' END condition arises on a statemPnt lacking the
INVALID KEY or AT END clause. A qiven file-name mav not be
associated with more than one declarative section.

Within a declarative section there must be no reference to
any nondeclarative procedure. Conversely, in the
nonceclarative portion there must be no reference to
procedure-names that appear in the declaratives section,
exce9t that PERFOR� statements may refer to a USE statement
and its procedures; but in a range specification (see
PERFORM, Section 4.10) if one procedure-name is in a
Declarative Section, then the other must be in the same
Declarative Section.

An exit from a Declarative Section is inserted by the
compiler following the last statement in the section. All
lccical program paths within the section must lead to the
exit point.

CHAPTER 10

SEGMENTATION

The program segmenation facility is provided to enable the
exection of Microsoft COBOL programs which are larger than
physical memory. When segmentation is used (that is, when
any section header is the program contains a segment number)
the entire PROCEDURE DIVISION must be written in section.
Each section is assigned a segment nu�ber by a section
header of the form:

section-name�� [segment number)

segment-number mu3t be an Integer with a value in the ran�e
from O through 99. If segment-number is omitted, it is
assumed to be O. Declaratives sections muse have
segment-numbers less than 50. All sections which have the
same srqment number constitute a single nrogram segrent and
must occur together in the source program. Furth@rmore, al!
segments with number less than 50 must occur together at tf,e
heginninq of the PROCEDURE DIVISION.

s�gmcnts with numhers O through 49 3re called fi.ced segments
and are aways resident in memory d�ring eKecution. Sc��ents
with numbers greeter than 49 are called inde?endent
scg�ents. Wach indeoendent segm2nt is treated as a program
nverlay. An in1ependent segment is in its intitial state
when control is passed to it for the first ti�e nuring the
execution of a program, and also wh�n control is passed to
that sccti�n (implicitly or explicitly) from another segment
with a different segment number. Specifically, an
indcpenne�t segT.ent i� in its initial state �hen it is
rezc�ed oy "falling through" t�e end of a fixed or nifferent
independent seqment.

S�qmentation causes the following restrictions on the use of
the ALTER and PERFORM statements:

SEGMENTATION Page 10-2

1. A GO 'J'O statement in an independent segment must
not be referred to by an ALTER statement in any
other segment.

2. A PERFORM statement in a fixed segment may have
within its range only

a. sections and/or paragraphs wholly contained
within fixed segments, or

b. sections and/or paragraphs wholly contined
in a single independent segment.

3. A PERFOWI statement in an independent segment may
have within its range only

a. sections and/or paragraphs wholly contained
within fixed segments, or

b. sections and/or paragraphs wholly contained
within the same indeoendent degment as the
PERFORM statement.

APPENDIX A

Advanced �orms of Conditions

Evaluation Rules for Comoound Conditions

1. Evaluation of individual simple conditions
(relation, class, condition-name, and sign test) is
done first.

2. AND-connected simple conditions are evaluated next
as a single result.

3. OR and its �djacent conditions {or previously
evaluated results) are then evaluated.

EXAMPLES:

1. A < B OR C a D OR E NOT > F

The evaluation is equivalent to (A<B) OR (C•D) OR
(E<F) and is true if any of the three individual
parenthesized simple conditions is true.

2. WEEKLY AND HOURS NOT • 0

The evaluation is equivalent, after expanding level
88 condition-name WEEKLY, to

(PAY-CODE = 'W') AND (HOURS .,6 0)

and is true only if both the simple conditions are
true.

3. A = 1 AND B � Z AND G > -3

OR P NOT EQUAL TO "SPAIN"

is evaluated as

f (A a 1) AND (B • 2) AND (G > -3)]

OR (P / "SPAIN")

Page A-:

If P = "SPAIN", the compound condition can cr.ly be
true if all three cf the following are true:

(c. l)

(c. 2)

(c. 3)

A 1
B 2
G > -3

However, if P is not equal to "SPAIN", the comoound
condition is true regardless of the values of.A, B
and G.

Parenthesized Conditions

Parentheses may be written within a compound condition or
parts thereof in order to take orecedence in the evaluation
order.

Example:

!F A = B AKD (A � 5 OR A = l)
PSRFORM PROCEDUR E-44.

In this case, PROCEDURE-44 is
while at the same time A
conditions may be for�ed
conditions, not just simple
parentheses.

Abbreviated Conditions

executed if A = 5 OR A 1
= B. In this manner, compound

containing other compound
conditions, via the use of

For the sake of brev icy, the user may omit the "subject"
when it is co�;,cn to sev0ral successive relational tests.
For example, the condition A = 5 OR A = 1 may be written A =
5 OR � l. This may also be written A = 5 OR 1, where both
subject and re�ation being implied are the same.

Another example:

IF A = B OR < CORY

is a shortened form of

IF A = B OR A < COR A < Y

The interpretation a?plied to the use of the word 'NOT' in
an abbreviated condition is:

1. If the item immediately following 'NOT' is a
relational operator, then the 'NOT' participates as
part of the relational operator;

Page A-3

2. otherwise, the beginninq of " r.ew, completely
separate condition must follow 'NOT', not to be
considered part of the abbreviated condition.

Caution: Abbreviations in which the subiect and relation
are implied are permissible only in relation tests; the

subject of a siqn test or class test cannot be omitted.

NOT, the Locrical Neaatton Operator

In additicn to its use as a part of a rel�tion (e.g., IF A
IS NOT B), "NOT" may precede a condition. For example,
the condition NO� (A a B OR C) is t.ue when (A • BOR A = C)
is ::alse. 'l'he word NOT may precede a level 88 condition
name, also.

'

Source
Operand

Numeric
Integer

Numeric
Non-inteqer

Numeric
Edited

Ali:>hanumeric
Ec1ited

Alphanumeric

<;rouµ

APPENDIX 8

Table of P�rmissible MOVE Operands

Receiv',nq Operand in MOVE Statement

Numeric
I

Alpha-
Numeric Non- Numeric I numeric Alpha-
Integer integer Edited Edited numeric Group

OK

OK

OK (C)

OK {Bl

KEY:

OK OK OK (A) OK (A) OK (:S)

OK OK OK (B)

OK OK OK (B)

OK OK OK (Bl

OK {Cl OK (<: l OK OK OK (Bl

OK (8) OK {B) OK {B) OK (3) OK {B)

{�.) Source sign, if anv, is ignored

(B) If the source operan� or the receiving
operand is a Group Item, the move is
considered to be a Group Move. See
Section 4.3 for a discussion of the
effect of a Group Move.

(C) Source is treated as an unsigned integer;
source length may not exceed 31.

No distinction is made in
alphanumeric; one should
items and vice versa.

the
not

comoiler between ali:>habetic and
move numeric items to alphabetic

APPENDIX C

Nesting of IF Statements

A w nested IF w exists when the verb IF aopears more than once
in a singl� sentence.

Example:

IF X Y
IF A = B

MOVE w*w TO SWITCH
ELSE

MOVE "A w TO SWITCH
ELSE

MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by a tree
structure:

,.

F T

Space-;,,Switch

l Next
Sentence

A B ?

T

•--;..switch

�nether useful way of viewing nested IF structures is based

Page C-2

on numbering IF and ELSE verbs to show their priority.

true
actionl:

IFl X • y

: IF2 A ,. B
true-action : MOVE"*" TO SWITCH

!ELSE2 false-action2 : MOVE "A" TO SWITCH

ELSEl
false-actionl : MOVE SPACE TO SWITCH.

The above illustration shows clearly the fact that IF2 is
wholly nested within the true--action side of !Fl.

The number of ELSEs in a sentence need not be the same as
the number of IFs; there may be fewer ELSE branches.

Exam!)les:

IF M,. l
IF K =- 0

GO TO Ml-KO
ELSE

GO TO Ml-KNOT0

IF AMOUNT IS NUMERIC
IF A.�OUNT IS ZERO

GO TO CLOSE-OUT.

In the latter case, IF2 could equally well have been written
as AND.

Character

A
B

C

D

E

F
G

H
I
J

K

L

M

N

0

p

Q

R

s

T
u

V
w

X
y

z

Plus-zero
Minus-zero

APPENDIX D

ASCII Character Set
For A,�S-74 COBOL

Octal Value Character Octal Value

101 0 60
102 1 61
103 2 62
104 3 53
105 4 64
106 5 65
107 6 66
ll0 7 67
111 8 70
ll2 9 71
ll3 (SPACE) 40
114 42
115 $ 44

ll6 I (non-ANSI) 47
117 (50
120) 51
121 * 52
122 + 53
123 54
124 55
125 56
126 I 57
127 73
130 < 74
131 75
132 > 76

(zero with embedded positive sign); 173
(zero with embedded negative sign): 175

APPENDIX E

Reserved Words

+ indicates additional words required by Microsoft COBOL for

interactive screens, Debug extensions, and packed decimal

format

ACCEPT
ACCESS
ADD
ADVANCING
A:"TER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
ANO
ARE
AREA (S)
ASCENDING

+ASCII
ASSIGN
AT
AUTHOR

+AUTO-SKIP

+BEEP
BEFORE
BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL
CD
CF
CH
CHARACTER (S)
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SE'!'

-K:OL
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL

+cOMPUTATIONAL-3
+cOMP-3

COMPUTE
CONFIGURATION
CONTAINS
CONTROL(S)
COPY
CORR(ESPONDING)
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING
DEBUG-CONTENTS
DE:SUG-ITE�
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DECIMAL-POINT
OECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING

DESTINATION

DE(TAIL)

DISABLE
+DISK

DISPLAY

DIVIDE

DIVISION

DOWN

DUPLICATES

DYNAMIC

EGI

ELSE

EM!

ENABLE

BND

END-OF-PAGE

ENTER

ENVIRONMENT

EOP

EQUAL

+ERASE

ERROR

ESI

EVERY

F:XCEPTION

+EXHIBIT

F:X I 1'

EXTEND

FD

FILE

FILE CONTROL

+FILE-I::>

PILLER

FINAL

FIRST

FOOTING

FOR

Ffl.OM

GENERATE

GIVING

GO

GREATER
GROUP

HEADING
HIGH-VALUE(S)

I DENTH'ICl\'I'IO!�

IF

Page E-2

IN

INDEX
INDEXED
INITIAL

INITIATE

INPUT

INPUT-OUTPUT

INSPECT

INSTALLATION

INTO

INVALID

IS

I-0

I-0-CONTROL

JUST(IFIED)

KEY

LABEL

LAST

LEADING

LEFT

+LEFT-JUSTIFY

LENGTH

+LENGTH-CHECK

LESS

LIMIT(S)

+LIN

LINAGE

LINAGE-COUNTER
LINE (S)

LINE-COUNTER

LINKAGE
LOCK

LOW-VALUE(S)

MEMORY

MERGE

M:':SSAGE

MODE

l"ODULES

MOVE

1-1ULTIPLE

r-<.ULTIPLY

+N/\MES

NATIVE

NEGATIVE
NEXT

NO
NOT

N!JM!3ER

NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW
PAGE
PAGE-COUN'l'ER
PERFORM
PF
PH
PIC(TURE)
PLUS
POINTER
POSITION
POSITIVE

+PRINTER
PRINTING
PROCEDURE(S)
PROCEED
PROGRAM
PR()(;RAM-ID

+PROf,IPT

OUEUE
QUOTE (S)

RANDOM
RD
READ

+READY
RECEIVE
RECORD (S)
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE
REMAINDF.R

REMOVAL
RENAMES
REPLACING
REPORT(S)

REPORTING

RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE
RF
RH

RIGHT

Page E-3

+RIGHT-JUSTIFY
ROUND
RUN
SAME
SD
SEARCH
SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT

SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE (S)

+SPACE-FILL
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1,2,3
SUBTRACT
SUM
SUPPRESS

SYMBOLIC
SYNC(HRONIZED)

TABLE

TALLYING

TAPE

'l'ERMINAL
TBRMINATE

TEXT

THAN

THROUGH

THRU

TIME

TIMES

TO

TOP

+TRACE

TRAILING

+TRAILING-SIGN

'."YPE

UNIT

UNSTRING

UNTIL

UP
+UPDATE

UPON

USAGE

USE

USING

V/\LUE(S)

VARYING

WHEN

WITH

?age E-4

WORDS

WORKING-STORAGE

WRITE

ZERO((E)S)

+ZERO-FILL

+

*

I
**

<

>

APPENDIX F

PERFORM with VARYING and AFTER Clauses

PERFORM range

VARYING identifier-1 FROM amount-1 BY amount-2
UNTIL condition-1

[

AFTER identifier-2 FROM amount-3 BY amount-4

]
UN�IL condition-2

[AFTER identifier-3 FROM amount-5 BY amount-6] UNTIL condition-3

Identifier here means a data-name or index-name. Amount-1,
-3, and -5 may be a data-name, index-name, or literal.
Amount-2, -4, and -6 may be a data-name or literal only.

The operation of tWis complex
equivalent to the following
varying three items):

START-PERFORM.

PERFORM statement is
COBOL statements (example

MOVE amount-1 TO identifier-1
MOVE amount-3 TO identifier-2
MOVE amount-5 TO identifier-3.

TEST-CONDITION-1.
IF condition-1 GO '!'O ENO-PERFORM.

TEST-CONDITION-2.
IF condition-2

�OVE amount-3 TO identifier-2
ADD amount-2 TO ide�tifier-1
GO TO TEST-CONDITIOll-1.

T�ST-CONDITION-3.
IF condition-3

MOVE amount-5 TO idertifier-3
ADD amount-4 TO identifier-2
GO '!'O TEST-CONDITION-2.

PERFORM range

ADD amount-6 TO identifier-3
GO TO TEST-CONDITION-3.

END-PERFORM. Next statement.

NOTE

If any identifier above were
an index-name, the associated
MOVE would instead be a SET
(TO form), and the �ssociated
ADD would be a SET (UP form).

Page F-2

APPENDIX G

Microsoft COBOL
�ith Respect to the ANSI Standard

To understand how Microsoft COBOL is a 1974 ANSI COBOL, one
must know the structure of that standard. The COBOL ANSI
standard is divided into 12 •modules":

l. Nucleus

2. Table handling

3. Sequential I/0

4. Relative I/0

5. Indexed I/0

6. Interorogram communication

7. Library

8. Communication

9. Debug

10. Report-Writer

11. Segmentation

12. Sort/Merge

Each module has two defined levels of implementation, namely
Level I and Level II (which is a superset of Level I).
According to the standard, the first three modules in the
list above should be implemented at least to Level I, but
the other nine modules may or may not be implemented.

Referring to the Nucleus and Table Handling modules,
Microsoft COBOL includes all Level II features except:

I. GENERAL

Page G-2

1. Figurative constant ALL •1it" for literals greater
than one character

2. Qualification of names is .1cJt allowed in the
Environment Division.

3. Switch testing facility (ar.tually a
feature)

Level I

4. Alphabet-name �ust be "ASCII" and cannot be defined
with a literal phrase

II. DATA DIVISION

1. Occu�s depending on •.•

2. Level 88 having list of items intermixed with range
(either list or range may be used but not both at
one time)

3. r.OMP data items always require 2 bytes:

Picture 9(5) only allows a range of -32768
to 32767
Pictures 9,99,999,9999 are equivalent to PIC
9(5) for COMP items
Diagnostic is given when more than 5 digits
are specified

4. Unsigned COMP data items

-- PIC 9 is equivalent to PIC S9

5. Renames phrase

III. PROCEDURE DIVISION

1. MOVE, ADD, SUBTRACT CORRESPONDING

2. P1ul ti ple destinations for results of ;;irithmetic
statements

3. Division remainders

4. Inspect Level II

5. Arithmetic expressions in conditions

6. AL'l'ER series of procedure names

Regarding the file handling modules, Microsoft COBOL
includes all Level II facilities except Multiple Index Keys
anrl soecial language for TAPE handling, that is:

Page G-3

1. optional tape file existence by specifying "SELECT
OPTIONAL filename"

2. buffering of inout/output by allowing a fully
functional "RESERVE Integer AREA(S)" clause

3. multi-file tapes by specifying the "MULTIPLE FILE

TA?E CONTAINS" clause

4. control over blocking of fixed and variable-length
records by allowing fully functional "BLOCK
CONTAINS" and "RECORD CONTAINS" clauses in the FD
of tape files

5. multi-reel files, tape reversal, and tape
positioning by means of fully implemented CLOSE and
O?EN statements

However, the file handling modules do not include the Level
I Rerun facility, because most microcomputer operating
systems have no support for it.

The Interprogram Communication and Library modules are
implemented to Level I.

The Debug and Report-Writer modules are not implemented at
all, and Microsoft has no plans for them because they are
not verv widelv used. However, Microsoft COBOL does include
the IBM COBOL Debug facility extensions to the ANSI
standard.

Another extension Microsoft has incorporated in Microsoft
COBOL is in interactive screen con:rol by allowing special
options to the ACCEPT and DISPLAY statements. Still another
extension is the CO�P-3 �ata form,t which allows numeric
data to be packed two digits to the byte so that mass
storage requirements are reduced.

Accept . . . • •
ACCEPT statement
ACCESS clause
ADD statement
ADVANCING action
ALL phrase . . •
Alohanumeric item
Alphanumeric-edited item
Alter . . • . •
;..LTER statement
ANSI level 1 . •
ANSI level 2 . .
Arithmetic expression
Arithmetic statements
ASCII-entry
.\T END clause

AUTHOR
Auto
Auto secure

Bell
Binary item
Blank line •
Blank screen
Blank when zero
BLANK WHEN ZERO clause
Blink
BLOCK clause

Call • . • •
CALL statement
Chain • . . .
Character comparisons
Character set
Class test condition
Close

CLOSE statement
CODS-SET clause
Column . • . . .
Comments
Compound condition
COMPUTATIONAL
COMPU'J'ATIONAL-3
COMPUTE statement
Condi ti on-name . •
Condition-name test
Conditional statements
Conditions . ; . • . .
CONFIGURATION SEr.�ION

Page Index-1

INDEX

3-21 to 3-22, 3-24, 4-29
1-7, 4-14
2-3, 7-1, 8-1
4-9
4-40
4-44
3-2, 3-4, 3-6
3-6
10-2
4-34
S, G-1
8, G-1
4-H
4-7
2-3
4-1, 4-38, 7-3 to 7-4,
8-3
2-1

• 3-24
3-22

3-22, 3-24
3-2, 3-5
3-22, 3-24
3-22
3-22, 3-24
3-15
3-22, 3-24
3-19

5-2
5-1
5-2
4-36
1-1
4-37
7-3
4-41
3-20
3-24
1-12
4-35
3-2, 3-5
3-2, 3-5
4-11
1-3, 1-7, 3-16
4-37
4-1, 4-7
1-1, 4-35
2-2

Continuation line
Control index
COUNT IN phrase
Crt scre�n formats
CURRENCY SIGN

Data 0escription entry
Data Division
D?ta item
DATA RECORDS clause
Data-name
DATE-COMPILED
DATE-WRITTEN
Debugging
Deci.nal item •
Decimal point
DECIMAL-POINT IS COMMA
DECLARATIVES . .
Declaratives .
DELETE statement
DE�IMITED BY phra�e
nisolav . . . • •
DISPLAY statement
DIVIDE statement

Ed!. tinq
Elementary item
Elementary screen items
Ellipsis . •
Environment Division
EscapP. •
Escape key • . . • •
EXHIBIT statement
EXIT PROGRAM statement
EXIT statement •
EXTEND phrase
External decimal item

FD entry
Figurative constants
File
File name • • . .
File Section .
FILE STATUS clause
FILE STATUS 0ata item
FILE-CONTROL
File-name
FILLER .
Fixed segments
Floatinq string
Format notation
From .

General Formats
CIVING ootion
GO TO statement
Group
Group item .

1-8, 1-13
7-1
4-45

3-21
2-2

3-3, 3-21

1-6, 1-10
1-5, 3-1
3-18
1-3, 1-5 to 1-6, 3-3
2-1
2-1
9, 2-2, 4-46

3-4, 3-15
3-7
1-8, 2-2
4- 2, 9-1
lJ-1
7-6, 8-4
4-43
3-21 to 3-22, 3-24

1-7, 4-30
4-11

4-29
1-5, 3-2, 3-4 to 3-5
3-21
1-4
1-7, 1-10, 2-1
4-14, 4-29
4-14
4-46
5-2
4-33
4-38
3-2

1-6, 1-12, 3-17
1-8
1-5
1-6
1-6, 3-17
2-4, 7-2
4-38
2-3
1-3
3-3
10-1
3-8
1-3
3-22, 3-24

1-3
4-9
4-13

3-5
1-5, 3-1, 3-3, 3-13, 4-3

HIGH-VALUE
Highlight

I-0
I-0 error handling
I-0-CONTROL p�ragraoh
Ident:fication Division
IF statement . . • • •
Imperative statements
Independen seqments
Index data-item
I ndex-na;ne .
Indexed I-0
Indexed-file organization
INPUT file . . • • •
INPUT-OUTPUT SEC�ION
INS?ECT statement
INSTALLATION
Inter-Program Communication
Internal decimal item
INTO ootion
INVALID KEY clause

Just • . •
Justified
Justified
JUSTIFIED RIGHT clause

KEY clause • •
KEY IS clause

LABEL clause
Level 88
Level number

Level-number
Library
LINAGE clause
Line •
Line number
Linkage section
Literals . •
LOCK suffix
LOW-VALUE

"lain orogram
Memory . . .
Memory reauirements
�1nemon ic-name
Mod�les . . • . •
MOVE statement . .
MULTIPLY statement

Nested IF
Non-numeric literals
Nucle s
Numer c comparisons
Numer c item • . . .

1-9
3-22, 3-24

4-38
4-42

2-3 to 2-4

1-10, 2-1
4-34
4-1, 4-7
10-1
3-3, 3-5, 6-1
6-1
9

7-1
4-38
2-3
4-5
2-1
9

3-2
4-39
4-1, 7-3 to 7-6, a-3 to 8-4

3-22, 3-24
3-22

• • 3-24
3-15

6-4
7-4

3-17
3·-16
1-5, 1-12, 3-1, 3-3,
3-21
3-22
9

3-20
3-22, 3-24

4-14
3-21, 5-3
1-7
4-41

1-9

5-3
10-1
10-1
1-3, 1-7
8

4-3
4-10

C-1
1-7
8

4-36
3-2, 3-6

Numeric literals

OBJECT-COMPUTER
OCCURS clause
OMITTED
ON OVERFLOW clause
Of)en
OPEN statement . .
o�·�:.N I ZATION Clause
Ol!T?UT file
OVERFLOW
Overlays . .

Packed decimal
Paragraph-name
Paragraphs •
Parentheses
Perform
PERFORM statement
Pie
PICTURE
Picture
PICTURE clause
? lus
POINTER phrase
PRINTER
Procedure Division
Procedure division header
Procedure-name
PROGRAM-I:) .
Punctuation

Qualification
QUOTE

Range (PERFOR"'l)
READ state�ent .
RF.ACY TRACE statement
RECORD CONTAINS clause
RECORD KEY clause
Records
REDEFINES clause •
Rel;itive I-0 .
Relative indexing
RELATIVE KEY clause
R�LATIVE KEY item
Relative orqanization
RE?Ll\CING clause
Report item
RESERVE clause .
Reserved words .
RESET TRACE statement
REWRITE statement
ROL'NDED opt ion

1-8

2-2

3�13
3-17
4-45
7-3

4-37
2-3

4-38

4-1

1.0-1

3-2
4-2

4-2

1-4
10-2
4-32
3-22
3-2
3-22, 3-24

3-6

3-22
4-43

1-7, 3-17, 3-19

1-10, 4-1

5-2

1-3, 1-12, 4-2
2-1
1-1 to 1-3

1-13

1-9

4-33

4-38, 7-4, 8-3

4-46

3-19
7-2
1-5

3-12

9

6-2
8-2
8-3

8-1

4-5

3-2, 3-4, 3-7

2-4

1-2 to 1-3, 1-12
4-46

4-42, 7-5, 8-3

4-8

S;ame • • • • • 2-4

Screen data description entries 3-21
Screen section . . . • . . . • 4-14, 4-29

Screen-name . • • •
SEARCH ALL statement
SEARCH statement
Section
Section header
Section-name
Sections
Secure .
SECURITY
Segment
Segment number
Segmentation
SELF.C'c' entrv
Sente:1ces
Separator
Seauence number
Seauential I-0
SE'T' statement
SIGN clause
Sisn test
Simple condition
SIZE ERROR option
SOURCE-COMPUTER
SPACE • . . •
SPECIAL-NA.MES
STANDARD . . •
START statement
Statements .
S'T'OP statement .
STRING statement
Subprogram . . .
Subscripts . . .
SUBTRACT statement
SYNCP.RONIZED clause

Table Hanclin9 .
TALLYING clause
To
TRACE mode . . •

UNSTRING statement
USAGE clause
USE sentence
Usinq
USING list

Validation
Value
VALl.iE IS clpUSe
VALUE OF clause
VARYING
Verbs

WEEN clause
Word
Nor kins-storage
WRITE statement

section

.

4-14, 4-29

E-4

6-3
10-1

10-1
4-2
4-2

3-24
2-1

10-1
10-1
10-1
2-3, i-1, 8-1 to 8-2
4-1 to 4-2
1-2
1-12

8

6-1
3-2,
4-37
4-35
4-1,
2-2
1-9
2-2
3-ii
7-6,
4-1
4-13
4-43
5-3
3-13,
4-10
3-14

8
4-5

3-15

4-8

8-4

3-16

3-22, 3-24, 4-29
4-46

4-44
3 .• 5

9-1
3-22, 3-24, 4-29
3-21

4-29
3-22, 3-24
3-11, 3-21
3-18

6-3
4-1

6-4
1-1, 1-3
3-21
4-39, 7-4, 8-3

Microsoft, Inc.
Microsoft Suiidin3

107QO Northup Way
BeHr�vue, \'\�� 900C4

utmty
software

package
reference manual

for 8080 microprocessors

infom1ation in this document is subject to change without notice anc. does not represimt e
comwjtment on the part o! Microsoft, Inc. The soft-;rnre dcxribcd in thls document is furnished
•.mder a licen�� ,ii;:reement or non-discJogure agre€ment. The s,_,ftwnre may be used or copied only in
r.,,vr,!:1:-:ce with the terms of the agrc<::ment. It i!l ai;ain�t the lnw to copy The Utiiicy S,Jftware
Paclrng-e on cagsctte tape, disk, o::- any other medium f,ir ,qny purpose other than purchaser's
pe�S0!1a1 use.

Copyright (0 Microsoft, Inc., 1981

LIMITED W.\RRANTY

M !Cr.OSOl"T, !Pc. shall have no liability er ,..,sponsibiJ.ity ce purchaser os to nny other p<'rson or entity with
�spect to any liability, lois or dan1ag� cau�d or e.Hi!eed t.c i� c!iused di�tly or ind.ire,:tly by this prod�.1ct,
L"1cl1.1iling but not limited to �"lY ii!ten:1pt�o:i of strvi�e. �oss c! bu�iness or !lntkipntory profit� or
cor:sequentie..l cln.:nages resulting from tli� us� or ope;c,•jon of �his p�oduct. This pT"O<;uct wili be cxch�r.ged
vrit.hi...., twelve month!.! frorr. date of !)UT'Ch�_s,J if defr-ctive in rr.nnufacture, labeling, or pa,.kngint, but exc�pr.
tor such repiar;erne:,t the sale or s'.lbeeq•;tr.t '.!SC of this rrograrr. is -:0.thout we.r.-nn:y or linbi1ity.

THE ABOVE l.S A UMITED WARRANTY AND THE ONLY WARRANTY MADE :BY
MICROSOFT, INC. ANY AND ALL WARRANTrns FOR MERCHANTABr.LiTY AND/OR
FITNESS FOR A PARTICULAR PURPOSF. ARE EXPRESSLY EXCLUDED.

To report softwa� bugs or erro:-s b the documentation, please complete end return the Problem
Report at the buck of thi:J manual.

CP/M is a register'!-d trademark of Digital Research.
The Utility Software Package, MACR0-80, LrNK-80, CREF-80, and LIB-80 ere trademarks of
Microsoft, Inc.

D0cument No. 8401-343-04
Catalog No.
Part No.

Contents

Chapter 1 Introduction

1.1 Contents of the Utility Software Package 1-1
1.2 system Requirements 1-2
1.3 Whom Is the Utility Software Package for? 1-2
1.4 A Word about This Manual 1-3
1.5 Overview 1-4

Chapter 2 Features of the Utility Software Package

2.1 '!'wo Assembly Languages 2-2
2.2 Relocatabilitv 2-2
2.3 Macro Facilit� 2-2
2.4 Conditional Assemblv 2-3
2.5 Utility Programs 2-3

Chapter 3 Programming with the Utility Software Package

Source File Organization 3-1

Chapter

Chapter

Chapter

3.1
3. 2

3. 3
3.4
3.4.l
3.4.2

4

4 .1
4. 2
4. 3

5

5 .1
5. 2
5.3
5.4

6

6. l
6. 2
6. 2 .1
6. 2. 2
6.3

Symbols 3-3
Opcodes and Pseudo-ops 3-9
Arguments: Expressions 3-10

Operands 3-10
Operators 3-14

Assembler Features

Single-Function Pseudo-ops
Macro Facility 4-3 6
Conditional Assembly Facility

Running MACRO-SO

Invoking MACRO-80 5-2
MACRO-BO Command Line 5-2
MACRO-SO Listing File Formats

4-1

Error Codes and Messages 5-15

LINK-60 Linking Loader

Invoking LINK-SO 6-1
LINK-SO Commands 6-2

Filenames 6-3
Switches 6-4

Error Messages 6-19

4-48

5-13

Chapter 7

7.1
7.2

Chapter 8

8.1
8.2

Appendix A

Appendix B

B.l
B.2
B.3
B.4

Appendix C

Appendix D

Appendix E

Aopendix F

F.l
F.2

Index

CREF-80 Cross Reference Facility

Creating a CREF Listing 7-1
CREF Listing Control Pseudo-ops 7-3

LIB-80 Library Manager

Sample LIB-80 Session 8-2
LIB-80 Commands 8-3

Compatibility with Other Assemblers

The Utility Software Package with TEKDOS

TEKCOS Command Files B-1

MACRO-BO B-1
CREF-80 B-2
LINK-BO B-2

ASCII Character Codes

Format of LINK Compatible Object Files

Table of MACRO-BO Pseudo-ops

Table of Opcodes

ZSO Opcodes F-1
8080 Opcoces F-3

Chapter l

1.1
l. 2
l. 3

1.4

1.5

Contents

Introduction

Contents of the Utility Software Package
System Requirements 1-2
Whom Is the Utility Software Package for?

Books on Assembly Language Programming
A Word about This Manual 1-3

Organization 1-3
Syntax Notation 1-3

Overview 1-4

1-1

l-2
1-2

Welcome to

CHAPTER 1

INTRODUCTION

the world of Utility Software Package
During the course of this manual, we will
Utility Software Package is, why you use it,
it.

programming.
learn what the
and how to use

1.1 CONTENTS OF THE UTILITY SOF'rnARE PACKAGE

One diskette with the following files:

M80.COM - MACRO-80 Macro Assembler program
L80.COM - LINK-80 Linking Loader program
CP£F80.COM - Cross-Reference Facility
LIB.COM - Library Manager program

(CP/M versions only)

One Manual

The Utility Software Package Reference Manual

IMPORTANT

Always make hackup copies of
your diskettes before using
them.

INTRODUCTION Page 1-2

1.2 SYSTEM REQUIREMENTS

MACRO-SO requires about 19K of memory, plus about 4K for
buffers. LINK-80 requires about 14K of memory. CREF-80
requires about 6K of memory. LIB-80 requires about SK of
memory. The operating system usually requires about 6K
bytes of memory. So a minimum system requirement for the
Utility Software Package is 29K bytes of mem0ry. While it
is possible to run Utility Software Package programs with
only one disk drive, we recommend strongly that you have two
disk drives available.

1.3 WHOM IS THE UTILITY SOFTWARE PACKAGE FOR?

The Utility Software Package is a complete assembly language
development system with powerful features that support
advanced assembly language programming skills. This manual
describes the Utility Software Package thoroughly, but the
descriptions assume that the reader understands assembly
language programming and has experience with an assembler.

If you have never programmed
suggest that you gain some
assembler.

in assembly language, we
experience on a simpler

Books on Assembly Language Programming

We can also recommend the following books for
instr.uction in assembly language programming:

basic

Leventhal, Lance
Proqramming.

A. SOSOA/8085 Assembly Language
Berkeley: Osborne/McGraw-Hill, 1978.

Leventhal, Lance A. Z80 Assembly Language Programming.
Berkeley: Osborne/McGraw-Hill, 1979.

Zaks, Rodnay.
Berkeley:

Programminq the Z80.
Sybex, 1980.

Second edition.

INTRODUCTION

1,4 A WORD ABOUT THIS MANUAL

Organization

Page 1-3

In front of each chapter is a contents page that expands the
entries on the contents page at the beginning of the manual.
Chapter l gives introductory, background, and overview
information about the Utility Software Package. Chapters
2-8 describe the use and operation of the Utility Software
Package programs. The manual concludes with several
appendices which contain some helpful reference information.

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

(J Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{ } Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enciosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate !?<)rtions of statements or
co��ands that must be entered, exactly as shown.

All other punctuation, such as coffimas, colons, slash marks,
and equal signs, must be entered exactly as shown.

INTRODUCTION

1.5 OVERVIEW

Page 1-4

The Utility Software Package is an assembly language
programming system that parallels the design and progra:n.�ing
power of assemblers and related software on big computers.
Consequently, the design and use of the Utility Software
Package involves traits and methods that may be new to you.
As �xplained earlier, we assume that you have some
ex?erience in assembly language programming. Your knowledge
of when and why to use particular operation codes and
pseudo-operations is the base on which you can build your
knowledqe of the Utility Software Package.

One word of caution: some terms used in this manual may be
familiar to vou from other sources. Be sure to notice
especially how- familiar terms are used in the Utility
Software Package so that you are not confused or misled.

The Utility Software Package programming relies on two
im?ortant software programs -- an assembler and a linking
loader. To develop an assembly language program that runs
on your computer, you must use both the assembler and the
linking loader. The whole process is diagrammed on the
facing paqe. The numbers on the diagram correspond to the
numbe:s in the explanations below.

1. You create an assembly language source program using
some editor.

2. You assemble your source program using the MACRO-80
me.ere assembler. 'l'he result is a file that contains
intermediate obiect code. This inter:nediat� ,::ode is closer
to machine code than your source code, but cannot be
executed.

3. You link and load separately assembled file(s) into a
single program file using the LINK-80 linking loader.
LINK-80 converts the file(s) of intermediate code into a
single file of. true machine code which can be executed from
the operating system.

These are only
step process
prcaram allows
time and to
following wavs:

the basics of the whole p�ocess. This two
of converting a source file to an executable
you to manipulate your progr�ms to save you

extend your programs usefulness in the

INTRODUCTION

B
Page 1-5

I.

1

E:}"·"··

2.
MACRO-,'lli

1

B "�··m···"·

1
3.

B oi. "·

Figure 1.1: Developing Assembly Language Programs

INTRODUCTION Page 1-6

First, you can break your program in convenient parts called
modules. You can manipulate these modules at will. You can
assemble the modules individually. You fix onlv those that
do not work right and reassemble them. This saves you time.

Second, you can
memory, subject
to place modules
uncJer the fourth

manipulate the placement
to certain restrictions;

for you. (This trait is
trait.)

of modules in
or allow LINK-80
described be!ow

Third, you can use assembled modules in other programs or in
variations of the original program because there is no
permanent connection among the modules. This saves you
recoding time if a part of a program performs some useful,
often-repeated task.

Whenever you want to combine assembled modules into an
executable program, you use the LINK-80 linking loader. If
you simply tell LINK-80 the modules you want combined, it
loads them end-to-end in memory. But vou have an additional
choice. You can set uo a direct connection between a
statement in one module and a statement inside another
module. This direct connection (or "link•) means that a
value (usually a program address) in one module can be used
in another module exactly at the point required.

LINK-80 creates the links between modules. You give LINK-80
the signals it needs to create these links. The signals are
called symbols, specifically EXTERNAL symbols and PUBLIC
svmbols. An EXTERNAL svmbol signals LINK-80 that you want
it to link a value :ram another module into this point in
the progra�. The value to be linked-in is defined by a
PUSLIC symbol, which is cl signal that directs LINK-SO to the
correct module and statement line. LINK-80 then links the
PUBLIC symbol's value to the EXTERNAL symbol, then continuP.s
loading the module with the EXTERNAL symbol. The diagram
below suggests this process.

Figure 1.2:

EXTERNAL

PUBLIC

;lo:,rling a module with
;an EXTER;-.;AL symbol

;here L!NK-80 looks for
;the PUBLIC wmbol
;and links its v"alue
;then L!NK-80
;contir.ues to load
;the module with an
;EXTERNAL symbol

PUBLIC symbol linked into module at EXTERNAL

INTRODUCTION Page 1-7

Fourth, modules can be assembled into different modes, even
within a single module. The four modes are Absolute,
Data-relative, Code-relative, and COMMON-relative. The
absolute mode is similar the code produced by most small
system assemblers. The cede is assembled at fixed addresses
in memory. The other three modes are very different and are
the reason you can place modules anywhere in memory. Each
of the three relative modes assembles to a separate segment.
The addresses within each segment are relative addresses.
This means the first instruction byte of a segment is given
a relative address of O, the second byte is given relative
address 1, and so on. When LINK-80 loads the module, it
changes the relative addresses in the segments to fixed
addresses in memory. The relative addresses are offsets
from some fixed address that LINK-80 uses. For the first
module loaded, this address is 103H under the CP/M operating
system. Thus, relative addresses in the first module are
offsets from 103H. The second module is loaded at the end
of the first, and the relative addresses are offsets from
the last address in the first module. Subsequent modules
are loaded (and offset) similarly. You can change the
default start address for the first module at link time.
Then, the relative addresses become offsets from the fixed
address you specify.

relative

address

0

100

0

250

MODl

MOD2

fixed

address
103H ;start address

203H
;end MODl, begin MOD2

204H

4541-l

;end of MOD2

Figure 1.3: Loading Changes Relative Addresses to Fixed

One effect of this relative addressing method is that ORr.
statements become very different creatures. For the
relative segments, the ORG statement S?ecifies an offset
rather than a fixed address (as most assemblers do -- ORG
specifies a fixed address in the absolute segment). Thus, a
relative segment with an ORG statement would skip over a
specified number of addresses before beginning to load the
rest of the code in that segment.

I�TRODUCTION

relative
address

0

100

0
50

300

MODl

MOD2
ORG 50

fixed
address

Fage 1-8

103H ;start address

203H

204H
254H

504H

;end MODl, beg:in MOD2

;skips 50 addresses

;end ofMOD2

You should read carefully the description of ORG found in
Chapter 4.

The �bility to manipulate the placement of modules in
memory, with some restrictions (see Chapter 6), der:ves from
the assembler giving relative addresses instead of absolute
addresses. This ability to rnani�ulate module placement in
memory is called relocatability; the modules are
reloc�table: the intermediate code produced by the
assem�ler for the three relative searnents is called
relocatable code. That is why assembled modules are 0iver.
the filename extension .REL, and these assembled files are
called REL files.

Each mode serves a different purpose. The absolute mode
contains code you want placed in specific memory addresses.
Each relative mode is loaded into memory as a separate
segment. The data-relative segment contains data ite�s and
anv code that mav chance often and should cnlv be placed in
F'.,;��- The code-relatiVe s���ent contai�s coce that will not
chance and therefore is suitable for ROM and PROM. The
cm-•.:-!ON-relative seqr::ent contains data ite�s that can be
ehared by �ore than.one module.

Source statements in these modes take en the traits of their
mode. �he symbols and expressions in statements are
evaluated by the assembler according to the mode in which
they are found and the type of data and other entries that
define the sv7:ibol or ;;:ake up the parts of an ex:;:,ression.
The rnorle truits nttributed to a Sj7Ti:bol or expressio� are
called, a?prcociately, its Mode; that is, a symbol or
exPre33ion is absolute, data-relative, code-relative, or
C01-'.:-!0N-relative. This conccDt of rr.ode is important because
it is the source of both flexibility and complexity. If all

INTRODUCTION Page 1-9

source statements are assembled in absolute mode, symbols
and expressions always have absolute values, and using
absolute symbols and expressions is not complex. The
oroblem with absolute mode 1s that relocatability is
possible only through the most complex and time consuming of
techniques. Absolute mode effectively reduces your ability
to reuse code in a new program.

The relative modes (data, code, and CO�MON) are the basis of
relocatability and, therefore, of the flexibility to
manipulate modules. The complexity is that relative symbols
and relative expressions are much more difficult to
evaluate. In fact, the assembler must pass through the
source statements twice to assemble a module. During the
first pass, the assembler evaluates the statements and
expands macro call statemnts, calculates the amount of code
it •,iill generate, and builds a symbol table where all
symbols and macros are assigned values. During the second
pass, the assembler fills in the symbol and expression
values from the symbol table, expands macro call statements,
and emits the intermediate code into a REL file.

When the REL files are given to LINK-80, the segments are
linked together and loaded into fixed memory addresses. The
relative addresses are converted to absolute addresses. The
fixed addresses are assigned to the relative segments in the
order: co;., .. v.oN-relative and data-relative, then
code-relative. The relative segments are loaded relative to
default address 103H under CP/M. (The addresses 100H-102H
are used for a jump to the start address of the first
program instruction, which is normally the first address
following the COMMON and data area.)

When LINK-BO is finished linking modules together and
assigning addresses, the result can be saved in a file that
is executable from the operating system. Executing the
program is then as simple as entering an operating system
corrur.and, so these linked and loaded t'i1.es are called command
files.

This short overview should give you a general idea of the
workings and processes of the Utility Software Package.
Short descriptions of all the Utility Software Package
programs are given in the next chapter. Detailed
descriptions are given in the rest of this manual.
Therefore, the information contained in this overview will
be repeated in fuller detail elsewhere in this manual.

As an aid to the descriotion in the next chaoter and the
rest of this manual,· the next page contains an expanded
version of the diagram at the beginning of this overview.
The expanded diagram shows the relationships among all the
programs in the Utility Software Package.

IN7RODUC':'ION

Figure 1. 5: t. nships among - -Rela 10 0 ... 0qrams

Page 1-10

Chapter 2

2 .1
2.2
2.3
2.4
2.5

Contents

Features of the Utility Software Package

Two Assembly Languages 2-2
Relocatability 2-2
Macro Facility 2-2
Conditional Assembly 2-3

Utility Programs 2-3
LINK-80 Linking Loader
CREF-80 Cross Reference
LIB-80 Library Manager

2-3
Facility

2-4

2-4

CHAPTER 2

FEATURES OF THE UTILITY SOFTWARE PACKAGE

The Utility Software Package is an Assembly Language
Development System that assembles relocatable code from two
assembly languages, supports a macro facility and
conditional assembly, and provides several utility programs
that enhance program development.

WHAT IS AN UTILITY SOFTw.l',R.E PACKAGE?

An Utility software package is more than an assembler. An
Utility Software Package is a series of related utility
progra��ing tools:

for assembling an assembly language source file,

for linking several assembled modules into one
program,

for creating library files of subroutines
assembled modules),

(also

for creating cross-refer�r.ce listings of program
symbols,

for testing and debugging
executable) program files,

binary (machine

Microsoft's Utility Software Package prov1ces versions of

these tools that make che Utility Software Package extremely
powerful and useful as a proqram development system. �ach
tool in th� Utilicy Software Package is described in detail
in its own chapter.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-2

2.1 TWO ASSEM3LY LANGUAGES

7he assembler in your Utility Software Package supports two
assembly languages. Microsoft's MACRO-SO macro assembler
sup9orts both 3030 2.nd 230 rrne:nonics.

2.2 RELOCATABILITY

MACRO-SO can produce modules of relocatable code. Also,
li\e nanv assemblers, the �.ACRO-80 assembler can produce
absolute code. The �ey ad,antage of relocatability is that
oroorams c�n be asseh!bled in modules. Then, within certain
�es�rictions described in Chapter 6, the modules can then be
located almost anywhere in memory.

Relocatable modules also offer the advantages of easier
coding and faster testing, debugging, and modifying. In
aGGition, i� is possible to speci[y seg��nts of assembled
code that will later: be loaded into R;..,"! or into RQ;,r./PROM.

Relocatability will be discussed further under Section 3.2,
Symbols.

2.3 MACRO FACILITY

The MACRO-BO assembler
�aero facility. T�e
w�ite blocks of code
frequently. The need
eliminated.

supports a complete, Intel standard
macco facility allows a programmer to

(or a set of i�structions used
foe recoding these instructions is

The programmer gives this block of code a name, called a
ma�ro. The instructio�s are the macro definition. Each
time t�e set of instructior.s is needed, instead of receding
the set of instructions, the programmer simply "calls" the
macro. MACRO-80 expands the macro call by assembling the
block of instructions into the progra� automatically. T�e
mccro call also pcsses parzmeters to th� asse�bler for use
eu�ing macro expansio�. The use of macrcs reduces the size
cf c soGrce moGule beceuse t�e macrc definitions are stored
i:1 disk files c�d ccrne i��o t:i,� moGule on:y when needed
during assembly.

Macros can b� �ested, that is, a �aero can be called from
inside another macro. Nesting of macros is limited only by
me::-,ory.

FEATURES OF THE U'J'ILI'rY SOFTWARE ?ACKAGE Page 2-3

2. 4 CONDI'rIONAL ASSEMBLY

MACRO-·80 also supports conditional assembly. The programmer
can determine a condition under which portions of the
program are either assembled or not assembled. Conditional
assembly capability is enhanced by a complete set of
conditional pseudo operations that include testing of
assembly pass, symbol definition, and parameters to macros.
Conditionals may be nested up to 255 levels.

2.5 UTILITY PROGRAMS

�hree utility programs provide the additional support �eeded
to develop powerful and useful assembly language programs:
LINK-80 Linking Loader, LIB-80 Library Manager, and CREF-80
Cross Reference Facility.

LINK-80 Linking Loader

The Microsoft LINK-80 Linking Loader is used to convert the
assembled module (.REL file) into an executable module (.COM
file). The .REL file is not an executable file.

LINK-80 can also be used to:

load, link, and run one er more modules

load relocatable
locations

programs at user-specified

load program areas and data areas into separate
memory locations

While performing these tasks, LIN�-80 resolves external
references between modules (that is, any program that calls
an external value, something defined in a different program
er module, will have the outside �eferences filled at link
ti;.1e by LINK-80), and sa•;es the executable object (.COM)
file on disk, so it can be run from the operating system.

These load capabilities mean that the assembled program may
be linked with the user's library to dd routines to one of
the high-level langauge runtime 1 braries. Assembled
programs can be linked to hiqh-leve language programs
COBOL-80 and FORTRAN-SO, for example as well as to
MACRO-BO proarams.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-4

CREF-80 Cross Reference Facility

The CRE?-80 Cross Reference Facility processes a cross
reference file generated by MACRO-80. The result is a cross
reference listina that can aid in the debugging of your
program.

LJ.B-80 Library Manager (CP/M versions only)

LIB-80 is designed as a runtime library manager for CP/M
versions of the Utility Software Package. LIB-80 may also
be used to create your own library of assembly language
subroutines.

LIB-80 creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
asse�bly language programs. The programs collected by
LIB-80 may be special modules created by the programmer or
modules from an existing library. With LIB-80, you can
create specialized runtime libraries for whatever execution
requirements you design.

Chapter 3

3.1

3.2

3.3
3. 4
3. 4 .1

3. 4. 2

Contents

P�ogramming with the Utility Software Package

Source File Organizatio� 3-1
File Organization 3-1
Statement Line Format 3-1
Commeni:s 3-2

Symbols 3-3
LABEL: 3-4
PUBLIC 3-5
EXTERNAL 3-6
Modes 3-7

Opcodes and Pseudo-oos 3-9
Arguments: Expressions 3-10

Ope::a:.ds 3-10
Numbers 3-10

ASCII Strings 3-11
Character Constants 3-11
Symbols in Expressions 3-12
Current Program Counter Symbol 3-13
8080 Opcodes as Operands 3-13

CJ?erators 3-1<:

CHAPTER 3

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

This chapter describes what the user needs to know to create
MACRO-BO macro assembler source files. Source files are
created using a text editor, such as CP/M ED. The Utility
Software Package does not include a text editor program.

Source files are assembled using the procedures described in
Chapte::- 4.

3.1 SOURCE FILE ORGANIZATION

File Organization

A ?A.AC"O-80 mac::-o assembler source file
written in assembly language. The
must be an END statement. Matching
IF .•. ENDIF) must be entered in
Otherwise, lines may appear in any
designs.

Statement Line Format

is a series of lines
last line of t�e file
statemencs

the proper
order the

(such as
sequence.

progr.,.mmer

Source files input to the MACRO-BO macro assembler consist
of statement lines divided into parts or "fields."

BUF: DS 1000H ;create a buffer

r
'f' t

j
OPEJTION SY;,1BOL ARGUM:SNT COMMENT

PROGRA!-'�'1ING WITH THE UTILITY SOFTWARE PACKAGE Page 3-2

SYMBOL field contains one of the three types of symbol
(LABEL, PUBLIC, and EXTERNAL), followed by a colon
unless it is part of a SET, EQU, or 1-lACRO
statement.

OPE�TION field contains an OPCODE,
name, or an expression.

a PSEUDO-OP, a :":ACRO

ARGUMENT field contains expressions (specific values,
variables, register names, operands and operators).

;CO:"Y.E�lT field contains comment text 2.lways preceded by a
s�micolon.

All fields are optional. You may enter a completely blank
line.

St�tement lines may begin in any column. Multiple blanks or
tabs may be inserted between fields to improve readability,
out at least one space or tab is required between each
field.

Comments

A MACRO-BO macro assembler source line is basically an
Operat:on and its Argunent. Therefore, the �u",.CRO-80 macro
ass��o:er r�q;_�:"-.rc.?S that a CO:·-'J'iENT always begin with a
scm�colon. A COMM�NT ends with a carriage return.

For long comments, you
pseudo-op to avoid entering
the File ?elated Pseudo-ops
description of .COMMENT.

may want to
a semicolon
section of

use the .co:/u'1E)!7
fo= every line- S€e
Chapter � for the

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

3.2 SYMBOLS

Page 3-3

Symbols are simply names for particular functions or values.
Symbol names are created and defined by the programmer.

Symbols in the Utility Software Package belong to one of
three types, according to their function. The three types
are LABEL, PUBLIC, and EXTERNAL. All three types of symbols
have a MODE attribute that corresponds to the segment of
memory the symbol represents. Refer to the section on modes
following the description of symbol types.

All three types
characteristics:

of symbols have the following

1. Syrr,bols may be any length, but the number of
significant characters passed to the linker varies
with the type of symbol:

a. for LABELS, only the first sixteen characters
are significant.

b. for PUBLIC and EXTERNAL symbols, only the first
six characters are passed to the linker.

Additional characters are truncated internally.

2. A legal symbol name may contain the characters:

A-Z 0-9 $?

3. A symbol may not start with a digit or an underline

4. When a symbol is read, lower case is translated
into upper case, so you may enter the name using
either case or both.

?ROGR.:\.MMING WITH THE UTILITY SOFT''li'ARE ?ACK,\GE Page 3-4

LABE:..:

A L\3E�, is a reference point for statements inside the
p:cg::-a:;; rnodt.:le where the labeJ. appears. A LABEL: sets the
valu2 of the symbol LABEL to the address of the data that
follo�s. For example, in the statement:

BUF: DS 1000H

BUF: equals the first address of the 1000H byte reserved
s:=,ace.

Once a label is defined, the label can be used as an entry
in the ARGUMEN7 field. A statenent with a label in its
araurnent locos to the statement line with that label in its
SYl:!B()L field, which is where the label is defined. The
la�el's definition replaces the label used in an ARGU�ENT
field. Fo� example,

STA B:JF

sends the value in the accumulator to the aree ir. me�ory
represented by the label BUF.

A LABEL may be any legal symbol name, U? to 16 char�cters
loni;.

If you want to define a LABE�, it ��st be the first it�� in
t�e sta�e�ent line. 8080 end ZBO lahels ��st be follcwed
i�nerliately by a single colcn (no s�ace), unless the LABEL
is part of a SET or EQU statement. (I� t·�·o colons are
ente:·ed, the "label" becomes a PUBLIC s�bol. S"!e PUBLIC
Symbols belo1>:.)

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-5

PUBLIC

A PUBLIC S:(IDbOl is defined
difference is that a PUBLIC
reference point for statements
too.

A symbol is declared PUBLIC by:

much like
symbol is

in other

a LABEL. The
available as a

program modules,

two colons (::) following the name. For example,

The

FOO:: RET

one of the pseduo-ops PUBLIC, ENTRY, or GLOBAL.
For example,

PUBLIC FOO

See the Data Definition a�d Symbol Definition
Pseudo-ops section in Chapter 4 for descriptions of
how to use these pseudo-ops.

result of both methods of declaration is the same.
Therefore,

FOO:: RET

is equivalent to

PUBLIC FOO
FOO: RET

PROGRAfL�ING WITH THE UTILITY SOFTWARE PACKAGE Page 3-6

EXTE�i'4AL

An ZXTER�AL symbol is defined outside the program module
where it appears. An EXTERNAL symbol is defined as a PUBLIC
syr.1bol in another, separate p=ogram module. At link time
(when the LINK-80 Linking Loader is used), the EXTERNAL

symbol is given the value of the PUBLIC symbol in the other
program module. Por exa�ple:

MODl

FOO:: DB 7 ;PUBLIC FOO 7

MOD2

BYTE EXT FOO ;EXTERNAL FOO

At link time, LINK-BO goes to the address of PUBL:C
FOO and uses the value there (7) for EXTERNAL FOO.

A symbol is declared EXTERNAL by:

1. two pound signs (f;fi) following a reference to a
symbol narae. For ex�rnple:

CALL FOO{iii

declares FOO as a two-byte symbol defined in
another program module.

2. one of the pseudo-ops EXT, EXTRN, er EXTERNAL for
two-b�te value�. For exa�ple:

3.

EXT FOO

declares FOO as a two-byte value defined in another
program module.

one o: the pseudo-op� BYTE
SYTE EXTERNAL for one-byte

BYTE EXT FOO

EXT, BYTE
values. For

EXTERN,
example:

o::

declares FOO as a one-byte value defined in another
pt'ogram module.

See the Symbol Definition Pseudo-ops section in
Chapter 4 for descriptions of how to use these
pse�do-ops ..

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-7

As for FUBLIC symbols,
declaration is the same.

the result of both methods of
Therefore,

CALL FOOU

is equivalent to

MODES

EXT FOO
CALL FOO

A symbol is referenced by entering its name in the ARGUMENT
field of a statement line. When a symbol is referenced, the
value of the symbol (derived from the instruction which
defines the symbol) is substituted for the symbol name and
used in the operation.

The value of a symbol is evaluated according to its program
counter (PC) mode. The PC mode determines whether a section
of a program will be loaded into memory at addresses
predetermined by the proqrammer (absolute mode), or at
relative addresses that change depending on the size and
number of programs (code relative mode) and amount of data
(data relative mode), or at addresses shared with another
program module (COMMON mode). The default mode is Code
Relative.

Absolute Mode: Absolute mode assembles non-relocatable
code. A progra��er selects Absolute mode when a block of
program code is to be loaded each time into specific
addresses, regardless of what else is loaded r.oncurrently.

Data Relative Mode: Data Relative mode assembles code for a
section of a program that may change and therefore must be
loaded into RAM. 'i'his applies to program data areas
especially. Symbols in Data Relative Mode are relocatable.

Code Relative Mode: Code (program) Rela�ive mode assembles
code for sections of programs that will not be changed and
therefore can be loaded into ROM/PROM. Symbols in Code
Relative Mode are relocatable.

COMMON Mode: COMMON mode assembles code that is loaded into
a defined common data area. This allows program modules to
share a bloc� of memory and common values.

To change mode, use a PC mode pseudo-oo in a statement line.
The PC mode pseudo-ops are:

ASEG
DSEG
CSEG
COM.'iON

Absolute mode
Data Relative mode
Code Relative mode--default mode
COMMON mode

?ROGR,-'\.M.'1ING WITH ':.'HE UTILITY SO?TWARE PACKAGE Page 3-8

These pseudo-ops are described in detail
?seudo-ops section of Chapter 4.

in the PC Mode

This PC mode capability in the MACRO-80 macro assembler
allows a programmer to develop assembly language oroqrams
that can �e relocated. M�ny assemb:y language programmers
may hav€ learned always to set an Origin statement at the

b�ginni�g of every nodule, su�routir.e, or main ass�mbly
lang:.1age program. Under i"JICRO-80 this mode of .::ddressing is
called Absolute mode because hard (or actual addresses) are
specified beginning, especially, with the Origin statement.

MAC�O-80 has two ot:le=-, Ttrelati·-,..rc" r.1odes of addressing
available, called Co�e (Program) relative and Data relati e.
Se�ments of code written i� these two modes are r�locatab e.
Reloc3table means the oroaram �odule can be loaded start �g
at anv address in avail�bl� �emory, using the /P and /D
switches (special commands) in LINK-80.

PROGRA.'1MING WITH TI!E UTILITY SOFTWARE PACKAGE Page 3-9

3.3 OPCODES AND PSEUDO-OPS

Opcodes are the mnemonic names for the machine instructions.
Pseudo-ops are directions to the assembler, not the
microprocessor.

MACRO-BO supports two instruction sets: 8080 and ZB0. A
list of the opcodes with brief suw�aries of their functions
is included as Appendix F. To program with the opcodes of
the different languages, the user must first enter the
pseudo-op which tells the assembler which language is being
coded. Refer to the Lanquage Set Selection Pseudo-oos
section of Chapter 4 for details.

MACRO-BO also suooorts a large variety of pseudo-ops that
direct the ass�mbler to perform many different functions.
The pseudo-ops are described extensively in Chapter 4 and
are summarized in Appendix E.

Opcodes and pseudo-ops are (usually) entered in the
OPERATION field of a statement line. (A program statement
line us�ally has an entry in the operation field, unless the
line is a Comment line only. The Operation field will be
the first field filled if no label is entered.) An
Operation may be any 8080 or ZBO mnemonic; or a MACRO-BO
macro assembler pseudo-op, macro call, or expression.

The OPERATION field entries are evaluated in the following
order:

1. Macro call

2. Opcode/Pseudo-op

3. Expressions

MACRO-BO compares the entry in the OPERATION filed to an
internal list of macro names. If the entry is found, the
macro is expanded. If the entry is not a macro, MACRO-80
tries to evaluate the entry as an opcode. If the entry is
not an opcode, �ACRO-80 tries to evaluate the entrv as a
pseudo-op. If the entry is not a pseudo-op, MACRO-BO
evaluates the entry as an expression. If an expression is
entered as a statement line without an opcode, pseudo-op, or
macro name in front of it, the MACRO-SO macro assembler does
not return an error. Rather, the assembler assumes that a
define byte pseudo-op belongs in front of the expression and
assembles the line.

Be·cause of the order of evaluation, a macro name that is the
same as an opcode prevents you from using the opcode again,
except as a macro call. For example, if you give a block of
macro code the name ADD in your program, you cannot use ADD
as an opcode in that program.

PROGR,�vJ"lING WITH THE UTILITY SOFTWARE PACKAGE

3.4 ARG�MENTS: EXPRESSIONS

Page 3-10

Arguments fo= the opcodes and pseudo-ops are usually called
expressions because they resemble mathematical expressions,
such as 5+4*3. The pa=ts of an expression are called
ope::ands (5, 4, and 3 in the mathemati.cal expression) c>.nd
o?erators (the + and • are examples). Exp::essions may
contain one ope::and or more than one. One operand
expressions are probably the form :nost cor,,.monly used as
arcuments. If the expression contains more tha� one
operand, the operands are related to each other by an
operator. For example:

5+4 6-3 7*2 8/7 9>8

and so on. In V�CRO-80, operands are numeric values
or 8080 represented by nu:nbers, characters, symbols,

opcodes. Operators may be arithmetic or logical.

You are prohably familiar with the various forms of
expressions that can be used as arguments, but you may want
to· review the details given below fo= characteristics unique
to MAC?.O-80.

The follo�ing �ecti.ons define the forms of operands and
operators MACRO-80 supports.

3.4.l Operands

Operands may be numbers, characters,
opcodes.

symbols, or 8080

Numbers

The default base for numbers is decimal. The base may be
changed by the .RADIX pseudo-op. Any base fro:n 2 (binary)
tc 16 (hexadecimal) may be selected. When the radix is
greater than 10, A-F a�e used for the digits following 9.
If the first digit of a numher is not numeric, the number
must be preceded hy a zero.

A number is always evaluated in the current radix unless one
0f the following special notations is used:

nnnnS
n�:1nD
r.�nnO
nnnnH
X'nn!"ln'

3inarv
Decim2.l
Oct.:il
Hexadecimal
Hexadecimal

Numbers are 16-bit unsigned binary quantities.
G r.t..:�b':!r heyc::d t· . .;o �yt�s (16 bits
1:�eci:r:al) is i.g:1ored, a!;d the result is t:'le
bi ts ..

Overflow of
that is, 65535
low order lG

PROGRAMMING WITH THE UTILITY SOF��ARE PACKAGE Page 3-11

ASCII Strinos

A strinq is composed of zero or more characters delimited by
quotation marks. Either single (') or double (") quotation
marks may be used as string delimiters. When a quoted
string is entered as an argument, the values of the
characters are stored in memory one after the other. For
example:

DB "ABC"

stores the ASCII value of A at the first address, B at the
second address, and C at the third.

The delimiter quotes may be used as characters if
appear twice for every character occurrence desired.
example, the statement

"I am ""great"" today•

stores the string

I am "great" today

they
For

If no characters are placed between the quotation marks, the
string is evaluated as a null string.

Character Constants

Like strinos, character constants are comoosed of zero, one,
or two ASCII characters, delimited b; quotation marks.
Either single or double quotation marks may be used as
delimiters. The delimiter auotes mav be used as characters
if they aopear twice for ever� charac�er occurrence desired.

The differences are:

1. A character constant is only zero,
characters.

one, or two

2. Ouoted characters are a character constant onlv if
the expression has mo:e than one operand, If the
characters are entered as the only operand, they
are evaluated and stored as a string. For example:

'A'+l is a character constant, but

'A' is a string.

3. The value of a character constant is calculated,
and the result is stored with the low-byte in the
f:rst address and the high-byte in the second. For
example:

PROGRA.��ING WITH THE UTILITY SOFTWARE PACKAGE Page 3-12

3. The value of a character constant is calculated,
and the result is stored with the low-byte in the
first address and the high-byte in the second. For
example:

DW 'AB'+0

evaluates to 4142H and stores C2 in the first
address and 41 in the second.

A character constant comprised of one character has
value the ASCII value of that character. That is,
order byte of the value is zero, and the low order
the ASCII value of the character. For example, the
the constant 'A' is 41H.

as its
the high
byte is
value of

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order hyte. For example, the value of the character
constant 'AB'+0 is 41H*256+42H+0.

The ASCII decimal and hexadecimal values for characters are
listed in Appendix C.

Svmbols in Exoressions

A symbol mav be used as
symbol is evaluated,
sy;ibol. The Operation
value.

an operand in an expression. The
and the value is substituted for the

is performed using the symbol's

The benefit of using symbols as operands is that the
programmer need not remember the exact value each time it is
neeoed; rather, the symbol name can be used. The name is
usually easier to remember, especially if the symbol name is
made mnemonic. The use of symbols as operands becomes more
attractive, of course, as the number of symbols in a program
increases.

Rules Governing the Use of EXTERNALS in expressions:

1. EXTERNAL symbols may be used in expressions with
the following operators only:

+ * I MOD HIGH LOW

2. If an EXTERNAL symbol is used in an expression, the
result of the expression is always external.

MODE Rules affecting SYMBOLS in expressions:

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-13

�- In any operation, exceot AND, OR, or XOR, the
operands may be any mode.

2. For AND, OR, XOR, SHL, and SHR, both operands must
be absolute and internal.

3. When an expression contains an Absolute operand and
an operand in another mode, the result of the
expression will be in the other (not Absolute)
mode.

4. When subtracting two operands in different modes,
the result will be in Absolute mode. Otherwise,
the result will be in the mode of the operands.

5. When adding a data relative symbol and a code
relative symbol, the result will be unknown, and
MACRO-80 passes the expression to LINK-80 as an
unknown, which L INK-80 resolves.

Current E!l)gram Counter Svmbol

One additional symbol for the Argument field only must be
noted: the current program counter symbol. The current
program counter is the address of the next instruction to be
assembled. The current program counter is often a
convenient reference point for calculating new addresses.
Instead of remembering or calculating che current program
address, the programmer uses a symbol that tells the
assembler to use the value of the current program address.

The current program counter symbol is $.

8080 Oocodes as Operands

8080 opcodes are valid one-byte ocerands in 8080 mode onlv.
During assembly, the opcode is e�aluatedtoits hexadecTrnal
value.

To use 8080 opcodes as operands,
pseudo-op. See the Language Set
section of Chapter 4 for a description
.8080 pseudo-op.

first set the .8080
Selection ?seudo-ops
of how to use the

Only the first byte is a valid ooerand. Use parentheses co
direct the assembler to generate one byte for opcodes that
normally generate more than one. For example:

PROGRAM.MING WITH THE UTILITY SOFTWARE PACKAGE Page 3-14

MVI A, (JMP)
AVI (CPI)
MVI B, (R.NZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

The assembler returns an error if more than one byte is
included ir. the operand (inside the oarentheses) -- such as
(CPI 5), (LXI B,LABELl), or (JM? LABEL2).

Opcodes that generate one byte normally may be used as
operands without being enclosed in parentheses.

3.4.2 Operators

MACRO-80 allows both arithmetic and logical operators.
Operators which return true or false conditions return true
if the result is any non-zero value and false if the result
is zero.

7he following arithmetic and logical operators are allowed
in expressions.

Ooerator

NUL

TYPE

Definition

Returns true if the argument (a parameter) is
n�ll. The remainder of the lir.e after NUL is
taken as the argument to NUL. The
conditional

IF NUL <argument>

is false if the first character of the
argument is anvthina other than a semicolon
or carriage return. Note that IFB and IFNB
perform the same functions but are simpler to
use. (Refer to the Conditional Assembly
Facility section in Chapter 4.)

The TYPE operator returns a byte that
describes two characteristics of its
arc;ument: l} the mode, and 2) whether it is
External or not. The argument to TYPE may be
any expression (string, numeric, logical).
If the expression is invalid, TYPE returns
zero.

The byte that is returned is configured as

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-15

LOW

HIGH

*

I

MOD

follows:

The lower two bits are the mode. If the
lower two bits are:

0 the mode is Absolute
l the mode is Program Relative

2 the mode is Data Relative
3 the mode is Common Relative

The high bit (80H) is the Exter:-ial bit. If
the high bit is on, the expression contains
an External. If the high bit is off, the
expression is local (not External).

The Defined bit is 20H. This bit is on if
the expression is locally defined, and it is
off if the expression is undefined or
external. If neither bit is on, the
expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow; for
example, when conditional assembly is
involved.

EXAMPLE:

FOO MACRO X
LOCP.L Z

Z SET �PE X
IF Z •••

TYPE tests the mode and type of X. Depending
on the evaluation of x, the block of code
beginning with IF z ••• may be assembled or
omitted.

Isolates the low order 8 bits of an absolute
16-bit value.

Isolates the high order 8 bits of an absolute
16-bit value.

Multiply

Divide

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo).

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-16

SHR

SHL

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be right shifted.

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be left shifted.

- (Unary Minus)Indicates that following value is negative,
as in a negative integer.

+

EQ

NE

LT

LE

GT

GE

NOT

AND

OR

Add

Subtract the right operand from the left
operand.

Equal. Returns true if the operands equal
each other.

Not Equal. Returns true if the operands are
not equal to each other.

Less Than. Returns true if the left operand
is less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right
operand.

Greater Than. Returns true if the left
operand is greater than the right operand.

Greater than or Equal. Returns true if the
left operand is greater than or equal to the
right operand.

Logical NOT. Returns true if left operand is
true and right is false or if right is true
and left is false. Returns false if both are
true or both are false.

Logical AND. Returns true if both operators
are true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false. Both operands
must be absolute values.

PROGRA.'t'IING WITH THE UTILITY SOF��ARE PACKAGE Page 3-17

XOR Exclusive OR. Returns true if either
operator is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both o�erands
must be absolute values.

The order of precedence for the OP.era tors is:

NUL, TYPE

LOW, HIGH

I, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Subexpressions
an expression
:nay be altered
expression you

involving operators of higher precedence than
are computed first. The order of precedence

by using parentheses around !X)ttions of an
wish to give higher precedence.

All operators except +, -, w, and/ must be separated from
their operands by at least one space.

The byte isolation operators (HIGH and LOW)
high- or low-orcer 8 bits of a 16-bit value.

isolate the

CHAPTER 4

4.1

4.2

4.3

Contents

Assembler Features

Single-Function Pseuco-ops 4-1
Instruction Set Selection 4-2
Data Definition and Symbol Definition
PC Mode 4-13
File Related
Listing 4-27

4-20

Format Control 4-28

4-4

General Listing Control 4-31
Conditional Listing Control 4-33
Macro Expansion Listing Control 4-34
CREF Listing Control 4-35

Macro Facility 4-36
Macro Definition

Calling a Macro
Repeat Pseudo-ops
Termination 4-44

4-37
4-38

4-40

Macro Symbol 4-45
Special Macro Operators

Conditional Assembly Facilitv
4-46

4-48

CHAPTER 4

ASSEMBLER FEATURES

The MACRO-80 macro assembler features three general
facilities: single-function pseudo-ops, a macro facility,
and a conditional assembly facility.

4.1 SINGLE-FUNCTION PSEUDO-OPS

Single-function pseudo-ops involve only their own statement
line and direct the assembler to perform only one function.
(Macros and conditionals involve mor� than one line of code,
so they may be thought of as block pseudo-ops.)

The Single-Function Pseudo-ops are divided into five types:
Instruction Set Selection, Daca Definition and Symbol
Definition, PC Mode, File Related, and Listing Control.

ASSEMBLER FEATURES

INSTRUCTION SET SELECTION

Page 4-2

The default instruction set mode is 8080. If the correct
instruction set selection pseudo-op is not given, the
assembler will return fatal errors for opcodes that are not
valid for the current instruction set selection mode. That
is, .Z80 assembles Z80 opcodes only; .8080 assembles 8080
opcodes only. Therefore, if you have written any assembly
language programs for Z80, you need to insert the .Z80
instruction set pseudo-op at the beginning of the program
file.

Note that all the pseudo-ops listed in this chapter will
assemble in both instruction set modes.

ASSEMBLER FEATURES Page 4-3

.zao

• aoao

.zao takes no arguments • • zao directs MACRO-BO to
assemble zao opcodes .

.8080 takes no arguments •
to assemble 8080 opcodes.

• 8080 directs MACRO-BO
(default)

All opcodes entered following an Instruction Set
Selection pseudo-op will be assembled as that type
of code until a different Instruction Set Selection
pseudo-op is encountered.

If you enter an opcode not belonging to the
selected instruction set, MACRO-BO will return an
Objectionable Syntax error (letter O).

ASSEMBLER FEATURES Page 4-4

DATA DEFINITION AND SYMBOL DEFINITION

All of the data definition and symbol definition pseudo-ops
are supported in both instruction set modes. (The one
notable exception is SET, which is illegal in .Z80 mode.
For your information, The following notation has been placed
before the pseudo-op syntax to indicate which microprocessor
the pseudo-op is usually associated with:

* indicates a Z80 pseudo-op

No asterisk indicates an Intel 8080 pseudo-op

ASSEMBLER FEATURES Page 4-5

Define�

DB <exp>[,<exp> .••]
• DEFB <exp>(,<exp> ••• J

DB <string>(<string> .••]
• DEFM <string>[,<string> •.• J

The arguments to DB are either expressions or
strings. The arguments to DEFB are expressions.
The arguments to DEFM are strings. Strings must be
enclosed in quotes, either single or double.

NOTE: DB is
explanation
pseudo-ops.

used throughout
to represent all

the
the

following
Define Byte

DB is used to store a value (string or numeric) in
a memory location, beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the er.d of the line). The
characters in a 8080 or Z80 string are stored in
the order of. appearance, each as a one-byte value
with the high order bit set to zero.

EXAMPLE:

DB 'AB'
DB 'AB' AND 0FFH
DB 'ABC'

assembles as:

0000' 41 42 DB 'AB'
0002' 42 CB 'AB' AND 0FFH
0003' 41 42 43 DB 'ABC'

ASSEMBLER FEATURES

Define Character

DC <string>

Page 4-6

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

EXAMPLE:

FOO: DC "ABC"

assembles to:

0000' 41 42 C3 FOO: DC "ABC•

ASSEMBLER FEATURES Page 4-7

Define Space

OS <exp>(,<val>]
* DEFS <exp>[,<val>]

The define space pseudo-ops reserve an area of

memory. The value of <exp> gives the number of
bytes to be reserved.

To initialize the reserved space, set <val> to the
value desired. If <val> is nul (that is, omitted),
the reserved space is left as is (uninitialized);
the reserved block of memory is not automatically
initialized to zeros. As an alternative to setting
<val> to zero, when you want the define space block
initialized to zeros, you may use the /M switch at
assembly time. See the Switches section in Chapter
5, Running MACR0-80, for a description of the /M
switch.

All names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1,
and a U error may be generated during pass 2. If a
U error is not generated during pass 2, a phase
error will probably be generated because the define
space pseudo-op generated no code on pass 1.

EXAMPLE:

OS 100H

reserves 1008 bytes of memory, uninitialized
(whatever values were in those bytes before the
program was loaded will still be there). Use the
/M switch at assembly time to initialized the 100H
bytes to zero, if you want. Or, use the following
statement to initialize a reserved space to zero or
any other value:

OS lOOH,2

reserves 100H bytes, each initialized to a value of
2.

ASSEMBLER FEATURES

Define Word

OW <exp>[,<exp> ... J
* DEFW <exp>[,<exp> •••]

Page 4-8

The define word pseudo-ops store the values of the
expressions in successive memory locations
beginning with the current location counter.
Expressions are evaluated as 2-byte (word) values.
Values are stored low-order byte first, then
high-order byte.

Contrast with DOB.

EXAMPLE:

assembles as:

0000' 1234 FOO:

FOO: ow 1234H

ow 1234H

Note: The bytes are shown on the listing in the
order entered, not the order stored.

ASSEMBLER FEATURES Page 4-9

Equate

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. The
<name> may be a label, a symbol, or a variable, and
may be used subsequently in expressions. <name>
may not be followed by colon(s).

If <exp> is External, an error is generated. If
<name> already has a value other than <exp>, an M
error is generated.

If you will want to redefine <name> later in the
program, use the SET or ASET pseudo-op to define
<name> instead of EQU.

Contrast with SET.

EXAMPLE:

BUF EQU OF3H

ASSEMBLER FEATURES

External Symbol

EXT <name>[,<name> ••• J
EXTRN <name>(,<name> ••• J

• EXTERNAL <name>[,<name> ••. J
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>

Page 4-10

The External symbol pseudo-ops declare that the
name(s) in the list are External (i.e., defined in
a different module). If any item in the list
refers to a name that is defined in the current
proqram, an M error results. A reference to a name
where the name is followed immediately be two pound
signs (e.g., NAME##) also declares the name as
External.

Externals may evaluate to either one or
For all External symbol names, only
characters are passed to the linker.
characters are truncated internally.

EXAMPLE:

EXTRN ITRAN ;tranf init,rtn

two bytes.
the first 6

Additional

MACRO-80 will generate no code for this statement
when this module is assembled. When ITRAN is used
as an argument to a CALL statement, the CALL ITRAN
statement generates the code for CALL but a zero
value (0000*) for I'l'RAN. At link time, LINK-80
will search all modules loaded for a PUBLIC ITRAN
statement and use the definition of ITRAN found in
that module to define ITRAN in the CALL ITRAN
statement.

ASSEMBLER FEATURES

Public Symbol

ENTRY <name>[,<name> •.• J
GLOBAL <name>[,<name> ••• J
PUBLIC <name>[,<name> •.. J

Page 4-11

The Public symbol pseudo-o�s declare each name in
the list as internal and therefore available for
use by this program and other programs to be loaded
concurrently and linked with LINK-80. All of the
names in the list must be defined in the current
program, or a U error results. An M error is
generated if the name is an External name or common
block name.

Only the first 6 characters of a Public symbol name
are passed to the linker. Additional characters
are truncated internally.

EXAMPLE:

PUBLIC !TRAN :tranf init rtn

ITRAN: LO HL,PASSA ;store addr of
;reg pass area

MACRO-80 assembles the LO statement as usuall but
generates no code for the PUBLIC !TRAN statement.
When LINK-80 sees EXTRN !TRAN in another module, it
knows to search until it sees this PUBLIC !TRAN
statement. Then, LINK-80 links the value of !TRAN:
LO HL,PASSA statement to the CALL ITRAN statement
in the other module(s).

ASSEMBLER FEATURES Page 4-12

Set

•

<name> SET <exp>
<name> DEFL <exp>
<name> ASET <exp>

(Not in .zao mode)

The Set pseudo-ops assign the value of <exp> to
<name>. The <name> may be a label, a symbol, or a
variable, and may be used subsequently in
expressions. <name> may not be followed by
colon(s). If <exp> is External, an error is
generated.

The SET pseudo-op may not be used in .zao mode
because SET is a Z80 opcode. Both ASET and DEFL
may be used in both instruction set modes.

Use one of the SET pseudo-ops instead of EQU to
define and redefine <name>s you may want to
redefine later. <name> may be redefined with any
of the Set pseudo-ops, regardless of which
pseudo-op was used tc define <name> originally (the
prohibition against SET in .7.80 mode still applies,
however).

Contrast with EQU.

EXAMPLE:

FOO ASET BAZ+l000H

Whenever FOO is used as an expression (operand),
the ALDS assembler will evaluate BAZ+l000H and
substitute the value for FOO. Later, if you want
FOO to represent a different value, simply reenter
the FOO ASET statement with a different expression.

FOO ASET BAZ+l000H

FOO ASET 3000H

FOO DEFL 6CDEU

ASSEMBLER FEATURES Page 4-13

PC MODE

Many of the pseudo-ops operate on or from the current
location counter, also known as the program counter or PC.
The current PC is the address of the next byte to be
generated.

In MACRO-80, the PC has a mode, which gives symbols and
expressions their modes. (Refer again to the Overview in
Chapter l and the Symbols section in Chapter 3, if
necessary.) Each mode is given a segment of memory by
LINK-BO for the instructions assembled to each mode.

The four modes are Absolute, Data Relative, Code Relative,
and COMMON Relative.

If the PC mode is absolute, the PC is an absolute address.
If the PC mode is relative, the PC is a relative address and
may be considered an offset from the absolute address where
the beginning of that relative segment will be loaded by
LINK-80.

The PC mode pseudo-ops are used to specify in which PC mode
a segment of a program will be assembled.

ASSEMBLER FEATURES

Absolute Segment

ASEG

ASEG never has operands.
non-relocatable code.

Page 4-14

ASEG generates

ASEG sets the location counter to an absolute
segment (actual address) of memory. The ASEG will
default to 0, which could cause the module to write
over part of the operating system. We recommend
that each ASEG be followed with an ORG statement
set at 103R or higher.

ASSEMBLER FEATURES Page 4-15

Code Segment

CSEG

CSEG never has an operand. Code assembled in Code
Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code
relative segment of memory. The location will be
that of the last CSEG (default is 0), unless an ORG
is done after the CSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under CSEG mode. An ORG
statement under CSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last CSEG address
loaded, If, for example, ORG 50 is given, MACRO-80
will add 50 bytes to the current CSEG location then
begin loading the CSEG. The clearing effect of th�
ORG statement following CSEG (and DSEG as well) can
be used to give the module an offset. The
rationale for not.allowing ORG to set an absolute
address for CSEG is to keep the CSEG relocatable.

To set an absolute address for the CSEG, use the /P
switch in LINK-80.

CSEG is the default mode of the assembler.
Assembly begins with a CSEG automatically executed,
and the location counter in the Code Relative mode,
pointing to location O in the Code Relative segment
of memory. All subsequent instructions will be
assembled into the Code Relative segment of memory
until an ASEG, DSEG, or CO��ON pseudo-op is
executed. CSEG is then entered to return the
assembier to Code Relative mode, at which point the
location counter returns to the next free location
in the Code Relative segment.

ASSEMBLER FEATURES Page 4-16

Data Segment

DSEG

The DSEG pseudo-op never has operands, DSEG
specifies segments of assembled relocatable code
that will later be loaded into RAM only.

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the last DSEG
(default is 0), unless an ORG is done after the
DSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under DSEG mode. An ORG
statement under DSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last DSEG address
loaded. If, for example, ORG 50 is given, MACRO-BO
will add 50 bytes to the last DSEG address loaded
then begin loading the DSEG. The clearing effect
of the ORG statement following DSEG (and CSEG as
well) can be used to give the module an offset.
The rationale for not allowing ORG to set an
absolute address for DSEG is to keep the DSEG
relocatable.

To set an absolute address for the DSEG, use the /D
switch in LINK-80.

ASSEMBLER FEATURES Page 4-17

Common Block

COMMON /<block name>/

The argument to COMMON is the common block name.
COMMON creates a common data area for every COMMON
block that is named in the program. If <block
name> is omitted or consists of spaces, the block
is considered to be blank common.

COMMON statements are non-executable, storage
allocating statements • • COMMON assigns variables,
arrays, and data to a storage area called COMMON
storage. This allows various program modules to
share the same storage area. Statements entered
following the .COMMON statement are assembled to
the COMMON area under the <block name>. The length
of a COMMON area is the number of bytes required to
contain the variables, arrays, and data declared in
the COMMON block, which ends when another PC mode
pseudo-op is encountered. COMMON blocks of the
same name may be different lengths. If the lengths
differ, then the program module with the longest
COMMON block must be loaded first (that is, must be
the first module name given in the LINK-80 command
line: see Chapter 6 for the description of
LINK-80).

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained.

EXAMPLE:

ANVIL

COMMON
EQU

DB
DW
DCI
CSEG

/DATABIN/
lOOH
OFFH
1234H
'FORGE'

ASSEMBLER FEATURES

Set Origin

ORG <exp>

Page 4-18

At any time, the value of a location counter may be
changed by use of ORG. Under the ASEG PC mode, the
location counter is set to the value of <exp>, and
the assembler assigns generated code starting with
that value. Under the CSEG, DSEG, and COMMON PC
modes, the location counter for the segment is
incremented by the value of <exp>, and the
assembler assigns generated code starting with the
value of that last segment address loaded plus the
value of <exp>. All names used in <exp> must be
known on pass 1, and the value must either be
Absolute or in the same area as the location
counter.

EXAMPLE:

DSEG
ORG 50

sets the Data Relative location counter to 50,
relative to the start of the Data Relative segment
of memory. This means that the first S0H addresses
will be filled with 0. This method provides
relocatability. The ORG <exp> statement does not
specify a fixed address in CSEG or DSEG mode;
rather, LINK-80 loads the segment at a flexible
addtess appropriate to the modules being loaded
together.

On the other hand, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800H, unless the ORG
statement is changed in the source file. That is,
ORG <exp> following ASEG originates the segment at
a fixed (i.e., absolute) address specified by
<exp>. However, the same program, assembled in
Code Relative mode with no ORG statement, may be
loaded at any specified address by appending the
/P:<address> switch to the LINK-80 command string.
(For details, see Section 6.3, Switches.)

hSSEMBLER FEATURES Page 4-19

Relocate

.PHASE <exp>

.DEPHASE

.PHASE allows code to be located in one area, but
executed only at a different area with a start
addr�ss specified by <exp>. The <exp> must be an
absolute value, .OEPHASE is used to indicate the
end of the relocated block of code.

The PC mode within a .PHASE block is absolute, the
same as the mode of the <exp> in the .PHASE
statement. The code, however, is loaded in the
area in effect when the .PHASE statement is
encountered. The code within the block is later
moved to the address specified by <exp> for
execution.

EXAMPLE:

.PHASE 1008
FOO: CALL BAZ

JMP zoo

BAZ: RET

.DEPHASE
ZOO: JMP 5

assembles as:

.PHASE 1008
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007' JMP zoo

0106 C9 BAZ: RET

.DEPHASE
0007' C3 0005 ZOO: JMP 5

END

.PHASE ..•• DE?HASE blocks are a way to execute a
block of code at a specific absolute address.

ASSEMBLER FEATURES Page 4-20

FILE RELATED

The file related pseu�o-ops insert long co mments in the
program, giv� the module a name, end the module, or move
other files into the current program.

ASSEMBLER FEATURES Page 4-21

Comment

,COMMENT <delim><text><delim>

The first non-blank character encountered after
.COMMENT is taken as the delimiter. The <text>
following the delimiter becomes a comment block
which continues until the next occurrence of
<delimiter>,

Use the .COMMENT pseudo-op to make long comments.
It is not necessary to enter the semicolon to
indicate a COMMENT. Indeed, the main reason for
using .COMMENT is to override the need to begin
each comment line with a semicolon. During
assembly, .COMMENT blocks are ignored and not
assembled.

EXAMPLE:

.COMMENT * any amount of text
entered here

* ;return to normal assembly

ASSEMBLER FEATURES Page 4-22

End of Program

END [<exp>l

The END statement specifies the end of the module.
If the END statement is not included, a %No END
statement warning error message results.

The <exp> may be a label, symbol, number, or any
other legal argument that LINK-80 can load as the
starting point into the first address to be loaded.
If <exp> is present, LINK-80 will place an 8080 JMP
instruction at 0100H to the address of <exp>. If
<exp> is not present, then no start address is
passed to LINK-80 for that program, and execution
begins at the first module loaded. (Also, if <exp>
is not specified, the LINK-80 /G switch will not
work for the module.)

The <exp> tells LINK-80 that the program is a main
program. Without <exp>, LINK-80 takes assembly
language programs as subroutines. If you link only
assembly language programs and none contains an END
statement with <exp>, LINK-80 will ask for a main
program. If you link two or more programs with END
<exp> statements, LINK-80 cannot distinguish which
should be the main program.

If you want to link two or more main programs,
the /G:Name or /E:Name switches in LINK-80
Section 6.2.2, Switches). The "Name" will be
<exp> of the END statement for the program you
to serve as the main program.

use
(see
the

want

If any high-level language program is loaded with
assembly]anguage modules, LINK-80 takes the
high-level language program as the main program
automatically. Therefore, if you want an assembly
language module executed before the high-level
language program, use the /G:Name or /E:Name switch
in LINK-80 to set the assembly language module as
the beginning of the program.

As an alternative, we recommend that you place a
CALL or INCLUDE statement at the beginning of the
high-level language program, and call in the
assembly language program for execution prior to
execution of the high-level language program.

ASSEMBLER FEATURES Page 4-23

Include

INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>

All three pseudo-ops are synonomous.

These Include pseudo-ops insert source code from an
alternate assembly language source file into the
current source file during assembly. Use of an
Include pseudo-op eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating svstem. If the filename extension
and/or device designation are other than the
default, source filename specifications must
include them. The default filename extension for
source files is .MAC. The default device
designation is the currently logged drive or
device.

The included file is opened and assembled into the
current source file immediately following the
Include pseudo-op statement. When end-of-file is
reached, assembly resumes with the next statement
following Include pseudo-op.

Nested Includes are not allowed. If encountered,
they will result in an objectionable syntax error,
0.

The file specified in the operand field must exist.
If the file is not found, the error V (value error)
is returned, and the Include is ignored. The V
error is also returned if the Include filename
extension is not .MAC.

On a MACRO-BO listing, the
between the assembled code
each line assembled from an
Listing Control Pseudo-op
description of listing file

letter
and the

included
section

formats.

C is orinted
source line on
file. See the

below for a

ASSEMBLER FEATURES

Name Module

NAME ('mod name')

Name defines a
parentheses and
required. Only
significant in a

Page 4-24

name for the module.
quotation marks around modname

the first six characters
module name.

The
are
are

A module name may also be defined
pseudo-op. In the absence of
TITLE pseudo-ops, the module name
the source filename.

with the TITLE
both the NAME and
is created from

ASSEMBLER FEATURES Page 4-25

.RADIX <exp>

The <exp> in a .RADIX statement is always a decimal
numeric constant, regardless of the current radix.

The default input radix (or base) for all constants

is decimal. The .RADIX psel!do-op allows you to
change the inout radix to any base in the range 2
to 16 •

. RADIX does not change the radix of the listing;
rather, it allows you to input numeric values in
the radix you choose without special notation.
(Values in other radixes still require the special
notations described in Section 3.4.1.) Values in
the generated code remain in hexadecimal radix.

EXAMPLE:

DEC: DB 20
.RADIX 2

BIN: DB 00011110
.RADIX 16

REX: DB 0CF
.RADIX 8

OCT: DB 73
. RADIX 10

DEC!: DB 16
HEXA: DB OCH

assembles as:

0000' 14 DEC: DB 20

0002 .RADIX 2

0001' lE BIN: DB 00011110
0010 .RADIX 16
0002' CF HEX: DB 0CF
0008 .RADIX 8

0003' 3B OCT: DB 73
000A .RADIX 10
0004' 10 DEC!: DB 16
0005' oc HEXA: DB OCH

ASSEMBLER FEATURES Page 4-26

Request

.P.PQUEST <filename>[,<filename> ••• J

When you run LINK-BO, .REQUEST sends a request to
the LINK-BO linking loader to search the filenames
in the list for undefined external symbols. If
LINK-BO finds any undefined external symbols
(external symbols for which a corresponding PUBLIC
symbol is not currently loaded), you will know that
you need to load one or more additional modules to
complete linking.

The filenames in the list should be in the form of
legal symbols. <filename> should not include a
filename ext�nsion or device designation. LI�K-BO
assumes the default extension (.REL) and the
currently loqged disk drive.

EXAMPLE:

.REQUEST SUBRl

LINK-BO will search
which do not have
definitions declared
modules.

SUBRl for external
corresonding PUBLIC

among the currently

symbols
symbol
loaded

ASSEMBLER FEATURES Page 4-27

LISTING

Listing pseudo-ops perform two general functions: format
control and listing control. Format control pseudo-ops
allow the programmer to insert page breaks and direct page
headings. Listing control pseudo-ops turn on and off the
listing of all or part of the assembled file.

ASSEMBLER FEATURES Page 4-28

Format Control

These pseudo-ops allow you to direct page breaks, titles,
and subtitles on your program listings.

Form Feed

* *EJECT [<exp>]
PAGE <exp>
$EJECT

The form feed pseudo-ops cause the assembler to
start a new output page. The assembler puts a form
feed character in the listing file at the end of
the page.

The value of <exp>, if incluned, becomes the new
page size (measured in lines per page) and must be
in the range 10 to 255. The default page size is
50 lines per page.

EXAMPLE:

*EJECT 58

The assembler causes the printer
page every time 58 lines of
printed.

to start a new
program have been

ASSEMBLER FEATURES Page 4-29

Title

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE is
given, a Q error results. The first six characters
of the title are used as the module name, unless a
NAME pseudo-op is used. (If neither a TITLE nor a
NAME pseudo-op is used, the module name is created
from the source filename.)

EXAMPLE:

TITLE PROGl

The module name is now PROGl. The module may be
called by this name, which will be printed at the
top of every listing page.

ASSEMBLER FEATURES Page 4-30

Subtitle

SUBTTL <text>
$TITLE ('<text>')

SUBTTL specifies a subtitle to be listed in each
page heading on the line after the title. The
<text> is truncated after 60 characters.

Any number of SUBTTLs may be given in a program.
Each time the assembler encounters SUBTTL, it
replaces the <text> from the previous SUBTTL with
the <text> from the most recently encountered
SUBTTL. To turn off SUBTTL for part of the output,
enter a SUBTTL with a null string for <text>.

EXAMPLE:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

The first SUBTTL causes the subtitle
ROUTINE to be printed at the top
The second SUBTTL turns off subtitle
line on the listing is left blank).

SPECIAL I/O
of every page.
(the subtitle

ASSEMBLER FEATURES Page 4-31

General Listing Control

.LIST

.XLIST

- List all lines with their code
- Suppress all listing

.LIST is the default condition. If you specify a
listing file in the command line, the file will be
listed.

When .XLIST is encountered in the source file,
source and object code will not be listed . • XLIST
remains in effect until a .LIST is encountered •

• XLIST overrides all other listing control
pseudo-ops. So, nothing will be listed, even if
another listing pseudo-op (other than .LIST) is
encountered.

EXAMPLE:

.XLIST ;listing suspended here

.LIST :listing resumes here

ASSEMBLER FEATURES Page 4-32

Print At �erminal

.PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered •
. PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assemblv switches •

. PRINTX will output on both passes. If only one
printout is desired, use the !Fl or IF2 pseudo-op,
depending on which pass you want displayed. See
the Conditional pseudo-ops for !Fl and IF2.

EXAMPLE:

.PRINTX *Assembly half done•

The assembler will send this message to the
terminal screen when encountered.

!Fl
.PRINTX *Pass 1 done*
ENDIF

IF2
.PRINTX *Pass 2 done•
ENDIF

;pass 1 message only

;pass 2 message only

ASSEMBLER FEATURES Page 4-33

Conditional Listing Control

The three conditional listing control pseudo-ops are used to
specify whether or not you wish statements contained within
a false conditional block to appear on the listing. See
also the description of the /X switch in Chapter 5.

Suopress False Conditionals

.SFCOND

.SFCOND suppresses the !)Ortion of the listing that
contains conditional expressions that evaluate as
false.

List False Conditionals

.LFCOND

.LFCOND assures the listing
expressions that evaluate false.

Toggle False Listing Conditional

.TFCOND

of conditional

.TFCOND toggles the current setting. .TFCOND
operates independently from .LFCOND and .SFCOND .
• TFCOND toggles the default setting, which is set
by the presence or absence of the /X switch in the
assembler command line. When /X is present,
.TFCOND will cause false conditionals to list.
When/Xis not given, .TFCOND will suppress false
�onditionals.

ASSEMBLER FEATURES Page 4-34

Macro Expansion Listing Control

Expansion listing pseudo-ops control the listing of lines
inside macro and repeat pseudo-op (REPT, IRP, IRPC) blocks,
and may be used only inside a macro or repeat block.

Exclude Non-code Macro Lines

.XALL

.XALL is the default •

• XALL lists source code and object code produced by
a macro, but source lines which do not generate
code are not listed.

List Macro Text

.LALL

.LALL lists the complete macro text for all
expansions, including lines that do not generate
code.

Suppress Macro Listing

.SALL

.SALL suppresses listing of all text and object
code produced by macros.

ASSEMBLER FEATURES Page 4-35

CREF Listing Control Pseudo-ops

You may want the option of generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
.XCREF, in the source file for MACRO-80. These two
pseudo-ops may be entered at any point in the program in the
OPERATOR field. Like the other listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTS.

Suppress Cross References

.XCREF

.XCREF turns of the .CREF (default) pseudo-op .
• XCREF remains in effect until MACRO-BO encounters
.CREF. Use .XCREF to suppress the creation of
cross references in selected portions of the file.
Because neither .CREF nor .XCREF takes effect until
the /C switch is set in the MACRO-BO command line,
there is no need to use .XCREF if you want the
usual List file (one without cross references):
simply omit /C from the ALDS assembler command
line.

List Cross References

.CREF

.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-op. .CREF remains in
effect until MACRO-BO encounters .XCREF. Note,
however, that .CREF has no effect until the /C
switch is set in the MACRO-BO command line.

ASSEMBLER FEATURES

4.2 MACRO FACILITY

Page 4-36

The macro facility allows you to write blocks of code which
can be repeated without recoding. The blocks of code begin
with either the macro definition pseudo-op or one of the
repetition pseudo-ops and end with the ENDM pseudo-op. All
of the macro pseudo-ops may be used inside a macro block.
In fact, nesting of macros is limited only by memory.

The macro facility of the MACRO-80 macro assembler includes
pseudo-ops for:

macro definition:
MACRO

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

The macro facility also supports some
operators:

&

%

special macro

ASSEMBLER FEATURES Page 4-37

Macro Definition

<name> MACRO <dummy>[,<dumrny> .••]

ENDM

The block of statements from the MACRO statement
line to the ENDM statement line comprises the body
of the macro, or the macro's definition.

<name> is like a LABEL and conforms to the rules
for forming symbols. Note that <name> may be any
length, but only the first 16 characters are passed
to the linker. After the macro has been defined,
<name> is used to invoke the macro.

A <dummy> is a place holder that is replaced by a
parameter in a one-for-one text substitution when
the MACRO block is used. Each <dummy> may be up to
32 characters long. The number of dummys is
limited only by the length of a line. If you
specify more than one dummy, they must be separated
by commas. MACRO-80 interorets all characters
between commas as a single dummy.

NOTE

A dummy is always recognized exclusively as
a dummv. Even if a register name {such as
A or B) is used as a dummy, it will be
replaced by a parameter during expansion.

A macro block is not assembled when it is
encountered. Rather, when you call a macro, the
assembler "expands" the macro call statement by
bringing in and assembling the appropriate macro
block.

If you want to use the TITLE, SUBTTL, or NAME
pseudo-ops for the portion of your program where a
macro block appears, you should be careful about
the form of the statement. If, for example, you
enter SUBTTL MACRO DEFINITIONS, MACRO-BO will
assemble the statement as a macro definition with
SUBTTL as the macro name and DEFINITIONS as the
dummy. To avoid this problem, alter the word MACRO
in some way; e.g., - MACRO, MACROS, and so on.

ASSEMBLER FEATUR ES Page 4-38

Calling a Macro

To use a macro, enter a macro call statement:

<name> <parameter>[,<parameter> •.• J

<name> is the <name> of the MACRO block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a line. If you enter more than one
parameter, they must be separated by commas. If
you place angle brackets around parameters
separated by commas, the assembler will pass all
the items inside the angle brackets as a single
parameter. For example:

FOO 1,2,3,4,5

passes five parameters to the macro, but:

FOO <l,2,3,4,5>

passes only one.

The number of parameters in the macro call

statement need not be the same as the number of
dummys in the MACRO definition. If there are more
parameters than dummys, the extras are ignored. If
there are fewer, the extra dummys will be made
null. The assembled code will include the macro
block after each macro call statement.

EXAMPLE:

EXCHNG MACRO X,Y

PUSH X

PUSH y

POP X

POP y

ENDM

If you then enter as part of a program some code
and a macro call statement:

LOA
MOV
LDA
MOV
EXCHNG

2FH
HL,A
3FH
DE,A
HL,DE

ASSEMBLER FEATURES Page 4-39

assembly generates the code:

0000' 3A 002F LDA 2FH
0003' 67 MOV HL,A
0004' 3A 003F LDA 3FH
0007' 57 MOV DE,A

EXCHNG HL,DE
0008' ES + PUSH HL
0009' D5 + PUSH DE
000A' El + POP HL

000B' Dl + POP DE

ASSEMBLER FEATURES Page 4-40

Repeat Pseudo-ops

The pseudo-ops in this group allow the o�erations in a block
of cone to be repeated for the number of times you specify.
The major differences between the Repeat pseudo-ops and
MACRO pseudo-op are:

1. MACRO gives the block a name by which to call in
the code wherever and whenever needed: the macro
block can be used in many different programs by
simply entering a macro call statement.

2. MACRO allows parameters to be passed to the MACRO
block when a MACRO is called: hence, parameters
can be changed.

Repeat �seudo-op parameters must be assigned as a �art of
the code block. If the parameters are known in advance and
will not change, and if the repetition is to be performed
for every program execution, then Repeat pseudo-ops are
convenient. With the MACRO pseudo-op, you must call in the
MACRO each time it is needed.

Note that each Repeat pseudo-op must be matched with the
ENDM pseuno-op to terminate the repeat block.

ASSEMBLER FEATURES

Repeat

REPT <exp>

ENDM

Repeat block of statements between REPT
<exp> times. <exp> is evaluated as
unsigned number. If <exp> contains an
symbol or undefined operands, an
generated.

EXAMPLE:

X SET 0

Page 4-41

and ENDM
a 16-bit

External
error is

REPT 10 :generates DB 1 - DB 10
X SET X+l

DB X

ENDM

assembles as:

0000 X SET 0
REPT 10 :generates DB 1 - DB 10

X SET X+l

DB X

ENDM
0000' 01 + DB X

0001' 02 + DB X

0002' 03 + DB X

0003' 04 + DB X

0004' 05 + DB X

0005' 06 + DB X

0006' 07 + DB X

0007' 08 + DB X

0008' 09 + DB X

0009' OA + DB X

END

ASSEMBLER FEATURES Page 4-42

Indefinite Repeat

IRP <dummy>,<parameters inside angle brackets>

ENDM

Parameters must be enclosed in angle brackets.
Parameters may -be any legal symbol, string,
numeric, or character constant. The block of
statements is repeated for each parameter. Each
repetition substitutes the next parameter for every
occurrence of <dummy> in the block. If a parameter
is null (i.e., <>), the block is processed once
with a null parameter.

EXAMPLE:

!RP X,<l,2,3,4,5,6,7,8,9,10>
DB X
ENDM

This exam�le generates the same bytes (DB 1 DB
10) as the REPT example.

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
statement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from the
parameters:

FOO MACRO
!RP
DB
ENDM
ENDM

X
Y,<X>
y

When the macro call statement

FOO <l,2,3,4,S,6,7,8,9,l0>

is assembled, the macro expansion becomes:

!RP
DB
ENDM

Y,<l,2,3,4,S,6,7,8,9,l0>
y

The angle brackets around
removed, and all items are
parameter.

the parameters are
9assed as a single

ASSEMBLER FEATURES Page 4-43

Indefinite Repeat Character

IRPC <dummy>,<string>

ENDM

The statements in the block are repeated once for
each character in the string. Each repetition
substitutes the next character in the string for
every occurrence of <dummy> in the block.

EXAMPLE:

IRPC
DB
ENDM

X,0123456789
X+l

This example generates the same code (DB 1 - DB 10)
as the two previous examples.

ASSEMBLER FF.ATURES Page 4-44

Termination

End Macro
-- ---

ENDM

ENDM tells the assembler that the MACRO or Repeat
block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM pseudo-op. Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an O error.

If you wish to be able to exit
repeat block before expansion
EXITM.

from a MACRO or
is completed, use

Exit Macro

EXITM

The EXITM pseudo-op is used inside a MACRO or
Repeat block to terminate an expansion when some
condition makes the remaining expansion unnecessary
or undesirable. Usually EXITM is used in
conjunction with a conditional pseudo-op.

When an EXITM is assembled, the expansion is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the
EXITM is nested within another block, the outer
level continues to be expanded.

EXAMPLE:

FOO
y

y

MACRO
SET
REPT
SET
IFE
EXITM
ENDIF

X
0
X
Y+l
Y-OFFH ;test Y
;if true, exit REPT

DB Y
ENDM
ENDM

ASS&V.BLER FEATURES Page 4-45

Macro Symbol

LOCAL <dummy>[,<dummy> ...]

The LOCAL pseudo-op is allowed only inside a MACRO
definition block. When LOCAL is executed, the
assembler creates a unique symbol for each <dummy>
and substitutes that symbol for each occurrence of
the <dummy> in the expansion. These unique symbols
are usually used to define a label within a macro,
thus eliminating multiple-defined labels on
successive expansions of the macro. The symbols
created by the assembler range from .. 0001 to
•• FFFF. Users should avoid the form .. nnnn for
their own symbols. A LOCAL statement must precede
all other types of statements in the macro
definition.

EXAMPLE:

FOO MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB 8
C: DB ';{

D: DB Y+l
E: DW NUM+l

JMP A

ENDM
FOO OCOOH,OBEH
END

generates the following code (notice that MACRO-BO
has substituted LABEL names in the form •• nnnn for
the instances of the dummy symbols):

FOO MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB 8
C: DB ';{

D: DB Y+l
E: OW NUM+l

JMP A
ENDM
FOO OCOOH,OBEH

0000' 07 + •• 0000: DB 7
0001' 08 + .. 0001: DB 8
0002' BE + .• 0002: DB OBEH
ooo�· BF + .. 0003: DB OBEH+l
0004' OCOl + .. 0004: DW OCOOH+l
0006' C3 0000' + JMP .. 0000

END

ASSEMBLER FEATURES Page 4-46

Special Macro Operators

Several special operators can be used in a macro block to
select additional assembly functions.

' Ampersand concatenates text or symbols. (The & may
not be used in a macro call statement.) A dummy
parameter in a quoted string will not be
substituted in expansion unless preceded
immediately by &. To form a symbol from text and a
dummy, put & between them.

For example:

ERRGEN
ERROR&X:

The call ERRGEN

ERRORA:

MACRO X

PUSH B
MVI B, '&X'

JMP ERROR
ENDM

A will then

PUSH B

MVI B, 'A'
JMP ERROR

generate:

In a block operation, a comment preceded by two
semicolons is not saved as a part of the expansion
(i.e., it will not appear on the listing even under

.LALL). A comment preceded by only one semicolon,
however, will be preserved and appear in the
expansion.

An exclamation point may be entered in an argument
to indicate that the next character is to be taken
literally. Therefore, !; is equivalent to <;>.

The percent sign is used only in a macro argument
to convert the expression that follows it (usually
a symbol) to a number in the current radix (set by
the .RADIX pseudo-op). During macro expansion, the
number derived from converting the expression is
substituted for the dummy. Using the % special
operator allows a macro call by value. (Usually, a
macro call is a call by reference with the text of
the macro argument substituting exactly for the
dummy.)

ASSEMBLER FEATURES Page 4-47

The expression following the % must conform to the
same rules as expressions for the OS (Define Space)
pseudo-op. That is, a valid expression that
evaluates to an absolute (non-relocatable) constant
is required.

EXAMPLE:

PRINTE

SYMl
SYM2

MACRO
.PRINTX

ENDM

MSG,N
* MSG,N *

EQU 100
EQU 200
PRINTE <SYMl + SYM2 2 >,%(SYM1 + SYM2)

Normally, the macro call statement would cause the
string (SYMl + SYM2) to be substituted for the
dummy N. The result would be:

.PRINTX * SYMl + SYM2 • (SYMl + SYM2)

When the % is placed in front of the parameter, the
assembler generates:

.PRINTX * SYMl + SYM2 • 300 *

ASSEMBLER FEATURES

4.3 CONDITIONAL ASSEMBLY FACILITY

Page 4-48

Conditional pseudo-ops allow users to design blocks of code
which test for specific conditions then oroceed accordingly.

All conditionals follow the format:

IFxxxx [argument]

[ELSE

ENDIF

COND [argument]

[ELSE

• l
ENDC

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Each COND must have a matching ENDC to
terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass.
An ENDIF without a matching IF or an ENDC without a matching
COND causes a C error.

The assembler evaluates the conditional statement to TRUE
(which equals FFFFH, or -1, or any non-zero value), or to
FALSE (which equals 0000H). The code in the conditional
block is assembled if the evaluation matches the condition
defined in the conditional statement. If the evaluation
does not match, the assembler either ignores the conditional
block completely or, if the conditional block contains the
optional ELSE statement, assembles only the ELSE portion.

Conditionals may be nested up to 255 levels. Any argument
to a conditional must be known on pass l to avoid V errors
and incorrect evaluation. For IF/IFT/COND and IFF/IFE the
expression must involve values which were previously
defined, and the expression must be Absolute. If the name
is defined after an IFDEF or IFNDEF, oass l considers the
name to be undefined, but it will be defined on pass 2.

Each conditional block may include the optional ELSE
pseudo-op, which allows alternate code to be generated when
the opposite condition exists. Only one ELSE is permitted
for a given IFxxxx/COND. An ELSE is always bound to the
most recent, open IF. A conditional with more than one ELSE
or an ELSE without a conditional will cause a C error.

ASSEMBLER FEATURES Page 4-49

Conditional Pseudo-ops

IF <exp>
IFT <exp>

* COND <exp>

If <exp> evaluates to not-0, the statements within
the conditional block are assembled.

IFE <exp>
IFF <exp>

If <exp> evaluates to O, the statements in the
conditional block are assembled.

IFl Pass 1 Conditional

If the assembler is in pass 1, the statements in
the conditional block are assembled.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in
the conditional block are assembled.

IFDEF <symbol>

If the <symbol> is defined or has been declared
External, the statements in the conditional block
are assembled.

IFNDEF <symbol>

IFB <arg>

If the <symbol> is not defined or not declared
External, the statements in the conditional block
are assembled.

The angle brac�ets around <arg> are required.

If the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <>), the
statements in the conditional block are assembled.

ASSEMBLER FEATURES Page 4-50

IFNB <arg>

�he angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled. Used for testing
for dummy parameters.

IFIDN <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is identical t-0 the string
<arg2>, the statements in the conditional block are
assembled.

IFDIF <argl>,<arq2>

ELSE

The angle brackets around <argl> and <arg2> are
required.

If the strinq <argl> is different from the string
<arg2>, the statements in the conditional block are
assembled.

The ELSE pseudo-op allows you to generate alternate
code when the opposite condition exists. May be
used with any of the conditional pseudo-ops.

ENDIF
* ENDC

These pseudo-ops terminate conditional blocks. A
terminate pseudo-op must
conditional pseudo-op used.
with an IFxxxx pseudo-op.
with the COND pseudo-op.

be given for every
ENDIF must be matched

ENDC must be matched

Chapter 5

5.1
5.2

5.3

5.4

Contents

Running MACRO-80

Invoking MACRO-80 5-2
MACRO-80 Command Line

Source 5-3
Object 5-4
List 5-5

5-2

Switches 5-6
Additional Command Line Entries

5-10
5-11

5-9
Filename Extensions
Device Designations
Device Designations as

MACRO-80 Listing File Formats
Filenames

5-13
File Format 5-13
Symbol Table Format

Error Codes and Messages
5-14

5-15

5-12

CHAPTER 5

RUNNING MACRO-SO

When you have completed creating the assembly language
source file, you are ready to assemble it. MACRO-SO
assembles the source file statements, including expanding
macros and repeat pseudo-ops. The result of assembly will
be relocatable object code which is ready to link and load
with LINK-SO. The relocatable object code can be saved in a
disk file, which the assembler gives the filename extension
.REL. The assembled (REL) file is not an executable file.
The file will be executable only after it is processed
through LINK-SO.

MACRO-SO resides in approximately 19K of memory and has an
assembly rate of over 1000 lines per minute. MACRO-SO runs
under the CP/M operating system.

MACRO-SO assembles your source file in two passes. During
pass 1, MACRO-SO evaluates the program statements,
calculates how much code it will generate, builds a symbol
table where all symbols are assigned values, and expands
macro call statements. During pass 2, MACRO-SO fills in the
symbol and expression values from the symbol table, again
expands macro call statements, and emits the relocatable
code. MACRO-SO checks the values of symbols, expressions,
and macros during both passes. If a value during pass 2 is
different from the value during pass 1, MACRO-SO returns a
phase error code.

Before MACRO-SO can be run, the diskette which contains
MACRO-SO must be inserted in the appropriate disk drive.
The diskett� on which you created the source file must also
be in a disk drive.

RUNNING MACR0-80

5.1 INVOKING MACRO-80

To invoke MACR0-80, enter:

M80

Page 5-2

The program file M80.COM will be loaded. MACRO-80 will

display an asterisk (*) to indicate that the assembler is
ready to accept a command line.

5.2 MACRO-80 COMMAND LINE

The command line for MACRO-80 consists of four fields,
labeled:

Object,List=Source/Switch

The command line may be entered on its own line, or it may

be entered at the same time as the M80 command. (If M80 and
the command line are entered on one line, MACRO-80 will not
return the asterisk prompt.) Entering the command line on
its own line allows single drive configurations to use
MACRO-BO. In addition, by enterinq MBO and the command line
separately, you are able to perform another assembly without
reinvokinq MACRO-BO. When assembly is finished, MACRO-BO
will return the asterisk (*) prompt and wait for another
command line. To exit MACRO-BO when you have entered M80
and the command line separately, type <CTRL-C>.

If you are performing only one assembly, entering the
command line on the same line as MBO is convenient; it
requires less typing and allows the assembly operation to be
part of a SUBMIT command. When you enter M80 and the
command line together, MACRO-80 exits automatically to the
operating system.

NOTE

If you enter MBO and the
command line separately, you
must enter the command line in
upper case only. If you do
not, MACRO-BO will return a
?Command Error message. If
you enter M80 and the command
line on one line, the entries
may be in either upper or
lower case (or mixed) because
CP/M converts all entries to
upper case before passinq the
entries.

RUNNING MACRO-SO

Source (=filename)

Page 5-3

To assemble your source program, you must enter at least an
equal sign (=) and the source filename.

The =filename indicates which source file you want to
assemble. If the source file disk is not in the currently
logged drive, you must include the drive designation as part
of the filename. If the source filename is entered without
an extension, MACRO-SO assumes that the extension is .MAC.
If the extension is not .MAC, you must include the extension
as part of the filename. For other possibilities for
drive/device designations and filename extensions, see the
Additional Command Line Entries section, below.)

The Source entry is the only entry required besides MSO.

The simplest command is:

MSO =Source

This command directs MACRO-SO to assemble the source file
and save the result in a relocatable object file (called a
REL file) with the same name as the source file. If the
source file is NEIL.MAC, the command line:

MSO =NEIL

generates an assembled file named NEIL.REL.

An additional option is to enter only a comma (,) to the
left of the equal sign. When MACRO-SO sees a comma as the
first entry aftP.r the MSO entry, it suppresses all output
files (Object and List). The command line

MSO ,=NEIL

causes MACRO-SO to assemble the file NEIL.MAC, but no output
files are created. Programmers use this command line to
check syntax in the source program before saving the
assembled program. Because no files are generated, the
assembly is completed faster and errors are known sooner.

RUNNING MACRO-BO

Object (filename)

Page 5-4

An Object entry is always optional. However, certain
circumstances will compel you to make some entry for the
Object.

The Object file saves the assembled program in a disk file.
LINK-BO uses the Object file to cre�te an executable
program. If both Object and List entries are omitted from a
command line (as in =Source), MACRO-BO will generate an
Object file with the same filename as the Source, but with
the default extension .REL.

If you want your Object file to have a name different from
the source file, you must enter a filename in the Object
field. MACRO-BO will still append the filename extension
.REL, unless you also enter an extension.

Also, if you want both a List file and a REL file generated,
you must enter a filename for the Object, even if you want
the REL file named after the source file. If you enter a
filename for the List but omit the Object, no REL file will
be generated. Programmers do use this feature for checking
the program for errors before final assembly. The program
listing aids debugging.

The name for the Object file may be the same as the source
filename or any other legal filename you choose. Since it
is practical to have all files which relate to a program
carry some mutual indication of their relationship, most
often you will want to give your object file the same name
as your source file.

RUNNING MACRO-BO

List (, filename)

Page 5-5

A List entry is always optional. The comma is required in
front of all List entries. If you want a List file, enter a
,filename for the List. (There is an alternative to this
rule. See the Switches section below for discussion of the
/L switch.)

MACRO-BO appends the default extension .PRN to the List file
unless you specify a different extension in the List entry.

The command line:

MBO ,NEIL=NEIL

assembles the file NEIL.MAC (source file) and creates the
List file NEIL. PRN. An Object (REL) file is not created.

The name may be the same as the source filename or any other
legal filename you choose. Since it is practical to have
all files which relate to a program carry some mutual
indication of their relationship, most often you will want
to give your listing file the same name as your source file.

Avoid entering only a comma for the List after entering a
filename for the Object. For example:

MBO NEIL,=NEIL

MACRO-BO will probably ignore the comma and assemble the
source file into a REL file. It is possible that MACRO-BO
might return a COMMAND ERROR message.

If you enter only a comma for the List and nothing for the
Object, MACRO-BO will assemble the source file, but will
generate no output files. This command

M80 ,=Source

allows you to check the source program for syntax errors
before saving the assembled proqram in a disk file. While
MACRO-80 always checks for errors, this command form
provices much faster assembly because the output files do
not have to be created.

At the end of �ssembly, MACRO-80 will print the message:

[xx] [No] Fatal errors (,xx warnings]

This message reports the number of fatal errors and warning
errors encountered in the program. The message is listed at
the end of every assembly on the terminal screen and in the
listing fil�. When the message aopears, the assembler has
finished. When the message No Fatal Errors appears, the
assembly is complete and successful.

RUNNING MACRO-BO Page 5-6

Switches (/Switch)

You can command MACRO-80 to perform some additional
functions besides assembling and creating object and listing
files. These additional commands are given to �.ACRO-80 as
ent�ies at the end of the command line. A Switch entry
directs MACRO-80 to "switch on" some additional or alternate
function; hence, these entries are called switches.
Switches are letters preceded by slash marks (/). Any
number of switches may be entered, but each switch must be
preceded by a slash. For example:

MSO , =NEIL/L/R

The available switches for MACRO-BO are:

Switch

/0

Action

Octal listing. MACRO-BO generates List
addresses in octal radix.

file

/R Hexadecimal listing. MACRO-80 generates List file
addresses in hexadecimal. This is the default.

/R Force generation of an Object file
name as the source file. May be
giving a filename in the Object
command line.

with the same
used instead of

field of the

This switch is convenient when you want a REL file
but forgot to enter a filename in the Object field
and entered a comma and filename.or a ��mma only
in the List field. (Remember: 1f no f1�enames or
comma is entered before the equal sign, a REL file
is generated.) Thus, if you enter

M80 ,NEIL=NEIL
or M80 , =NEIL

then decine, before pressing <ENTER>, that you
want a REL file, simply add /R. The command line
would then be:

M80 ,NEIL=NEIL/R
or M80 , =NEIL/R

RUNNING MACRO-80 Page 5-7

/L Force generation of a listing file with the same
name as the source file. May be used instead of
givinq a filename in the List field of the command
line.

This switch is convenient when you want a List
file but forgot to enter a filename in the List
field. If you enter the command line:

M80 =NEIL
or M80 , =NEIL
or M80 NEIL=NEIL

then decide, before pressing <ENTER>, that you do
want a List file, sim0ly add /L. The command
would then be:

M80 aNEIL/L
or M80 , =NEIL/L
or M80 NEIL=NEIL/L

/C Causes MACRO-80 to generate a special List file
(with the same name as the Source file) for use
with CREF-80 Cross Reference Facility. If you
want to use CREF-80, you must assemble your file
with this switch set. See Chapter 8, CREF-80
Cross Reference Facility, for further details.

/Z Directs MACRO-80 to assemble Z80 opcodes. If your
source file contains Z80 opcodes and if you do not
include the .zao pseudo-op in your source file,
then you must use the /Z switch at assembly time
so that MACRO-80 will assemble the Z80 opcodes.

/I Directs MACRO-80 to assemble 8080 opcodes. If
vour source f.ile contains 8080 opcodes and if you

do not include the .8080 pseudo-op in your source
file, then you must use the /I switch at assembly
time so that MCRO-80 will assemble the 8080
opcodes. (Default)

/P Each /P allocates an extra 256 bytes of stack
space for use during assembly. Use /P if stack
overflow errors occur during assembly. Otherwise,
/Pis not needed.

RUNNING MACRO-80 Page 5-8

/M The /M switch initializes Block data areas. If
you want the area that is defined by the OS
(Define Space) pseudo-op initialized to zeros,
then you should use the /M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros, in which case you
may not know what is stored in the OS space or how
the program will be affected.

/X The /X switch sets the default and current setting
to suppress the listing of false conditionals.
Absence of /X in the com�and line sets the default
and current setting to list conditional blocks
which evaluate false. /X is often used in
conjunction with the conditional listing pseudo-op
.TFCOND. Refer to the Listing Pseudo-oos section
in Chapter 4 for details.

RUNNING MACRO-80

Additional Command Line Entries

Each command line field supports two
entries--filename extensions and <levice
two types of entries are actually
specification." A file specification
where a file is located, the name of
filename extension.

Page 5-9

additional types of
designations. These
part of a "file

includes the device
the file, and the

Usually, filename extensions and device designations are
handled by defaults--the MACRO-80 program "inserts" these
entries if their positions are left blank in a command line.
The default assignments in no way prevent you from entering
either filename extensions or device designations, including
entries that match the default entries. The programmer may
enter or omit these additional entries in any combination.

The format for a file specification under MACRO-80 is:

dev:filename.ext

where: dev: is a 1-3 letter device designation followed by
a(required) colon.

filename is a 1-8 letter filename .

• ext is a 1-3 character filename extension preceded
by a (required) period.

RUNNING MACRO-80 Page 5-10

Filename Extensions (.ext)

To distinguish between Source file, Object file, and List
file, MACRO-80 appends an extension to each filename.
Filename extensions are three-letter mnemonics appended to
the filename with a period (.) between the filename and the
extension. The extension which MACRO-80 appends reflects
the type of file. Since the extensions are supplied by
MACRO-80, they are called default extensions. �he default
extensions which MACRO-80 supplies are:

.REL

.PRN
.COM

Relocatable object file
Listing file
Absolute (executable object) file

Also, MACRO-80 assumes that, if no filename extension is
entered, a source file carries the filename extension .MAC.

You may supply your own extensions, if you find this
necessary or desirable. The disadvantage is that whenever
you call the file, you must always remember to include your
extension. Also, you must remember what type of file it
is--relocatable, source, absolute, etc. The advantage of
allowing MACRO�B0 to assign default extensions is that you
always have a mnemonic indication of the type of file, and
you can call the filename without appending the extension,
in most cases.

RUNNING MACRO-80 Page 5-11

Device Designations (dev:)

Each of the fields in a command line (except Invocation)
also may include a device designation.

When a device designation is specified in the Source field,
the designation tells MACR0-80 where to find the source
file. When a device designation is specified in the Object
or List fields, the design3tion tells MACR0-80 where to
output the object or list file. If the device designation
is omitted from anv of these fields, MACRO-80 assumes
(defaults to) the currently logged drive. Thun, any time
the device designation is the currently logged drive or
device, the device designation need not be specified.

It is important to include device designations if several
devices or drives will be used during an assembly. For
example, if your ALDS diskette is in drive A and your
program diskette is in drive B, and you want your REL file
output to drive B, you need to give the command line:

M80 =B:NEIL

When the REL file is output, the currently logged drive is
drive B. (However, when MACR0-80 is finished, drive A will
be the currently logged drive again.) In contrast, if you
saved your source program on the MACRO-80 diskette in drive
A and want the REL file output to a diskette in drive B,
t�en you need to enter the command line:

M80 B:=A:NEIL

As a rule of thumb, if you are not
include the device designation
designation), enter a designation:
to get the right files in the right

sure if you need to
(especially the drive

it is the one sure way
places.

The available device dP.signations for MACRO-80 are:

A:, B:, C:, •••
LST:
TTY:
HSR:

Disk drives
Line Printer
�erminal Screen or Keyboard
High Speed Reader

RUNNING MACRO-BO Page 5-12

Device Designations as Filenames

As an option, you may enter a device designation only in the
command line fields in place of a filename. The use of this
option gives various results depending on which device is
spPcified and in which field the device is specified. For
example:

M80 ,TTY: =TTY:

allows you to assemble a line immediately on input to check
for syntax or other errors. A modification of this command
(that is, MB0 ,LST:=TTY:), provides the same result but

pr.inted on a line printer instead of the terminal screen.

If you use either of these commands (,TTY:=TTY: or
,LST:=TTY:), your first entry should be an END statement.
You need to put the assembler into pass 2 befor.e it will
emit the code. If you simply start entering statement lines
without first entering END, you will receive no response
until an END statement is entered. Then you will have to
reenter all your statements before you see any code
generated.

The following table illustrates the results of the various
choices. The table is meant to indicate the possibilities
rather than provide an exhaustive list of the combinations.

dev: Object ,List =Source

A:, B:, write file write file N/A
C:, D: to cl rive to drive (a filename

specified specified must be
$pecified)

HSR: N/A N/A reads source
(input only) (input only) program from

high-speed
reader

LST: N/A writes N/A
(unreadable listing to (output onlv)
file format) line printer

TTY: N/A ''wr i tes 11
"reads" source

(unreadable listing to progcam from
file for.mat) screen keyboard

Figure 5.1: Effects of Device Designations without Filenames

RUNNING MACRO-80 Page 5-13

5.3 MACRO-80 LISTING FILE FO��ATS

A listing of a MACRO-80 file displays the two parts of the
file in two different formats. One format displays the file
lines. The second format displays symbol table listings.

File Format

Each page of a MACRO-80 listing prints header data in the
first two lines. If no header data were commanded in the
source file (neither the TITLE nor SUBTTL pseudo-op was
given), those portions of the header lines are left blank.

The format is:

[TITLE text]
[SUBTTL text]

M80 z. zz PAGE x

where: TITLE text is the text supplied with the .TITLE
pseudo-op, if .TITLE was included in the source
file. If no .TITLE pseudo-op was given in the
source file, this space is left blank.

z.zz is the version number of your MACRO-SO program.

x is the page number, which is shown and incremented
only when a .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

SUBTT� text is the text supplied with
pseudo-op, if .SUBTTL was included
file. If no .SUBTTL was given in the
this space is left blank.

the .SUBTTL
in the source
source file,

A blank line follows the header data.
listing file begins on the next line.

The text of the

The format of a listing line is:

[error] UUm xx xxxxm(w] text

where: error represents a one-letter error code. An error
code is printed only if the line contains an error.
Otherwise, the space is left blank.

##*# reoresents the location counter. The number is
a4-digit hexadecimal number or a 6-digit octal
number. The radix 0£ the location counter number is
determined hy the use of the /0 or /H switch in the
MACRO-80 command line Switch field. If no radix
switch was given, the default radix is hexadecimal
(4-digit).

RUNNING MACRO-80 Page 5-14

m represents the PC mode indicator character. The
possible symbols are:

<space>
*

Code Relative
Data Relative
COMMON Relative
Absolute
External

xx and xxxx represent the assembled code. xx

represents a one-byte value. One-byte values are

always followed immediately by a space. xxxx

represents a two-byte value, with the high-order
byte printed first (this is the opposite of the
order in which they are stored). Two-byte values
are f0llowed by one of the mode indicators discussed
above (indicated by the second m).

M represents a line in the MACRO-BO file that came
from another file through an INCLUDE pseudo-op; or
a line that is part of an expansion (MACRO, REPT,
IRP, IRPC). For lines from an INCLUDE statement, a
C is printed following the assembled code; for
lines in an expansion, a plus sign (+) is printed
following the assembled code. Otherwise, this space
is blank.

text represents the rest of
labels, operations, arquments,

the line, including
and comments.

Symbol Table Format

The symbol tahle listing page follows the same header data
format as the file line pages. However, instead of a page
number, the symbol table paqe shows PAGE S.

Then, in a symbol table listing, all macro names in a
program are listed alphabetically. Next, all symbols are

listed, also alphahetically. A tab follows each symbol,
then the value of the symbol is printed. Each symbol value
is followed by one of the following characters:

I

u

C

*

<space>

PUBLIC symbol

Unde f.i ned symbol

COMMON block name. The value shown for the
COMMON block name is its length in bytes in
hexadecimal or octal radix.

Externa 1 symbol

Absolute value

RUNNING MACRO-BO

Program relative value

Data relative value

COMMON relative value

5,4 ERROR CODES AND MESSAGES

Page 5-15

Errors encountered during assembly cause MACRO-BO to return
either an error code or an error message. Error codes are
one-character flags printed in column one of the listin9
file. If a listing file is not being printed on the
terminal screen, the lines containing errors will
nevertheless be printed on the terminal screen. Error
messages are printed at the end of the listing file, or, if
the listing file is not being displayed on the terminal
screen, any error messages will be displayed at the end of
the error code lines.

ERROR
CODE MEANING

A Argument error.

C

D

The argument to a pseudo-op is not in correct
format or is out of range.

Conditional nesting error.
ELSE without IF, ENDIF without IF, two ELSEs for
one IF, ENDC without COND.

Double defined symbol.
Reference to a symbol which has more than one
definition.

E External error.
Use of an External is illegal in the flagged
context. For example, FOO SET NAME or LXI
B,2-NAME.

M Multiply defined symbol.
The definition is for a symbol that already has a
definition.

N Number error.
An error in a number, usually a bad digit. For
example, BQ.

RUNNING MACRO-BO Page 5-16

O Bad opcode or objectionable syntax.
ENDM, LOCAL outside a block; SET, EQU, or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (for example, mismatched
parentheses, quotes, consecutive operators).

P Phase error.

Q

R

The value of a label or EQU name is different
during pass 2 from its value during pass 1.

Questionable.
Usually, a line is not terminated properly.
example, MOV AX,BX,. This is a warning error.

For

Relocation.
Illegal use of relocation
abs-rel. Data, code,
relocatable.

in an expression, such as
and COMMON areas are

U Undefined symbol.
A symbol referenced in an expression is not
defined. For some pseudo-ops, a V error is printed
for pass 1 then a U error for pass 2. Compare with
V error code definition below.

V Value error.
On pass 1 a pseudo-op which must have its value
known on pass l (for example, .RADIX, .PAGE, OS,
IF, IFE) has a value which is undefined. If the
symbol is nefined later in the program, a U error
will �ot appear on the pass 2 listing.

ERROR MESSAGES

%No END statement

No END statement: either it is missing or it is
not parsed because it is in a false conditional,
unterminated IRP/IRPC/REPT block, or terminated
macro.

Unterminated conditional

At least one conditional is unterminated at the end
of the file.

Unterminat�d REPT/IRP/IRPC/MACRO

At least one block is unterminated.

RUNNING MACRO-BO Page 5-17

Symbol table full

As MACRO-BO was building the symbol table, the
memory available was exhausted. The most usual
cause is a large number of macro blocks which also
contain statements for many of the statement lines.
Macro blocks are stored in the symbol table
verbatim, including the comments appended to the
lines inside the macro block. You should check all
macro blocks in the source program. To exclude
comments inside macro blocks from the symbol table,
precede these comments by double semicolons (;;).
This method should free enough space to assemble
your program.

(xx] (No] Fatal errors [,xx warnings]

The number of fatal errors and warning errors
encountered in the program. The message is listed
at the end of every assembly on the terminal screen
and in the listing file. When the message appears,
the assembler has finished. When the message No
Fatal Errors appears, the assembly is complete and
successful.

CHAPTER 6

6.1
6.2
6.2.1
6.2.2

6.3

Contents

LINK-80 Linking Loader

Invoking LINK-80 6-1
LINK-80 Commands 6-2

Filenames 6-3
Switches 6-4

Execute 6-6
Exit 6-8
Save 6-9
Address Setting
Library Search
Global Listing
Radix Setting
Special Code

Error Messages 6-19

6-11

6-15
6-16

6-17
6-18

CHAPTER 6

LINK-80 LINKING LOADER

The .REL files which MACRO-80 creates are
To make a REL file executable, you need to
REL file with the LINK-80 linking loader.
executable object file.

not executable.
load and link the
The result is an

Loading means physically placing the file in memorv and
assigning absolute addresses to the code and data in-place
of the relative addresses assigned by the assembler. This
is one of the required steps for converting a relocatable
(REL) file into an executable (COM) file.

Linking means that each loaded file (or module) that directs
program flow outside itself (by a CALL, an EXTERNAL symbol,
or an Include) will be "linked" to the module that contains
the corresponding code.

LINK-80 can also save the assembled-and-linked �rogram as an
executable object program on disk in a file with the
extension .COM. Consequently, any time you wish to run your
program, you need only insert the disk which contains your
COM file into an appropriate disk drive and "call" your
program a simple process of typing in the filename you
used to save the program, followed by a carriage return.

6.1 INVOKING LINK-80

To invoke LINK-80, enter:

L80

The program file L80.COM will be loaded. LINK-80 will
display an asterisk (*) to indicate that the linking loader
is ready to accept a command. The REL file(s) you want
link-loaded mus� be available in a disk drive. If you have
only one drive, you will need to swap diskettes in the drive
at each step of the link-loading process.

LINK-BO LINKING LOADER

6.2 LINK-BO COMMANDS

LINK-BO commands are filenames and switches.

Page 6-2

You can enter your commands to LINK-BO one at a time; or,
you can enter all of your commands (including LBO) on one
line.

A command line has a flexible format, allowing you a number
of options for loading and linking files and for performing
other operations. The basic rule for LINK-BO commands is
that files are loaded in the order they are named, beginning
at the (default) address 103H under CP/M. Even though the
files will be loaded in the order entered, you do not have
to enter the files in the order of execution. LINK-BO
places a jump instructior. at address lOOH-102!! which jumps
to the start address of the first instruction to be
executed, regardless of its location in memory.

LINK-BO can perform about eleven different tasks. Even
though you could use them all, you will rarely use more than
three or four at a time.

When you enter a command to LINK-80, LINK-BO returns an
asterisk (*) prompt th;:it tells you to enter another command.
For exumple:

A>LBO<RETURN>
*/switch<RETURN>
*filename<RETURN>
*/switch<RETURN>
*filename/switch<RETURN>
* /E<RETURN> (to exit LINK-BO)

Note that all of the above lines may be entered as one line.

For example:

LBO /switch,filename/switch,filename/switch/E<RETURN>

This shows further the flexibility of the LINK-BO command
line.

Alchough entering each command on a separate line is slow
and tedious, the advantage is, especially if you are new to
a linking loader, that you know at all times what function
LINK-BO is performing.

LINK-80 LINKING LOADER Page 6-3

6.2.1 Filenames

Files processed by LINK-80 are REL files. A filename
commands LINK-80 to load the named file (also called a
module). If any file has been loaded already, a filename
also commands LINK-BO to link the loaded files as required.

least two
REL file to

save the

Normally each linking session requires at
filenames. One filename directs LINK-BO which
load and link; the other commands LINK-BO to
executable code in a file with the specified name.

If you enter only one filename during
either the COM file will not be saved (in
have wasted your time), or LINK-80 will
message

?NOTHING LOADED

the link session,
which case you may
return the error

Note, however, that if you enter only one filename followed
by the /G switch, the COM file will not be saved, but the
program will execute as soon as LINK-BO is finished loading
and linking. (Refer to the description of the switches in
the next section.)

You may enter as many filenames as will fit on one line.
The files named may be REL files in different languages
(BASIC, COBOL, FORTRAN, or assembly) or runtime library PEL
files for any of the high-level programming languages. (For
exact procedures for high-level language REL files, see the
product manual included with the high-level language
compiler.)

When LINK-BO is finishe<l, the results are
named by the programmer in the command
followed by a /N -- see below, Section
LINK-80 gives this filename the extension

saved in the file
line (the filename
6.2.2, Switches).
.COM.

A filename command in LINK-BO actually means a
specification. A file specification includes a
designation, � filename, and a filename extension.
format of a file specification is:

file
device

The

dev:filename.ext

LINK-BO defaults the dev: to the default or currently
logged disk drive. LINK-80 defaults the input �ilename
extension to .REL and the output filename extension to .COM.
You can alter the device designation to any applicable
output device supported by MACRO-BO and/or the filename
eAtension to any three characters by specifying a device or
a filename extension when you enter a filename command.

LINK-BO LINKING LOADER

6.2.2 Switches

Page 6-4

Switches command LINK-BO to perform functions besides
loading and linking. Switches are letters preceded by slash
marks (/). You can place as many switches as you need in a
single command line, but each switch letter must be preceded
by a slash mark (/). For example, if you want to link and
load a program named NEIL, save an image of it on diskette,
then execute the program, you need two filenames and two
switches, so you would enter the commands:

NEIL,NEIL/N/G<RETURN>

LINK-80 saves a memory image on diskette (the /N switch),
then runs the NEIL program (the /G switch).

Some switches can be entered by themselves (/E, /G, /R, /P,
/D, /U, /M, /0, /H). Some switches must be appended to the
filename they affect (/N, /S). Some switches work only if
other switches are also entered during the LINK-80 session
(/X, /YI. Some switches must precede any filenames you want
affected (/P, /D). Some switches command actions that a�e
deferred until the end of the LINK-80 session (/N, /X, /Y).
Some switches command actions that take place when entered
(/S, /R -- a filename entered without a switch appended acts
this way, too). These "rules of behavior" should be kept in
mind when entering LINK-80 commands. See the descriptions
for each switch for full details of its action.

The chart below summarizes the switches by function. Full
descriptions of the switches by function follow the chart.

BE CAREFUL: Do not confuse the LINK-80 switches with the
MACRO-BO switches.

LINK-BO LINKING LOADER Page 6-5

FUNCTION SWITCH ACTION

Execute /G Execute .COM file then exit to
operating system.

/G:Name Set .COi� file start address
equal to value of Name, execute
.COM file, then exit to
operating system.

Exit /E Exit to operating system.
/E:Name Set .COM file start address

equal to value of Name, then
exit to operating system.

Save /N Save all previously loaded
programs and subroutines using
filename immediately preceding
/N.

/N:P Alternate form of /N; save
only program area.

Address /P Set start address for programs
Setting and data. If used with /D, /P

sets only the program start.
/D Set start address for data area

only.
/R Reset LINK-BO.

Library /S Search the library named
Search immediately preceding /S.

Global /U List undefined globals.
Listing

/M List complete global reference
map.

Radix /0 Octal radix.
Setting

/H Hexadecimal radix (default).

Special /X Save "COM" file in Intel ASCII
Code Hex format. Requires /N

switch. Gives "COM" file the
extension .HEX.

/Y Creates a special file for use
with SID/ZS ID debugger.
Reo:uires /N and /E switches.
G i ·jes special file the
extension .SYM.

Figure 6.1: Table of LINK-80 Switches

LINK-80 LINKING LOADER Page 6-6

At least two switches will probably be used in everv linking
session. These switches belong to the fir3t threefunctions
-- Execute, Exit, and Save.

EV"'':UTE
--··---

Switch

/G

Action

The /G switch causes LINK-80 to load the
filename(s) entered in the command line, to link
the program (s) together, then to execute the
link-loaded program. After the program run, your
computer returns to operating system command
level. For example,

L80 NEIL,NEIL/N/G

links NEIL.REL, saves the result in
named NEIL.COM, then exits to
system.

a disk file
the operating

Execution takes place as soon as the command line
has been interpreted. Just before execution
beqins, LINK-80 prints three numbers and a REGIN
EXECUTION message. These three numbers can be
very useful to you in developing future assembly
language programs. The first number is the start
address of the program. The second number is the
address of the next available byte; that is, the
end address plus one byte. The third number is
the number of 256-byte. pages taken up by the
progtam (the �ifference between the start address
and the end address converted to 256-byte pages).

If you do not want to save the .COM file, use the
/G switch and enter only one filename on the
command line. For example:

L80 NEIL/G

But Remember: No COM file is created (since you
did not include /N). To run the program again,
you will have to run LINK-BO again.

LINK-80 LINKING LOADER Page 6-7

/G:<name> The /G:<name> switch p€rforms exactly like the
plain /G switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-80 sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as its LABEL
into the jump instruction at 100H-102H.

The value of this switch (and of /E:<name> below)
is the ability to tell LINK-80 where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language program (which
LINK-80 takes as the main program by default), or
you link OPlV assembly language modules and only
one has an END <name> statement to signal LINK-BO
which assembly language program to execute first.
But if two or more assembly l�nguage modules
contain an END <name> statement, or if none of. the
assembly language modules contain an END <name>
statement, then /G:<name:, tells LINK-80 to use
this module as the starting point for execution.

Programmers who
language module
program should use
the beginning of
to cause execution
before execution
program.

want to execute an assembly
before a high-level language
a CALL or INCLUDE statement at
the high-level language progr��
of the assembly language module

of the high-level language

LINK-80 LINKING LOADER Page 6-8

EXIT

Switch

/E

Action

Use /E to link and load a program and perform some
other functions on the files (for example, save it
on a diskette) when you do not want to run the
program at this time. When LINK-80 has finished
the tasks, it will exit to the operating system.

(The /G switch is
exits LINK-80.)

the only other switch which

When linking is finished,
numbers: start address,
number of 256-byte pages.

LINK-80 outputs
next available

three
byte,

/E:<name> The /E:<name> switch performs exactly like the
plain /E switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-80 sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as the LABEL
into the jump instruction at 100H-102H.

The value of this switch (and of /G:<name> above)
is the ability to tell LINK-80 where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language proqram (which
LINK-80 takes as the main r:,rogram by default), or
you link only assembly language modules and only
one has an END <name> statement to signal LINK-BO
which assembly langu2ge program to exec,1te first.
But if two or more assembly language modules
contain an END <name> statement, or if none of the
assembly language modules contain an END <name>
statement, then /E:<narne> tells LINK-80 to use
this module as the starting point for execution.

Programmers who want to execute an assembly
language module before a high-level language
program should use a CALL or INCLUDE statement at
the beginning of the high-level language program
to cause this order of execution.

LINK-80 LINKING LOADER Page 6-9

5.11.V=:

Switch

/N

Action

The /N switch causes the assembled-linked program
to be saved in a disk file. It is important that
a filename always be specified for the /N switch.
If you do not specify an extension, the default
extension for the saved file is .COM. The COM
filename will � the name the programmer appends
the /N switch to. The /N switch must immediately
follow the filename under which you wish to save
the results of the link-load session.

The /N switch does not take effect unless a /E or
/G switch follows it.

The most common error programmers make with the /N
switch is to forget that they must specify at
least two filenames; one as the file to be linked
�another one as the name for the file to be
saved. Therefore, at a minimum the command line
should include:

L80 NEIL,NEIL/N/G

The first filename NEIL is the file to be loaded
and linked; the second filename NEIL is the name
for the COM file that will save the result of the
link-loading session.

It is, of course, possible to specify filenames in
any order. For example:

L80 NEIL/N,ASMSUB1,ASMSUB2,BASP�OG/G

Here LINK-80 will lood and link the files BASPROG,
ASMSUBl, and ASMSUB2; then save the result in the
file named NEIL.

From these two examples, it is possible to see
that the filename followed by the /N save switch
is not loaded; it is only a specification for an
cutout file; you must also always name at least
one� file, too.

You will use this switch almost every time you
link a REL file because th�re is no other way to
save the result of a link-load session and because
not saving the result means you would have to link
load again to run your program.

Once saved on disk, you need only type the COM
filename at operating system command level to run
the proqram.

LINK-BO LINKING LOADER Page 6-10

/N:P By default, LINK-BO saves both the program and
data areas in the COM file. If you wish to save
only the program area to make your �isk files
smaller, use the /N switch in the form /N:P. With
this switch set, only the program code will be
saved.

Two of these switches (/N plus either a /G or a /E type) are
all the switches required for most LINK-BO operations. Some
additional functions are available through the use of other
switches which allow programmers to manipulate the LINK-80
processes in more detail. The switches which turn on these
additional functions are arranged in categories according to
type of function. The function of each category is defined
by the category name.

LINK-80 LINKING LOADER Page 6-11

A.DDR.ESS SETTING

Switch

/P

Action

The /P switch is used to set both the program and
data orig1r.. If you do not enter the /P switch,
LINX-80 performs thie task automatically, using a
default address for both program and data. (103H
for CP/M)

The format of the /P switch is:

/P: <address>,

The address va:ue must be expressed in the current
radix. The default rudix is hexadecimal.

The /P switch is designed to allow you
program (or code) segments at addresses
the default. The default value for the
is 103H.

to place
other than
/P switch

REMEMBER: The /P switch takes effect as soon as
it is seen, but it does not affect files already
loaded. So be sure to place the /P switch before
any files you want to load starting at the
specified address. The /P switch and /D switch,
when used, must be se�arated from the REL filename
by a comma. For exarnpl�,

L80 /P:103,NEIL,NEIL/N/E

The /P switch affects primarily the CSEG code in
your assembly language program. If/P is given
but not /D, both data and program (CSEG and DSEG)
areas will be loaded starting at the /P:<address>.
DSEG (and anv COMMON areas) will be loaded first.
If bot:1 /P and /D switches are <; i ven, /P sets �he
start of the CSEG area only. Normally, unless
your programs are all CSEG, you will use /P and /D
together.

Note especially that ASEG areas are not affected
by the /P switch. So be careful to set the /P
address outside any ASEG areas �nless you want the
program or data areas to write over the ASEG
areas.

You may enter more than or.e /P switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-80 will a�tomatically place one �rogram
segment (CSEG) after the next. You can cause
soace to be left between modules. However, some

LINK-BO LINKING LOADER Page 6-12

restrictions one the placement of modules apply:

1. Be sure that program areas do not overlay one
another. LINK-BO returns a warning error
message if they do.

2. Be sure that the program areas are not split
by data or COMMON areas; that is, a CSEG at
200H, a DSEG at 300H, and another CSEG at 400H
is illegal. LINK-BO returns a fatal error in
this case.

When the loading session is all done, LINK-BO
wants to see a segment of memory loaded with data
and COMMON and another segment loaded with pcogram
code. The code segments may have gaos between the
modules as long as a data segment is not loaded
between the start of the first code segm�nt module
and the end of the last code segment module, and
vice versa. So, placing DSEG modules at
l03H-115H, 150H-165H, 170H-175H, and CSEG modules
at 200H-250H, 300H-350H, 400H-450H is acceptable.
LINK and 80 will show Data between 103H and 175H
and Program between 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. LINK-80
does not initialize gaps to zero or null. This
could cause unpredictable results.

/D The /D switch sets the origin for DSEG and COMMON
areas. If you do not enter the /D switch, LINK-BO
performs this task automatically, using a default
address for both data and program. (103H for
CP/M)

The format for the /D switch is:

/D:<address>,

The address for the /D switch must be in the
current radix. The default radix is hexadecimal.

The /D switch is designed to allow you to place
data ar.d COMMON segments at addresses other than
the default. The default value for the /D switch
is 103H. The /D switch must be ser:>arated from th<=
REL filenames by a comma. For example,

LB0 /D:103,NEIL,NEIL/N/E

When the /P switch is used with the /D switch,
data and common areas load starting at the address
given with the /D switch. (The program will be

LINK-80 LINKING LOADER Page 6-13

loaded beginning at
the /P switch.) This
address given in /P:
actual program code.

the program origin given with
is the only occasion when the

is the start address for the

REMEMBER: The /D switch takes effect as soon as
LINK-80 "sees" the switch, so the /D switch has no
effect on programs or data already loaded.
The;:efore, it is important to place the /D switch
(as well as the /P switch) before the files you
want to load starting at the address specified.

You may enter more than one /D switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-BO will automatically place one data
segment (DSEG) after the next. You can cause
space to be left between modules. However, some
restrictions on the placement of modules apply:

1.

2.

Be sure that data areas do
another. LINK-80 returns
message if they do.

Be sure that the data areas
program areas; that is,
CSEG at 300H, and another
illegal. LINK-BO returns
this case.

not overlay one
a warning error

are not split by
a DSEG at 200H, a

OSEG at 400H is
a fatal error in

When the loading session is all done, LI�K-80
wants to see a segment of memory loaded with data
and CO!"u'ION and another segment loaded with program
code. The aata segments may have gaps between the
modules as long as a program segment is not loaded
between the start of the first data segment module
and the end of the last data segment module, and
vice versa. So, placing DSEG modules at
103H-115H, 150H-l65H, 170H-175H, and CSEG modules
at 200H-250H, 300H-350H, 400H-450H is acceptable.
LINK and 80 will show Data between 103H and 175H
and Program between 200H and 450H.

Noce that anv gaps you leave may contain data or
program code from a previous program. LINK-BO
does not initialize gaps to zero or null. This
could cause unpredictable results.

LINK-SO LINKING LOADER Page 6-14

ADDITIONAL NOTE FOR /P AND /D SWITCHES

If your program is too large for the loader, you
wiJ.l sometimes be able to load it anywziy if you
use /0 and /P together. This way you will be able
to load programs and data of a larger co�blned
total. While LINK-SO is loading and linking, it
builds a table consisting of five bytes for each
program relative reference. By setting both /0
and /P, you eliminate the need for LINX-80 to
build this table, thus giving you some extra
memory to work with.

To set the two switches, look to the end of the
List file. Take the address you decided for the
/D switch (where you want the DSEG to start
loading), add the number for the total of data,
add that number to 103H, add another lOGH+l, and
the result should be the /P: address for the
start of the program area. The /0 switch should
be set at 103H or higher (D:103).

/R The /R switch "resets" LINK-80 to its initialized
condition. LINK-SO scans the command line before
it begins the functions commanded. As soon as
LINK-BO sees the /R switch, all fil�s loaded are

ignored, LINK-80 resets itself, and the asterisk
(*) prompt is returned showing that LINK-BO. is
running �nd waiting for you to enter a command
lin�.

LINK-80 LINKING LOADER Page 6-15

LIBrtP.R� SEARCH

Switch Action

The /S switch causes LINK-80 to search the file
named immediately prior to the switch for
routines, subroutines, definitions for globals,
and so on. In a cor.�and line, the filename with
the /S switch appended must be separated from the
rest of the command line by commas. For example:

L80 NEIL/N,MYLIB/S,NEIL/G

The /S switch is used to search library files
only, including a library you constructed, using
the LIB-80 Library Manager (see Chapter 8).

LINK-80 LINKING LOADER Page 6-16

GL0!3AL LISTING

Switch

/U

Action

The /U switch tells LINK-80 to list all undefined
globals. The /U works only in command lines that
do not include either a /G or a /E switch. Note
that if your program contains any undefined
globals, LINK-80 lists them automatically, unless
the command line also contains a /S (library
search) switch. In these cases, enter only the /U
switch, and the list of undefined globals will be
listed. Use CTRL-S to suspend the listing if you
want to study a portion of the list that would
scroll off the screen. Use CTRL-0 to restart the
lis!:ing.

The various runtime libraries provide definitions
for the globals you need to run your high-level
language programs.

In addition to listing undefined globals, the /U
�witch directs LINK-80 tc list the origin, end,
and size of the program and di:!ta areas. These
areas are listed as one lump a�ea unless both the
/P and /D switches are set. If both /P and /D a�e
set, the start, end, and size of both areas are
listed separately.

/M The /M s•..Jitch 0irects LINK-80 to list a.1 l s!.obals,
both defined and undefined, on the screen. The
listing cannot b� sent to a printer . In the
listlnq, defined globals are follow0d by their
values: and undefined glohals are followed by an
asterisk (*).

Tn addition to listing all glcbRls, the /M switch
directs LINK-80 to list the origin, end, and size
of the program and data areas. These areas are
listed as one lump a�ea unless both th'" /? and /D
switches are set. If both /P and/D are set, the
start, end, and size of both areas are listed
separately.

LINK-80 LINKING LOADER Page 6-17

RADIX SETTING

Switch

/0

/H

Action

The /0 switch sets the current radix to Octal. If
you have a reason to use octal values in your
program, give the /0 switch in the command line.
If you can think of no reason to switch to octal
radix, then there is no reason to use this switch.

The /H switch resets the current radix to
Hexadecimal. Hexadecimal is the default radix.
You do not need to give this switch in the command
line unless you previously gave the /0 switch and
now want to return to hexadecimal.

LINK-80 LINKING LOADER Page 6-18

SPECIAL CODE

Switch

/X

Action

The /X switch saves the "COM" file in Intel ASCII
HEX format. The /X switch requires the /N switch
appended to the same filename as the /X. For
example:

L80 NEIL,NEIL/X/N/E

The file that is saved with the /X switch set is
given the filename extension .HEX.

The primary use of the /X switch is to prepare
programs to be burned into PROMs. The hex format
was originally developed to facilitate the
movement of programs from one machine to another.
The hex format provides more code checking than
object code does. Also, a HEX file can be edited
with some sophisticated line editors.

/Y The /Y switch saves a file in a special format for
use with Digital Research's Symbolic Debuggers,
SID and ZSID. The /Y switch requires the /N and
the /E (not L'..Q_) switches be given in the command
line. For example:

L80 NEIL,NEIL/Y/N/E

The file that is saved with the /Y switch set is
given the filename extension .SYM. A COM file
will also be saved. So the samole command line
above creates both NEIL.COM and �EIL.SYM.

The SYM file contains the names and addresses of
all globals, which allows you to use Digital
Research's Symbolic Debuggers SID and ZSID with
the SYM file.

LINK-80 LINKING LOADER

6.3 ERROR MESSAGES

Page 6-19

Errors encountered during the running of LINK-80 will return
messages, most preceded by either the symbol? or the
symbol % • No error codes a:e returned, so once you
understand the meaning of the message, error recognition
should be easy.

?No Start Address

The /G switch was issued, but no main program has
been loaded.

?Loading Error

The last file given for input was not a ?roperly
formatted LINK-DO object file.

?Out of Memory

Not enough memory to load the module.

?Command Error

Unrecognizable LINK-80 command.

?<filename> Not Found

<filename>, as given in the command string, did not
exist.

?Start Symbol - <name> - Undefined

The /E:Name or /G:Name switch was given, but the
Name specified was not defined.

LINK-80 LINKING LOADER Page 6-20

?Nothing Loaded

A <filename>/S or /E or /G was given, but no object
file was loaded. That is, an attempt was made to
search a library, to exit LINK-BO, or to execute a
p�ogram, when in fact nothing had been loaded. For
example:

TEST/N/E

Results in "?Nothing Loaded" because TEST/N names
TEST.COM, but does not load TEST.REL.

To load a file, enter the filename. To save a
file, enter a filename followed by the /N switch
and either a /E or a /G switch. For example, any
of the following sets of commands should work:

LB0 NEJL,NEIL/N/E

or

L80
*NEIL
*NEIL/N/E

or

L80 NEIL/N,NEIL/E

?Can't Save Object File

A disk error occurred when the file was being
saved. Usually, this means that the disk is full
or that it is write-protected.

%2nd COMMON larger /XXXXXX/

When loading modules which include COMMON blocks,
LINK-80 takes the size of the first COMMON block
loaded to set the amount of memory needed before
program code is loaded. If a subsequent module
contains a CO�lMON block larger than the first one
loaded, LINK-80 returns this error message. It
means that the first definition of the COMMON block
/XXXXXX/ encountered in the modules loaded was not
the largest block defined with that name. Reorder
module loading sequence or change COMMON block
definitions so that all blocks are the same size.

LINK-80 LINKING LOADER

%Mult. Def. Global YYYYYY

Page 6-21

You have one global (PUBLIC) symbol name YYYYYY
with more than one definition. Usually, two or
more of the modules being loaded have declared the
same symbol name as PUBLIC.

%Overlaying Program Area 2 xxxx ,Start
,Public
,External

= <symbol name>
<symbol name>

(xxxx)
(xxxx)

Usually this occurs when either /D or/P is set to
an address inside the area taken by LINK-80. You
should reset the switch address above 102R. It may
also occur if you set addresses for programs loaded
after some initial programs were loaded and the
addresses were not set high enough. For example,
if MYPROG is larger than 147 bytes and you enter
the commands:

MYPROG,/P:150,SUBRl,FUNNY/N/E

you will receive the %Overlaying Program Area error
message.

%Overlaying Data Area ,Start
,Public
,External

= xxxx
<symbol
<symbol

name>
name>

(xxxx)
(xxxx)

The /D and /P switches were set too close together.
For example, if /0 was given a higher address than
/P but not high enough to be beyond the end of the
program area, when the �rogram is loaded, the top
end will be laid over the data area. Or, if /D is
lower than /P, /P was not high enough to prevent
the beginning of the program from starting in the
area already loaded with data.

?Intersecting Program Area
or

?Intersecting Data Area

The program and data areas intersect and an address
or external chain entry is in this intersection.
The final value cannot be converted to a current
value since it is in the area intersection.

LINK-80 LINKING LOADER Page 6-22

Origin Above Loader Merner�, Move Anyway (Y or N)?
or

orTg.in Below Loader Memory, Move Anyway (Y or N)?

This message will appear only after either the /E
or the /G switch command was given to LINK-80. If
LINK-80 has not enough memory to load a module but
a /E or /G has not been entered, you will receive
the ?Out of Memory message.

LINK-80 can load modules only between its first
address in memory and the top of available memory.
If the program is too large for this space or if
you set a /D and/or /P switch too high for the size
of your program, LINK-80 runs out of memory and
returns the Origin Above Loader Memory message.

If you set a /D and/or /P switch below the first
address of LINK-80 (100H for CP/M), LINK-80 returns
the Origin Below Loader Memory message. This
prevents you from loadinq your program into memory
designated for the operating system.

If a Y<CR>
continue.
exit. In
the image

is given, LINK-80 will move the area and
If anvthing else is given, LINK-80 will

either case, if the /N switch was given,
will alreany have been saved.

Contents

Chapter 7 CREF-80 Cross Reference Facility

7.1 Creating a CREF Listing 7-1
Creating a Cross Reference File 7-2
Generating a Cross Reference Listing 7-2

7.2 CREF Listing Control Pseudo-ops 7-3

CHAPTER 7

CREF-80 CROSS REFERENCE FACILITY

A cross reference facility processes a specially assembled
listing file to list the locations of all intermodule
references and the locations of their definitions. The
result is a cross reference listing. This cross reference
listing can be used to aid debugging your program.

The CREF-60 Cross Reference Facility allows a programmer to
pc,)cess the cross reference fil� generated by MACRO-80.
This cross reference file contains embedded control
characters, set up during MACRO-BO assembly. CREF-80
interprets the control characters and generates a file that
lists cross references among variables.

CRZF-80 produces a listing, resembling the PRN listing of
MACRO-80, with two additional features:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order. Each name is followed by the
line number where the vari�ble is defined (flagged
with fl followed by the numbers of other lines
where the variable is referenced.

The CREF listing file replaces the MACRO-SO PRN List file
and receives the filename extension .LST instead of .PRN.

7.1 CREATING A CREF LISTING

Creating a CREF listing involves t�o steps: (1) creating a
cross reference file (.CRF), and (2) generating a cross
reference listing (. LST). The first step occurs in the
MACRO-80 macro asse�bler; the second in the CREF-80 Cross
Reference ?acility.

CREF-80 CROSS REFERENCE FACILITY Page 7-2

Creating� Cross Reference File

To create a cross reference file, set the /C switch in the
MACRO-80 command line. For example:

M80 =NEIL/C

This command line assembles the file HEIL.MAC, generating
the outcut files NEIL.REL (object file) and NEIL.CRF (cross
reference file).

Generating� Cross Reference Listino

The cross reference listing is generated by running the .CRF
file through CREF-80.

To invoke the cross reference facility, enter:

CREF80

CREF-80 will return an asterisk (*) prompt.

To create the cross reference listing file, enter:

=filename

where filename is the name of your .CRF file. For example:

CREFB0 =NEIL

will generate a .LST file (NEIL.LST)
reference information.

containing the cross

This .LST file can be printed or sent to the terminal screen
using operating system commands. Additionally, CREF-80
supports the same output device designations as MACRO-80.
Simply enter the device designation in front of the
filename. For example:

CREF80 LST: =NEIL

sends the .LST listinq to the printer only (no disk file is
generated).

CREFB0 TTY: =NEIL

sends the .LST listing to the CRT only
generated).

(no disk file is

CREF-80 CROSS REFERENCE FACILITY Page 7-3

You will need to give a drive designation if you want the
.LST file saved elsewhere than the currently logged drive
(where the .(RF file resides). For example:

CREFB0 B:•A:NEI�

saves NEIL.LST on d.ive B.

When finished, CREF-80 prompts with an asterisk.
enter another =filename, or exit from CREF-80
operating system.

You
to

may
the

To exit CREF-80, enter:

C�RL-C

If you want the .LST file named differently from the default
(.CRF filename and extension .LST), enter the name in front
of the equal sign. For example:

CREF80 NEIL.�RL=NEIL
or CREF80 NEILCREF=NEIL

The former command line generates a
file named NEIL.CRL; the latter
NEILCREF.LST.

cross reference list
generates a file named

Look at the filename extensions to distinguish a cross
reference listing file from the listing file MACRO-80
normally generates. The listing file MACRO-80 normally
generates (without the /C switch set in the command line)
receives the default filename extension .?RN. The cross
reference listing file generated by CREF-80 receives the
default filename extension .LST.

7.2 CREF LISTING CONTROL PSEUDO-OPS

You may want the option o: generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
.XCREF, in the source file for !<IACRO-80. These two
pseudo-ops may oe entered at any point in the program in the
OPERATOR field. Like the other listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTS.

CREF-80 CROSS REFERENCE FACILITY Page 7-4

Pseudo-op

. CREF

. XCREF

Definition

Create cross references •
.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-op. .CREF
remains in effect until M.\CR0-80 encounters
.XCREF. Note, however, that .CREF has no
effect until the /C switch is set in the
MACRO-80 command line.

Suppress cross references .
.XCREF turns off the .CREF (default) pseudo-09 .
. XCREF remains in effect until MACRO-80
encounters .CREF. Use .XCREF to suppress the
creation of cross references in selected
por�ions of the file. Because neither .CRE�
nor .XCRSF takes effect until the /C switch is
set in the MACRO-80 command line, there is no
need to use .XCREF if you want the usual List
file (one without cross references); simply
omit /C from the MACRO-80 command line.

CHAPTER 8

8.1

8.2

Contents

LIB-80 Library Manager

Sample LIB-80 Session
Building a Library
Listing a Library

LIB-80 Commands 8-3
Invoking LIB-80
Destination field
Source field 6-5

8-2

8-2

8-2

6-3
8-4

Additional Details About Source Modules
Switch field 8-8

8-6

CHAP TER 8

LIB-80 LIBRARY KANAGER

WARNING

Read this chapter carefullv
and make a back-up copy of
your libraries before using
LIB-BO. LIB-80 is very
powerful and thus can be very
destructive. It is easy to
destroy a library with LIB-80.

LIB-80 is designed as a runtime library manager for CP/M
versions of Microsoft FORTRAN-SO and COBOL-80. LIB-80 may
also be used to create your own library of assembly language
subroutines.

LIB-80 creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
assembly language programs. The programs collected by
LIB-80 may be special modules created by the programmer or
modules from an existing lihrary (FORLIB, for example).
With LIB-80, you can build specialized runtime libraries for
whatever execution requirements you design.

The value of building a library is that all the routines
needed to execute a program can be linked with it into an
executable object (COM) file by entering the library name
followed by/Sin a LINK-80 command line. For example:

L80 MAIN,NEWLIB/S,NEIL/N/G

This is much more convenient than entering the necessary
subroutines individually, especially if there are many
modules. With a library file you can be sure all the
necessary modules will be linked into the COM file, clus
there is no danger of running out of space on the LINK-80

LIB-80 LIBRARY MANAGER Page 8-2

command line. Additionally, the library makes this special
collection of subroutines available for easy linking into
any program.

8.1 SAMPLE LIB-80 SESSION

The two most common uses you will have for LIB-80 are
building a library and listing a library. The following
sample sessions illustrate the basic commands for these two
uses.

BUILDING A LIBRARY:

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ACOG
*EXP
*IE
A>

In this sample session, LIB invokes LIB-80, which
returns an asterisk (*) prompt. TRANLIB is the
name of the library being created.
SIN,COS,TAN,ATAN,ACOG are filenames to be
concatenated into TRANLIB. EXP is another filename
to be concatenated into TRANLIB. (EXP could be
�isted on the previous command line; this example
shows files entered singly and multiply.) /E causes
LIB-80 to rename TRANLIB.LIB to 'I'RANL!B.REL then to
exit to CP/M.

LISTING A LIBRARY:

A>LIB
*TRANLIB. LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*CTRL-C
A>

In this samole session, LIB invokes LIB-80.
TRANL!B.LIB/l/ tells LIB-80 to search 'T'RANLIB.LIB
for any intermodule references that would not be
defined during a single pass through the library

LIB-80 LIBRARY '1.ANAGER Page 8-3

(that is, any "backward" referencing symbols).
TRA�LIB.LIB/L directs LIB-80 to list the mod�les in
'I'RANLIB. LIB and the symbol definitions the modules
contain. CTRL-C exits to CP/M without destroying
any files.

w.a.RiHNG

/E will destroy your current library if
there is no ne� library under construction.
This is a special danger to your FORTRAN
runtime library FORLIB.REL. IF YOU ARE
ONLY LISTING THE LIBRARY AtsD NOT REVISING
� � U3-80 �-- CTRL-C. 1

8.2 LIB-80 COMMANDS

Invoking LIE-80

To invoke LIB-80, enter:

LIB

LIB-80 will return an asterisk (*) prompt, indicating ready
to accept commands. Each command in LIB-30 adds modules to
the library under construction.

Commands to LIB-80 consist of an optional Destination field,
a Source field, and an optional Switch field.

The format of a LIB-80 command is:

Destination=Source/Switch

Each field is described below. The general format for each
field is shown in parentheses after the field name.

LIB-80 LIBRARY MANAGER

Destination field (filename•)

Page 8-4

This field is optional. The equal sign is required if any
entry is made in this field.

Enter in this field the filename (and extension, if you
choose) for the library file you want to create.

If this field is omitted, LIB-BO defaults to the filename
FORLIB. The default filename extension is .REL.

WARNING

Do not confuse this default
filename FORLIB� with
FORLIB.REL, the runtime librarv
supplied with FORTRJ\N-80. These
two libraries will not be the
same unless you command LIB-80
to copy all the files from the
FORTRAN runt1me library to the
new library. Furthermore, when
you exit LIB-80, the default
library name will be given the
filename extension .REL, which
means that it reolaces the
FORLIB.REL supplied with
FORTRAN-BO. For this reason,
unless you want your FORTRAN-SO
runtime library destroyed, we
recommend emphatically that you
alwavs specify a Destination
filename when creating a new
library.

LIB-80 LIBRr\RY MNAGER Page 6-5

Source field {filename<module>)

Some entry is required in this field. All Source files must
be REL files.

Source field entries tell LIB-80 which files or parts of
files (modules) you want added to the destination library
file. You have two choices for entries:

1. Filename(s) only

2. Any combination of filename(s) and module name(s)

The following syntax rules apply:

1.

2.

If a command consists of filenames
entries are separated by commas only.

only, the
For example:

FILE1,FILE2,FILE3

If a command consists of filenames and
names, the module names must be enclosed in
brackets {<>). Modules follow the filename
they are found. Each filename<module
combination is separated from other corr�and
entries by commas. For example:

FILE1,FILE2<MODZ>,FILE3<MODR>,FILE4

module
angle
where
name>

line

3. If more than one module is named from the same
file, the module names, enclosed in angle brackets
(<>), must be separated from each other by commas.
For example:

FILE1,FILE2<MODZ,MODR>,FILE3

See Additional Details about Source Modules, option
2, below.

Files and modules are typically FORTRAN or COBOL subprograms
or main programs, or ALDS assembly language programs that
contain ENTRY, GLOBAL, or ?UBLIC statements. (These
statements are called entry ?Qints.) LIB-80 recognizes a
module by its program name, which may be a filename, or a
name given by either the .TITLE or the NA.�E pseudo-op in
MACRO-SO. All Source files must be REL files.

LIB-80 concatenates REL files and modules of REL files;
that is, LIB�S0 strings one file or module after the other.

So there is no difference between the command under syntax

rule 2 above and

FILEl
FILE2<MODZ>
FILE3<MODR>
FILE4

Also, because the library file is built by concatenation, it
is important to order the modules so that all intermodule
references are "forward." That is, the module containing the
external reference should physically appear ahead of the
module containing the ENTRY point (the definition).
Otherwise, when you direct LINK-RO to search the library,
LINK-80 may not satisfy all references on a single pass
through the library.

Additional Details about Source Modules

To extract modules from previous libraries and other REL
files, LIB-80 uses a powerful syntax to specify ranges of
modules within a REL file.

These ranges may be from one module to the entire file (in
which case no module specification is given).

range
in a

when

The basic principle of specifying a
generally, that any module named
included. (There is an exception,
relative offset range--item 6, below.)

The options for specifying modules are:

1. One mo�ule only

of modules is,
command will be

specifying a

Enter the module name. For example:

FILEl<MODZ>

includes only module MODZ of FILEl.

2. Several discontiguous modules from one file
Enter the module names separated by commas.
For example:

FILEl<MODZ,MODR,MOOK>

includes modules MOOZ, MOOR, and MOOK. Note
that these modules may be gi�en in any order
you need them concantenated for a proper
one-oass search, regardless of their order in
the �riginal file.

LIB-80 LIBRARY ,'\ANAGER Page 8-7

3. From the first :nodule through the named module
Enter two periods (..) and the na:ne of the last
module to be included. For example:

FILEl< .. MODK>

includes all modules from the first module in
?ILEl through module MOOR.

4. From a named module through the last module
Enter the name of the module that starts the
range followed by two periods (••). For
example:

FILEl<MODR •. >

includes all the modules, beginning with module
MODR, through the last module in FILEl.

5. From one named module through another named module
Enter the name of the module that starts the
range followed by two periods (..) followed by
the name of the module that ends the range.
For example:

FILEl<MODZ •. MODK>

includes all modules, beginning with module
MODZ, through module MOOK.

6. Relative offset range
Enter the module name followed by a + or - and
the number of modules to be included. + means
following the named module. - means preceding
the named module. The named module is not
included in the library. The offset number
must be an integer in the range l to 255. For
exa:nple:

FILEl<MODZ+2>

includes the two modules immediately following
module MODZ. While

FILEl<MOOK-3>

includes the three modules immediately
preceding module MOOK.

LIB-80 LIBRARY MANAGER Page 8-8

Additionally, ranges and offsets may be used
together. For example:

FILEl<MOOR+l •. MOOK-1>

includes all the modules between module MOOR
and module MOOK (but neither MOOR nor MOOK is
included).

7. All modules in a file
Enter the filename only. For example:

FILEl

includes the entire file
FILEl).

Switch field (/switch)

(all modules in

An entry in the Switch field commands LIB-80 to perform
additional functions. A Switch field entry is a letter
preceded by a slash mark (/).

W.\RNING

/E will destroy your current
librarv if there is no new
librar� under construction.
This is a special danqer to
your FORTRAN runtime library
FORLIB.REL because FORLIB is
the default filename used if
you do not specify a
destination filename.
Therefore, unless you want to
delete your complete FORTRAN
runtime library, give LIB-80 a
destination filename for the
new library. If you are only
listing the library and not
revising it, exit LIB-80 using
CTRL-C.

LIB-80 LIBRARY MANAGER Page 8-9

Switch

/E

Action

Exit to CP/M. If vou are not creating �
library 2!_ revisi� an existing librarv,
CTRL-C inst�ad of &

new
use

The library under construction (.LIB) is rer.amed
to .REL and any previous copy of the library file
is deleted. This is why/Eis so dangerous and
not to be used unless you are constructing a new
library. Again, we recommend emphatically that
you alwavs enter a filename in the Destination
fieldofthe L!B-80 command line.

/R Rename the library currently being built (.LIB) to
. REL. �he §_ame warni..D.9.§_ and cautions � to �
as aoplv to &

The previous copy of the library is deleted. Use
/R anly if you are building a new library. /R
performs t�e same functions as /E, but does not
exit to CP/M on completion. Use /R instead of /E
when yo� want to exit the current library but want
to continue using LIB-80 for other library
managing.

/L List the modules in the file specified and the
sy:-�bol definitions the modules contain. The
contents of a file are listed in cross reference
format.

Listings are currently always
terminal; use CTRL-P before
send the listing to the printer.

sent to the
running LIB-80 to

/tT Use /U to list the symbols which could be
undefined in a single pass through a library. If
a symbol in a library module refers "backward" (to
a preceding module), /U will list that symbol.

/C Use /C to clear comma:1ds from LIB-80 wi U.out
exiting the LIS-80 program. The library ur.de.:::
construction lS deleted and the L!B-80 session
starts over. The asterisk (*) orompt will appear.

Use /C if you specified the wrong module(s) or the
wrong order and want to start over with new LIB-80
commands.

,IB-80 LIBRARY MANAGER Page 8-10

/0 Use /0 to set typeout mode to Octal radix. /0
will be given together with the /L switch, which
commands LIB-80 to list. REMEMBER: When switches
are given together, a slash must precede each
switch. For example:

NEWLIB/L/O

/H Use /H to set typeout mode to Hexadecimal radix.
Hexadecimal is the default radix.

Appendix A

Appendix B

B.1
B.2
B.3
B.4

Appendix C

Appendix D

Appendix E

Appendix F

F.l
F.2

Contents

Compatibility with Other Assemblers

�he Utility Software Package with TEKDOS

TEKDOS Command Files B-1
MACR0-80 B-1
CREF-80 B-2
LINR-80 B-2

ASCII Character Codes

Format of LINK Compatible Object Files

Table of �.ACR0-80 Pseudo-ops

Table of Opcodes

zao opcodes
8080 Opcodes

F-1
F-3

APPENDIX A

Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with Intel's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control word

$EJECT

is the same as the MACRO-SO PAGE pseudo-op.

The control word

$TITLE ('text')

is the same as the MACRO-80 SUBTTL <text> pseudo-op.

The Intel operands PAGE and INPAGE generate Q errors when
used ,;i th the MACRO-80 CSEG or DSEG pseL1do-ops. 7.hese
errors are warnings: the assembler ignores the operands.

When /'\ACRO-30
Relative 0.

Absolute 0.

is invoked, the default for the origin is Code
With the Intel ISIS assembler, the default is

With MACRO-80, the dollar sign !S) is a defined constant
that indicates the value cf the location counter at the
start of the statement. Other assemblers may use a decimal
point or an asterisk. Other constants are defined by
MACRO-80 to have the following values:

A=7
H=-4

C=l
M=6

0=2

SP=6
E,..3

PSW=6

APPENDIX B

The Utility Software Package with TEKDOS

The command formats for MACRO-BO, LINK-80, and CREF-80
differ slightly under the TEKDOS operating system.

B.l TEKDOS COMMAND FILES

The files MSC, LS0, and C80 are actually TEKDOS command
files for the assembler, loader, and r.ross reference
programs, respectively. These command files set the
emulation mode to 0 and select the Z-80 assembler processor
(see TEKDOS documentation), then execute the appro?riate
program file. You will note that all of these command files
are set up to execute the Microsoft programs from drive tl.

LINK-BO will also look for the library on drive #1. If you
wish to execute any of this software from drive tO, the
command f�le must be edited. Then, LINK-80 should be given
an explicit library search directive, such as M'LLIB-S. See
the Switches section in Chapter 6, LINK-80 Linking Loader.

Filenames under TEKDOS do not use the Utility Software
Package default filename extensions.

B.2 MACRO-80

The MACRO-BO assembler accepts command lines only (the
invoke command, MS0, and all filenames and switches must be
on one line). No prompt is displayed, and the interactive
co��ands (,TTY:=TTY: and ,L?T:=TTY:) are not accepted.
Commands have the same format as TEKDOS assembler commands;
that is, up to three filenames or device names plus optional
switches.

M80 [object] [list] source [switch (switch (...]])

The object and list file entries are optional. These files
will not be created if the parameters are omitted. Any

Page B-2

error messages will still be displayed on the console. The
available switches are described in Chapter 5 of this
manual. All command line entries may be delimited by commas
or spaces. If you do not want to request an object file,
you must enter a <space comma space> between the M80 entry
and the name of the list file. For example:

M80 , LIST SOURCE

B.3 CREF-80

The form of commands to CREF-80 is:

C80 list source

Both filenames are required. The source file is always the
name of a CREF-80 file created during assembly by the C
switch.

Example:

To create a CREF-80 file from the source TSTMAC using
MACRO-BO, enter:

M80 , TSTCRF TSTMAC C

To create a cross reference listing from the CREF-BO file
TSTCRF, enter:

CBO TSTLST TSTCRF

B.4 LINK-80

With TEKDOS, the LINK-80 loader accepts interactive commands
only. Command lines arc not supported.

When LINK-80 is invoked, and whenever it ls waiting for
input, it will prompt with an asterisk. Commands are lists
of filenames and/or devices separated by commas or spaces
and optionally interspersed with switches. The input to
LINK-BO must be 11icrosott relocatable object code (not the
same as TEKDOS loader format).

Switches to LINK-BO are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-BO switches (as documented in
Chapter 6) are supoorted, except -G and -N, which are not
implemented at this time.

Page B-3

EXAMPLE:

1. Assemble a MACRO-BO program named XTEST, creating
an object file called XREL and a listing file
called XLST:

>MB0 XREL XLST XTEST

2. Load XTEST and save the loaded module:

>LS0
*XREL-E
[04AD 22BB]
*DOS*ERROR 46
L80 TERMINATED
>M XMOD 400 22BB 04AD

Note that -E exits via an error message due to execution of
a Halt instruction. The memory image is intact, however,
and the TEKDOS Module command may be used to save it. Once
a program is saved in module format, it may then be executed
directly without going through LINK-BO again.

The bracketed numbers printed by LINK-BO before exiting are
the entry [)Oint address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
address in location O, which allows execution to begin at 0.
The memory locations between 0003 and 0400H are reserved foe
SRB's and I/0 buffers at runtime.

Dec Rex

000 OOH

001 OlH
002 02H
003 03H
004 O�R
005 05H
006 06H
007 07H
008 08H
009 09H
010 OAH
011 OBH
012 OCH
013 OOH
014 OEH
015 OFH
016 lOH
017 llH
018 12H
019 131!

020 14H
021 15H
022 16H
023 17H
024 18H
025 19H
026 lAH
on lBH
028 lCH
029 lDH
030 l.EH
031 lFH
032 20H
033 21H
034 22H
035 23H
036 24H
037 25H
038 26H
039 27H
040 28H
041 29H
042 2AH

Dec=decimal,
LF=Line Fee<i,

CHR

l'<"UL
SOH
STX
CT''
� ...

EOT

ENQ

ACK

BEL
BS
HT

LF
VT
FF
CR
so

SI
OLE
DCl
DC2
OC3
X4

NAK

SYN

ETB

CAN
E.'1

SUB

ASCII

Dec

043
044

045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
058
069

ESCAPE 070
2S 071
GS 072
RS 073
us 074
SPACE 075
l 076
" 077
ti 078
$ 079
% 080

& 081
082

(083
) 034
* 085

APPENDIX

CHARACTER

Hex

2BH
2CH
2DH

2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46i-J
47H
48H
49?.
4AH
4BH
4CH
4DH
4!':P.
4FF.
SOR
5lrl
52R
53H
54H
55H

Hex =hexadecimal (H)'

C

CODES

CHR Dec

+ 086
087
088
089

I 090
0 091
1 092
2 093
3 094
4 095
5 096
6 097
7 098
8 099
9 100

101
102

< 103
104

> 105
? 106
@ 107
A 108
B 109
C 110
D 111
E 112
F 113
G 114
H 115
I 116
.,. 117 u

K 118
L 119
M 120
N 121
0 122
p 123
Q 124
R 125
s 126
T 127
u

CHR=character.
FF=Forn Feed, CR=Ca:riage Return.

Hex CHR

56H V

57H w

58H X

59H y

SAR z

5DH (
SCH
5DH l
SEH
5FH
60H T

61H a
62H b
63H C

64H d
65H e

66H f

67H g
688 h

69H i
6.;H
6G3 k

6Cl-i 1
6DH m

6EH n
6FH 0

70H p
71H q

72Fi r

73H s
74H t
75H u
76H V

77H w

78H X

79H y
7AH z
7BH f

7CH

l7DH
7EH
7FH DEL

DEL=Rubout

APPENDIX D

FOru1AT OF LINK COMPATIBLE OBJECT FILES

This appendix contains reference material for users who wish
to know the load format of LINK-80 relocatable object files.
None of this material is necessary to the operation of ALDS.
There is nothing in the format material presented here which
can be manipulated bv the user. The material is highly
technical, and it is not presented in any tutorial manner.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate cne of four ty?eS of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Daca Relative. Load the following 16 bits
after adding the current Data base.

11 Corr�on Relativ�. Load the following 16 bits
after adding the current Common base.

Page D-2

Special LINK items consist of the bit stream 100
one-zero-zero) followed by:

(read

a four-bit control field

an optional A field consisting of a two-bit address
type that is the same as the two-bit field described
above, except 00 specifies absolute address

an optional B field consisting of 3 bits that give a
symbol length and up to 8 bits for each character of
the symbol

A general representation of a special LINK item is:

l 00 xxxx yy nn
�

A field

zzz + characters of symbol name

where: xxxx is
yy is
nn is
zzz is

B field

four-bit control field (0-15 below)
two-bit address type field
sixteen-bit value
three-bit symbol length field

The following special types have a B-field only:

0 Entry symbol (name for search)
l Select COMMON block
2 Program name
3 Request library search
� Extension LINK items (see below)

The following special LINK items have both an A fiel0 and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B

is name of external �ymbol)
7 Define entrv point (A is address, B is name)

Page D-3

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added
to the two bytes starting at the current
location counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loadino location counter to A
12 Chain addr�ss. A is head of chain. Replace

all entries in chain with current location
counter. The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special LINK item has neither an A nor a B
field:

15 End file

An Extension LINK item fGllows the general format of a
B-field-only special LINK item, but the contents of the
B-field are not a symbol name. Instead, the symbol area
cont�ins or.e character to identify the type of extension
LINK item, follow�d by from 1 to 7 characters of additional
information.

Thus, every extension LINK item has the format:

1 00 0100 111 s bbbbbb

where: 111

s

bbbbbb

is 3 bits containing the length of the
field bbbbbb (0 implys l since FS0 emits
entry length of 0 for Blank Common),

is an eight bit extension LINK item
sub-type identifier, and

are 1 to 6 bytes for additional
information. If used as B field for
name, bbbbbb may be only 6 characters.

The present extension LINK item sub-types are:

5 X'35' COBOL overlay segment sentinel

A X'41' Arithmetic Fixup (Arithmetic Operator)

B X'42' Arithmetic Fixup (External Reference)

C X'43' Arithmetic Fixup (Area Base + Offset)

Descriptions of Sub-types

Sub-type 5

Page D-4

When the overlay segment sentinel is encountered by
LINK-80, 111 receives the value 010 (binarv), and the
current overlay segment number is set to the value b+49.
If the previously existing segment number was non-zero
and the /N switch is in effect, the data area is written
to disk in a file whose name is the current program name
and whose extension is Vnn, where nn are the two
hexadecimal digits representing the number b+49
(decimal).

Sub-types A,B,r.

Sub-types A, B, and C allow the processing of Polish
Arithmetic text. Items must be read as Reverse Polish
Expression. One or more Value items (sub-type B or C)
are followed bv one or more Arithmetic Operators
(sub-type A) and · end with a Store-Result Arithmetic
Operator (B.STBT or B.S�fD).

All Items are put in the Fixup Table afer any offset
entries have been converted to final �ddresses. The
Polish expression is executed out of the Fixup Table at
the end of link. The result is stored at the PC given
when the Items were read.

APPENDIX E

Table of MACRO-SO Pseudo-ops

Notation: * means zao pseudo-op
no stars means 8080 pseudo-op

SINGLE-FUNCTION PSEUDO-OPS

Instruction Set Selection

.ZB0

.8080

Data Definition and Sy;nbol Definition

*
*

*

*
*

<name> ASET <exp>
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>
D3 <exp>[,<exp> ...]
DB <string>[<string> .••]
DC <string>
DDB <exp>[,<exp> •.•]
DEFB <exp>[,<exp> .••]
<n3rne> DEFL <exp>
DEFM <string>[,<string> •••]
DEFS <exp>[,<val>]
DEFW <exp>[,<exp> .•.]
DS <exp>[,<val>]
DW <exp>[,<exp> .. ,]
ENTRY <narne>[,<�ame> ..•]
<name> EQU <exp>
EXT <narne>[,<name> ...]
EXTRN <name>[,<name> ...]

* EXTERNAL <name>[,<name> ... J
GLOBAL <name>[,<name> ..•]
PUBLIC <name>[,<name> ..•]
<name> SET <exp> (not in .zao mode)

PC Mode Pseudo-ops

ASEG
CSEG
DSEG
COMMON /<block name>/
ORG <exp>
.PHASE <exp>/.nEPHASE

File Related Pseudo-ops

.COMMENT <delim><text><delim>
END [<exp>)
INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>
.RADIX <exp>
.REQUEST <filename>[,<filename> ...)

Listing Pseudo-ops

Format Control Pseudo-ops

* *EJECT [<exp>) (one star is part of *EJECT)
PAGE <exp>
SUBTTL <text>
TITLE <text>
$TITLE

General Listing r.ontrol Pseudo-ops

.LIST

.XLIST

.PRINTX <delim><text><delim>

Conditional Listing Control Pseudo-ops

.SFCOND

.LFCOND

.TFCOND

Expansion Listino Control Pseudo-ops

.LALL

.SALL

.XALL

Page E-2

Cross-Reference Listing Control Pseudo-cos

.XCREF

.CREF

MACRO FACir.ITY PSEUDO-OPS

Macro Pseudo-ops

<name> MACRO <para�eter>[,<parameter> .•• J
ENDM
EXITM
LOCAL <parameter>(,<parameter> •.. j

Reneat Pseudo-cos

REPT <e;;:p>
IRP <dumrny>,<parameters in angle brackets>
IRPC <dummy>,string

Conf.itional Assemblv Facilitv

*

*

COND <exp>
ELSE
ENDC
ENDIF
IF <exp>
IFB <arg>
IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp>
IFF <ex,:»
IFIDN <argl>,<arg2>
IFN3 <arg>
IFNDEF <symbol>
IFT <exp>
IFl
IF2

Page E-3

APPENDIX F

Table of Opcodes

The opcodes are listed alp habetically by instruction set.
For details, refer to the reference books listed in Chapter
1.

F.l zao OPCODES

Opcode

ADC
ADC
ADD
AND
BIT
CALL
CALL
CCF
CP
CPD
CPDR
CPI
CPIR
CPL
DAA
DEC
DI
DJNZ
EI
EX
EXX
HALT
IM
IN
INC
IND
INDR
INI

n,IR

A

HL, rp

addr
cond,addr

X

JP addr
JP cond,addr
JR

Function

Add with Carry to Accumulator
Add Register Pair with Carry to HL
Add
Logical AND
Test Bit
Call Subroutine
Call Conditional
Complement Carry Flag
Compare
Compare, Decrement
Compare, Decrement, Repeat
Compare, Increment
Compare, Increment, Repeat
Complement Accumulator
Decimal Adjust Accumulator
Decrement
Disable Interrupts
Decrement and Jump if Not Zero
Ena�le Interrupts
Exchange
Exchange Register Pairs and Alternatives

Halt
Set Interr�pt Mode

Input
Increment
Input, Decrement
Input, Decrement, Repeat
Input, Increment
Input, Increment, Repeat
Jump
Jump Condit:.onal
Jump Relative

JR
LO
LD
LO
LO
LO
LO
LO
LO
LD
LD
LD
LD
LD
LD
LO
LO
LO
LD
LO
LO
LO
LO
LO
LO
LDD

LDDR
LOI
LDIR
NEG
NOP
OR
OUT
OUTD
OTDR
OUTI
OTIR
POP
PUSH
RES
RE'!'
RET
RF.TI
RETN
RL
RLA
RLC
RLCA
RLD
RR
RRA
RRC
RRCA
RRD
RST

cond,addr
A, (addr)

A, (BC) or (DE)

A,I
A,R

HL, (addr)
data

xy, (addr)
reg, (HL)

reg, (xy+rlisp)
rp, (addr)

SP,HL
SP,xy
dst,scr
(addr) ,A

(BC) or (DE) ,A
I ,A
R,A

(addr),HL
(HL) ,data
(xy+dis,:,) ,data
(addr),xy

(HL), reg
(xy+disp), reg
(addr) ,rp

cond

Jump Relative Conditional
Load Accumulator Direct
Load Accumulator Secondary

Page F-2

Load Accumulator from Interrupt Vector Register
Load Accumulator from Refresh Register
Load HL Direct
Load Immediate
Load Index Register Direct
Load Register
Load Register Indexed
Load Register Pair Direct
Move HL to Stack Pointer
Move Index Register to Stack Pointer
Move Register-to-Register
Store Accumulator Direct
Store Acct1mulator Secondary
Store Accumulator to Interrupt Vector Register
Store Accumulator to Refresh Register
Store !IL Direct
Store Immediate to Memory
Store Immediate to Memory Indexed
Store Inclex Register Direct
Store Register
Store Register Indexed
Store Register Pair Direct
Load, Decrement
Load, Decrement, Repeat
Load, Increment
Load, Increment, Repeat
Negate (Two's Complement) Accumulator
No Operation
Logical OR
Output
Output, Decrement
Output, Decrement, Repeat
Output, Increment
Output, Increment, Repeat
Pop from Stack
Push to Stack
Reset Bit
Return from Subroutine
Return Conditional
Return from Interrupt
Return from Non-Maskable Interrupt
Rotate Left Through Carry
Rotate Accumulator Left Through Carry
Rotate Left Circular
Rotate Accumulator Left Circular
Rotate Accumulator and Memory Left Decimal
Rotate Right Through Carry
Rotate Accumulator Right Through Carry
Rotate Right Circular
Rotate Accumulator Right Circular
Rotate Accumulator and Memory Right Decimal
Restart

SET Set Bit
SBC Suhtract with Carry (Borrow)

SCF Set Carry Flag
SLA Shift Left Arithmetic
SRA Shift Right Arithmetic
SRL Shift Right Logical
SUB Subtract
XOR Logical Exclusive OR

F.2 8080 OPCODES

Opcode

ADC ,ACI
ADD,ADI
ANA,ANI
CALL
cc

CM
CMA
CMC
CMP,CPI
CNC
CNZ
CP
CPE
CPO
CZ
DAA
DAD
DCR
DCX
DI
EI
HLT
IN
INR
INX
JC
JM
JMP
JNC
JNZ
JP
JPE
JPO
JZ
LDA
LDAX
LHLD
LXI

Function

Add with Carry
Add
Logical AND
Call Subroutine
Call on Carry
Call on Minus
Complement Accumulator
Complement Carry
Compare
Call on No Carry
Call on Not Zero
Call on Positive
Call on Parity Even
Call on Parity Odd
Call on Zero
Decimal Adjust
16-bit Add
Decrement
16-bit Decrement
Disahle Interrupts
Enable Interrupts
Halt
Input
Increment
Increment 16 bits
Ju..1p on Carry
Jump en �iinus
Jump
Jump on Not Carry
Jump on Not Zero
Jump on Positive
Jump on Parity Even
Jum? on Parity Odd
ciump on Zero
Load Accumulator
Load Accumulator Indirect
Load HL Direct
Load 16 bits

Page F-3

MOV
MVI
NOP
ORA,ORI
OUT
PCHL
POP
PUSH
RAL
RAR
RC
RET
RLC
RM

RNC
RNZ
RP
RPE
RPO
RRC
RST
RZ
SBB,SBI
SHLD
SPHL
STA
STAX
STC
SUB,SUI
XCHG
XRA,XRI
XTHL

Move
Move Immediate
No Operation
Logical OR
Output
HL to Program Counter
Pop from Stack
Push to Stack
Rotate with Carry Left
Rotate with Carry Right
Return on Carry
Return from Subroutine
Rotate Left
Return on Minus
Return on No Carry
Return on Not Zero
Return on Positive
Return on Parity Even
Return on Parity Odd
Rotate Right
Restart
Return on Zero
Subtract with Borrow
Store HL Direct
HL to Stack Pointer
Store Accumulator
Store Accumulator Indirect
Set Carry
Subtract
Exchange D and E, H and L

Logical Exclusive OR
Exchange Top of Stack, HL

Page F-4

$EJECT .
$INCLUDE
$TITLE .

8080 Opcodes
8080 Opcodes as Operands

ASEG
ASET

BYTE EXT
BYTE EXTERNAL
BYTE EXTRN . .

INDEX

4-28

, 4-23

4-30

4-3

3-13

4-14

4-12

4-10

4-10

4-10

Calling a Macro 4-38
Character Constants 3-11
Comments . . . • 3-2
COMMON • 4-17

COND . • • . 4-49

CREF-80 Cross Reference Facility 7-1
CREF-80 Cross-Reference Facility 2-4

CSEG . • • • • • 4-15, A-1
Current Program Counter 3-13, A-1

DB .
DC .
DEFB
DEFL
DEFM
DEF'S
DEFW
Device names as files
OS
DSEG
DW

ELSE
END
ENt)C
ENDIF
ENDM .
ENTRY
EQlJ

Error Messages
LINl<-80
MACRO-BO

EXITM
EXT
EXTERNAL
EXTERNAL
EXTRN

Figure

Symbols

4-5
4-6

4-5
4-12

4-5
4-7
4-8

5-12
4-7

4·-16, A-1
4-8

4-50
4-22

4-50
4-50
4-44

4-11

4-9

6-19

5-15
4-44

4-10
4-10
3-6

4-10

Developing assembly programs 1-5
Device Designations without filenames 5-12
Loading changes Relative address to fixed 1-7
ORG in relative modes is an offset 1-8
PUBLIC symbol linked with EXTERNAL 1-6
Relationships among programs 1-10
Table of Link-80 Switches 6-5

File Format 3-1, 5-13

GLOBAL

IF .
!Fl
IF2
IFB
IFDEF
IFDIF
IFE
IFF
IFIDN
IFNB .
IFNDEF
IFT
INCLUDE
IRP
IRPC .

LAB EL:
LIB-80 Command Format
LIB-80 Library Manager
LIB-80 Modules . . • .
LINK-80 Error Messages
LINK-80 Linking Loader
Listing Formats
LOCAL

4-11

4-49

4-49

4-49

4-49

4-49

4-50
4-49
4-49

4-50
4-50
4-49

4-49

4-23
4-42

4-43

• 3-4
8-3
2-4

8-5
6-19
2-3, 6-1
5-13
4-45

MAC LIB 4-23
MACRO 4-37
MACRO-80 Error Codes and Messages 5-15
MACRO-80 Listing Files . 5-13
MACRO-80 Macro Assembler . . 5-1
Modes . • • • . 3-7
Modes Rules for symbols in expressions 3-12

NAME . • .
Numbers as operands

Operands
Operator Order of Precedence
Operators
ORG

PAGE
Pseudo-ops

$EJECT .
$INCLUDE
$TITLE
,\SEG . .

4-24
3-10

3-10
3-17
3-14
4-18

4-28, A-1

4-28
4-23
4-30
4-14

ASET
Block Listing
BYTE EXT
BYTE EXTERNAL
BYTE EXTRN
COMMON • •
COND
Conditional
Conditional Listing
CSEG • • •
Data Definition
DB .
DC
DEFB
DEFL
DEFM
DEFS
DEFW
DS
DSEG
DW .
ELSE
END
ENDC
ENDIF
ENDM
ENTRY
EQU
EXITM
Expansion Li�ting
EXT
EXTERNAL •
EXTRN
Format Control
General Listing
GLOBAL
IF
IFl
IF2
IFB
IFDEF
IFDIF
IFE
IFF
IFIDN
IFNB
IFNDEF
IFT
INCLUDE
IRP
IRPC •
Listing
LOCAL
MACLIB
MACRO
Macro Listing
NAME
ORG

4-12

4-34
4-10
4-10
4-10
4-17
4-49
4-48
4-33
4-15, A-1
4-4
4-5
4-6
4-5
4-12
4-5
4-7
4-8
4-7
4-16, A-1
4-8
4-50
4-22
4-50
4-50
4-44
4-11

4-9
4-44
4-34
4-10
4-10
4-10
4-28
4-31
4-11

4-49
4-49

4-49

4-49

4-49

4-50
4-49
4-49

4-50
4-50
4-49
4-49
4-23
4-42
4-43
4-27
4-45
4-23
4-37
4-34
4-24
4-18

PAGE • •
PC Mode
PUBLIC
REPT .
SET
SUBTTL
Symbol Definition
TITLE
.PHASE
.DEPHASE
.COMMENT
. RADIX .
.REQUEST
*EJECT
.LIST
.XLIST .
.PRINTX
.SFCOND
.LFCOND
.TFCOND
.XALL
.LALL
.SALL
.CREF
.XCREF
.CREF
.XCREF

PUBLIC
PUBLIC Symbols

REPT . • • . .

4-28, A-1

4-13
4-11
4-41
4-12

4-30, A-1
4-4

4-29
4-19
4-19

4-21

4-25

4-26
. 4-28

4-31
4-31
4-32
4-33
4-33
4-33
4-34
4-34

4-34

4-35
4-35
7-3
7-3
4-11

3-5

4-41
Restrictions on module placement with LINK-80 6-12 to 6-13
Rules for EXTERNALS in expressions 3-12

SET 4-12

Special Macro Operators 4-46
% 4-46

4-46

' ' 4-46
& 4-46

Special Radix Notation 3-10
Statement Line Format 3-1
Strings 3-11
SUBTTL . 4-30, A-1
Switches

LIB-80 8-9
/C 8-9
/E . 8-9
/H 8-10
/L 8-9
/0 8-10
/R 8-9
/U 8-9

LINK-80
/D 6-12
/E 6-8
/G 6-6
/H 6-17

/M .
/N .
/N:P
/0
/P
/R
/S
/U
/X
/Y •

MACRO-SO
/H
/I
/L
/M
/0
/P
/R
/X
/Z

Symbol Table format
Symbols . • . •
Symbols in expressions
Symbols Rules
Syntax Notation
System Requirements

TEKDOS
TITLE

Z80 Opcodes

.PHASE .

.DFPHASE

.COMMENT

.RADIX .

.REQUEST
*EJECT .
.LIST
.XLIST
. PRINTX
.PRINTX
.SFCOND
.LFCOND
.TFCOND
.XALL
.LALL
.SALL
.CREF
.XCREF
/0 - MACRO-80
/H MACRO-80
/R MACRO-80
/L MACRO-80'
/Z MACRO-80
/I MACRO-80
/P MACRO-80
/M MACRO-80

6-16
6-9
6-10
6-17
6-,.11
6-14
6-15
6-16
6-18
6-18
5-6
5-6
5-7
5-7
5-8
5-6
5-7
5-6
5-8
5-7
5-14
3-3
3-12
3-3
1-3
1-2

B-1
4-29

4-3

4-19
4-19
4-21
4-25
4-26
4-28
4-31
4-31
4-32
4-32
4-33
4-33
4-33
4-34
4-34
4-34
4-3 5
4-35
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8

/X - MACRO-BO 5-8
/G - LINK-BO • 6-6
/E - LINK-80 • 6-8
/N - LINK-BO • 6-9
/N:P - LINK-BO 6-10
/P - LINK:..ao 6-11
/D - LINK-BO 6-12
/R - LINK-BO 6-14
/S - LINK-BO 6-15
/U - LINK-BO 6-16
/M - LINK-BO 6-16
/0 - LINK-BO 6-17
/H - LINK-BO 6-17
/X - LINK-80 6-18
/Y - LINK-80 6-18
.CREf' 7-3
.XCREF . . • 7-3

/E - LIB-80 8-9
/H - LIB-80 8-9
/L - LIB-80 8-9

/U - LIB-80 8-9
/C - LIB-80 8-9
/0 - LIB-80 8-10
/TT - LIB-80 8-10
$ - Current Program Counter A-1
% 4-46

I 4-46

;; 4-46

& 4-46

�!UCROSOfT®
10700 Nonhup Way, Bellevue, WA 98004

Name

Street

City

Phone

Instructions

State

________ Date

Software

Problem Report

Zip

Use this form to report software bugs, documentation errors, or suggested enhancements.

Mail the form to Microsoft.

Category
-------------------------- -----------------

Software Problem

Software Enhancement

Software Description

Microsoft Product

Rev. Registration #

Operating System ___ _

Rev. ____ Supplier

Other Software Used

Rev. _ __ Supplier

Hardware Description

Manufacturer

Disk Size Density:

Peripherals

Single

Double

CPU

Documentation Problem

(Document# ___ _

Other

Sides:

Single

Double

Memory KB

Problem Description
- - --·- -------··--·---

- --

Describe the problem. (Also describe how to reproduce it, and your diagnosis cmd s11ggested

correclion.) Attach a listing if available.

Mlcroso!I Use Only

Tech Support ______ _

Routing Code

Report Number _____ _

Action Takon:

Date Heceived

Date Resolved

Part no. SPROOA

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172
	00173
	00174
	00175
	00176
	00177
	00178
	00179
	00180
	00181
	00182
	00183
	00184
	00185
	00186
	00187
	00188
	00189
	00190
	00191
	00192
	00193
	00194
	00195
	00196
	00197
	00198
	00199
	00200
	00201
	00202
	00203
	00204
	00205
	00206
	00207
	00208
	00209
	00210
	00211
	00212
	00213
	00214
	00215
	00216
	00217
	00218
	00219
	00220
	00221
	00222
	00223
	00224
	00225
	00226
	00227
	00228
	00229
	00230
	00231
	00232
	00233
	00234
	00235
	00236
	00237
	00238
	00239
	00240
	00241
	00242
	00243
	00244
	00245
	00246
	00247
	00248
	00249
	00250
	00251
	00252
	00253
	00254
	00255
	00256
	00257
	00258
	00259
	00260
	00261
	00262
	00263
	00264
	00265
	00266
	00267
	00268
	00269
	00270
	00271
	00272
	00273
	00274
	00275
	00276
	00277
	00278
	00279
	00280
	00281
	00282
	00283
	00284
	00285
	00286
	00287
	00288
	00289
	00290
	00291
	00292
	00293
	00294
	00295
	00296
	00297
	00298
	00299
	00300
	00301
	00302
	00303
	00304
	00305
	00306
	00307
	00308
	00309
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329
	00330
	00331
	00332
	00333
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347
	00348
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360
	00361
	00362
	00363
	00364
	00365
	00366
	00367
	00368
	00369
	00370
	00371
	00372
	00373
	00374
	00375
	00376
	00377
	00378
	00379
	00380
	00381
	00382
	00383
	00384
	00385
	00386
	00387
	00388
	00389
	00390
	00391
	00392
	00393
	00394
	00395
	00396
	00397
	00398
	00399
	00400
	00401
	00402
	00403
	00404
	00405
	00406
	00407
	00408
	00409
	00410
	00411
	00412
	00413
	00414
	00415
	00416
	00417
	00418
	00419
	00420
	00421
	00422
	00423
	00424
	00425
	00426
	00427
	00428
	00429
	00430
	00431
	00432
	00433
	00434

