
 

Making of ​Raven Squad 

 

 

Authors 

Alejandro Culiáñez Llorca (​Acllorca777@gmail.com​) 

Héctor Mateo Pastor Pérez - (​Hmateo09@gmail.com​) 

Antonio Gómez - (​afgm@alu.ua.es​) 

 

Twitter:​ https://twitter.com/_ravengames_ 

 

Special thanks to​: 

Enrique Morales Castelló (for making such awesome music) 

 

 

  

 

mailto:Acllorca777@gmail.com
mailto:Hmateo09@gmail.com
mailto:afgm@alu.ua.es
https://twitter.com/_ravengames_


Making of Raven Squad 

 
Technologies used 3 

Easter Egg of the Prince of Persia 3 

Development of the idea 4 

The design process, a step-by-step story 6 

Scroll 6 

Collisions 7 

Shooting 7 

Direction and cadence of the player's shot 8 

Generation of enemies 9 

Refined physics system with self-cleaning of entities 9 

Rendering system 10 

Level generation (Enemy System 2.0, Part 1) 10 

Enemy Manager 11 

Level generation (Enemy system 2.0, part 2) 11 

Enemy behaviour 12 

MultiSprite Render System 13 

Enemy behaviour, part two 14 

Performance problems, optimizing the game 14 

The Phantom Bullet, also known as The Bug 16 

Testing the final engine, first advances in content 18 

First review of the game 19 

Enemy behaviour, part three 20 

Sound effect system 23 

Creating a new game mode 24 

Tuning the collision system 25 

Final level, starting with the last changes 26 

Final boss, designing the last fight 27 

Last changes, ending the game 28 

Sketches of the game 28 

 

Page 2 of  33 



Making of Raven Squad 

Technologies used 
- CPCtelera 1.5.0​: Fast Amstrad CPC game engine for C and Assembler developers.  

- Visual Studio Code​: It’s a code editing tool that allowed us to write the code of our                 
game. 

- Github​: distributed source code version-control system. 

- Arkos Tracker​: Musical tool for Amstrad CPC, Atari ST, ZX Spectrum, MSX, Oric,             
Apple 2, Vectrex and Sharp MZ-700! 

- Winape​: Amstrad CPC emulator for PCs running any 32 or 64-bit version of Windows 

 

Easter Egg of the Prince of Persia 
I am writing this section in a personal capacity (Hector).  

When the reference to Prince of Persia was mentioned, I was very clear about what I wanted                 
to introduce as an easter egg. I remember being about five years old, and that my father                 
brought in diskettes the MS-DOS version of the game, it was one of my first experiences as                 
a player, I remember writing down in a sheet of paper the commands that seemed to be                 
witchcraft to be able to execute the game. And I remember the frustration caused by the                
countdown, but there was something else that I felt bad about. 

The door knives. 

I hated those doors with all my soul, I never got the hang of them, my self of twenty five                    
years ago hated them with all its soul. Even today I still partly hate them when I play the                   
game again in DOSBOX sometimes. 

When I exposed the idea to my colleagues, they accepted it, and gave me carte blanche to                 
implement it, and this version of those doors appears for the first and only time in the last                  
level of the game, the nine. It may not be the best version of the door, since drawing is not                    
my thing, but I'm satisfied that I was able to represent that enemy that I hated so much as a                    
child in this game.  

 

Page 3 of  33 

http://lronaldo.github.io/cpctelera/
https://code.visualstudio.com/
https://github.com/
http://www.julien-nevo.com/arkostracker/
http://www.winape.net/


Making of Raven Squad 

 

Development of the idea 
At first, the original idea we had was to make a game based on Smash TV, so during the                   
development of the engine we used for the game, we tried to think about how to develop the                  
idea, the problem was certain design decisions that made it difficult to implement. 

  

1. Original Amstrad Smash TV 

We played some games on Smash TV, and we saw serious problems of the game due to                 
the limitations of Amstrad, for example, having to draw the environment (walls and doors), as               
well as the interface, the playable space was considerably reduced, this, added to the fact               
that the control we wanted for our game should be "classic", using the button pattern of retro                 
games, was a problem when designing the control system. 

In the classic Smash TV game, the shot is made in the direction where the character is                 
"looking", but by having only the four directional keys and the shot key, the problem arises                
when to "look" in one direction, you have to "advance" first in this. This could be                
uncomfortable at times in the original game, and given our experience in game development,              
and even more so in assembly, it could be a challenge to create a character control system                 
that was not frustrating for the user. 

Adding this to the problems of setting up the game in 0 mode initially, limiting the available                 
width of the screen, we thought that, although it might be functional, it wouldn't be any fun                 
due to all these factors that would make the game experience worse. 

Page 4 of  33 



Making of Raven Squad 

  

2. Diseño inicial de la pantalla de juego de Smash TV 

This made us reconsider which game we would use as a reference when creating our own,                
so we started looking at Commando, another shooter, in which we saw fewer problems,              
especially when it came to representing on screen everything we wanted to represent. 

  

3. Commando game screen 

We set to work to design the concept of what we wanted to see on screen, this time, having                   
more free space, since we were not forced to draw the edges of the screen with those doors                  
and walls, we could already visualize how the game interface would be shown where the               
points and lives would be displayed. 

Since our game design wasn't going to look enough like Commando either at the playable               
level or at the technical level because of our own limitations, we decided to shift the focus                 
from a vertical advance to a lateral advance, giving more space to dodge enemy bullets, and                
more time until they reach us. 

Page 5 of  33 



Making of Raven Squad 

With all this in mind, we proceeded to realize the first concept of the game screen.  

 

4. Initial concept of our Commando version 

The vertical bar you see on the right would be the character's movement boundary, that is,                
the area he cannot leave, replicating the original Command where when he tries to leave               
that area of the screen, the map scrolls. 

 

The design process, a step-by-step story 

Scroll 

The first thing we thought it would be necessary to implement would be the scroll, as it was                  
the most basic part of Commando. 

The mechanics of enemy appearance, in the original Commando, was a scroll where the              
map was already designed and appeared as the character advanced vertically on the             
screen, without giving the possibility of going back. 

In our case, with our knowledge at that time of Z80 assembler and video game development,                
we thought of adopting a substitute, using a "generator" that would be used as a trigger to                 
make enemies appear as long as the character is "walking" to the right at the edge of the                  
screen. In this way, we could create a "scroll" effect where the map was apparently moving,                
even though it was not. 

Page 6 of  33 



Making of Raven Squad 

Collisions 

For the collisions, initially it was proposed to have control over the entities by dedicating               
memory spaces to what types of entities we were going to create. In this way, only the shots                  
and their collision with the enemies would be checked, or the character colliding with the               
enemies, optimising the process of checking collisions. 

However, after talking to the teacher, we decided that we were "optimizing a priori", instead               
of making a simple approach first and then refining it if necessary, so finally the collisions are                 
checked in a system of everyone with everyone. 

As it is not a Cartesian product (I don't need to know if B collides with A if I have already                     
checked if A collides with B), the process finally adopted was to check for each entity if it                  
collides with the ones following it, starting from the first one to the penultimate one. 

This left us some room for improvement that would not be complex to implement later on,                
such as incorporating by means of some attribute a control system to know what each entity                
had to collide with, and omitting the steps of collision checking if entity A did not have to                  
collide with B, such as the character's bullets with himself, since he should not kill himself if                 
he collides with his own bullet. 

Shooting 

Basically, the shots are treated like other entities in the system, with the ability to move                
according to a vertical and horizontal (physical) speed, with an associated sprite to be drawn               
on the screen, with an auto-delete system and with the ability to collide with other entities. In                 
fact, the initial collision system was made to detect the collision of the player's shots with the                 
enemies. 

Another system that was developed at the beginning was to control the number of shots that                
both the player and the enemies could make, so that if any AI or the player decided to make                   
a shot, the number of available shots would allow it or not. This was done for performance                 
reasons, to avoid too many simultaneous shots, and also to control the offensive capacity of               
the player and the enemies, so that depending on the level and other characteristics of the                
game, the number of shots could change to more or less capacity. 

The system was also expanded to indicate the range of the shot, so that a shot didn't have to                   
reach the horizon but could reach a previous point and disappear. This extended the              
possibilities of defining different types of weapons and their characteristics. 

Another improvement that was added later, was to be able to indicate the generation              
position of the shot, which depended on the enemy or player sprite, so a property was added                 
to the entities capable of shooting to be able to indicate the relative initial position of the                 
shot. 

Page 7 of  33 



Making of Raven Squad 

Later a system was added to set the amount of damage an entity type caused (not                
necessarily just shots) and also the strength of an entity or its ability to withstand damage.                
This could control the level of damage caused by different types of weapons and the ability                
of an enemy to take one or more hits before dying, although in general this system would                 
work for any pair of colliding entities. 

One aspect that was improved later on in the shootings was the rendering, and this was                
done by designing a specific rendering system for the bullets. Instead of using sprites, we               
switched to drawing and direct pixel level erasing. This was a major improvement depending              
on whether the number of "bullets" on the scene was significant. 

A system was also added to show an animation after the impact of a shot on a target, at the                    
point of impact. 

Direction and cadence of the player's shot 

An important aspect related to the player's shooting was how to control the direction of the                
shot and its rate, and with which keys that direction and frequency would be controlled. 

With respect to the direction, the aim was not to use specific keys to control the direction of                  
the shot other than the keys that controlled the player's direction.  

Several alternatives were tested and in the end the following decisions were made: 

● The player could not shoot vertically from the side, either up or down, or from behind 

● To compensate the enemies could not shoot laterally or from behind the player. 

● Depending on whether or not the player was moving vertically in one direction or the               
other at the time of the shot, the bullets will have a speed component in and, i.e. the                  
bullets will move up or down with a preset constant speed. 

● The player's bullets always move to the right, i.e. they always have a positive value               
for velocity component on the x-axis 

● Similarly, enemy fire always has a negative X-velocity component. 

With regard to the ​shooting cadence​, this should be controlled by the player with the space                
key, but limited by a maximum number of bullets (as explained in the previous section). 

In the end it was decided that the best way to control the shot was to complete the cycle of                    
pressing the space key and releasing it. Initially this was done so that the shot would occur                 
when the key was released, but was eventually changed to occur when the key was               
pressed, with no further shots being taken until the key was released and pressed again. 

Page 8 of  33 



Making of Raven Squad 

Generation of enemies 

For the test shots, we had predefined enemies on screen that appeared static, but this               
wasn't going to be enough for the game, we needed to be able to generate enemies at                 
runtime. 

The initial idea of generating enemies could be "set" by default so that the same ones would                 
always appear, establishing a seed and using pseudo-random numbers so that they would             
always be generated in the same positions sequentially, always depending on how much our              
character had moved. But this was not the case, so we came to the conclusion that we did                  
not have enough knowledge about how pseudo-randoms worked, and they did not always             
appear in the same position. However, for the time being, it was useful for us to test the                  
game. 

As we already had limited the movement of the character to its playable box, we should only                 
in the same step that we are establishing its position to that limit and assigning a zero to its                   
horizontal speed, call our enemy generator to increase a counter or some similar system and               
when that counter exceeded certain values, invoke some enemies in a random position             
prefixed by that seed that we would have chosen. 

After weighing up the random factor, and seeing that this could lead to mediocre results,               
besides the fact that we didn't feel any kind of intentional "challenge", we couldn't control all                
we wanted the difficulty of the game, and adding enemies of different types ended up being                
very unbalanced depending on what we touched, it was decided to move to a new system,                
the enemies would still appear by means of a counter, but this one would be prefixed, along                 
with their coordinates of appearance and their type of enemy. 

But this would take a while to appear, first we had to fix certain bugs caused by not having a                    
good physics system capable of telling us when things were going off the screen or               
destroying them. 

Refined physics system with self-cleaning of entities 

The physics system was initially dedicated only to updating the X and Y positions of the                
on-screen entities according to the vertical and horizontal velocity values of the objects, but              
two additional responsibilities were soon added. 

Firstly, the responsibility was added to calculate whether, when updating the position of the              
entities, they were left off the screen, which had a default behaviour associated with it, which                
was to mark that entity for destruction. In other words, for simplicity's sake, it was decided                
that everything that went off screen was automatically deleted from memory. This does not              
affect the player who has his own control system that prevents him from leaving the limits of                 
the screen when the user controls it. 

Page 9 of  33 



Making of Raven Squad 

On the other hand, the responsibility of controlling the screen scroll was added to the               
system, which basically moves the X position of all entities on the screen horizontally to the                
left. This responsibility was moved here after trying to directly update the X of all the entities                 
when the player reached the limit edge that triggered the scroll, but it was observed that it                 
caused unwanted and somewhat random effects that were solved once this control was             
transferred to the physics system. 

Rendering system 

The initial rendering system was based on erasing the sprites associated with the entities by               
drawing a box with the background colour in the last sprite position according to the width                
and height of the sprite, and then drawing the sprites in the new position. 

Soon it was seen that this system caused some sprites to blink, so it was thought of                 
designing a configurable system, where for each entity it could be said whether the previous               
position was deleted with the box system using the background colour, or the edges of the                
sprite itself were used to auto-delete as it changed position, which also resulted in a               
performance improvement by saving the drawing of the deletion box. 

Auto-erase was not applied to all sprites mainly because of the bullets, which were very               
small elements, but could have a lot of variability in their direction and speed, which together                
with the horizontal scroll would have required an edge that was too large to be viable, which                 
would also have affected the impact area of the bullets and the overall performance of the                
sprites. 

Level generation (Enemy System 2.0, Part 1)  

At this point, we knew that it was time to look for a way to be able to perform pre-set levels to                      
establish a minimum quality that we could control, as well as to be able to have control over                  
what happens at each level. 

We had the enemy generator, which generated an enemy type entity, reading a generic              
enemy template every time a counter reached zero, so we only had to modify a minimum                
part of the code, the place where the counter appeared, as well as the enemy template to                 
generate and its Y position. 

In this way, the first structure of the level manager started, a source destined to have only                 
one function that consulted the A register, where the current level would be indicated, and               
returned the pointer to where the level data starts. 

The first version of this, was very simple, it used relative positions, a level was a set of trios                   
of bytes, being the first one the relative distance with respect to the previous generation of                
enemy, the second one the position Y where we wanted the enemy to be generated, and the                 

Page 10 of  33 



Making of Raven Squad 

last byte would be the type of enemy we wanted to create. This required another additional                
expansion, the enemy manager. 

Enemy Manager 

The Enemy Manager was born from a simple concept, as indicated above, using a byte as                
an indicator of the type of enemy that the level generation system had to generate. At first                 
we used this byte to have a flag bit that indicated the type of enemy, although this would end                   
up being problematic, this will be discussed in the section Enemy Manager 2.0. 

As we initially had only two types of enemies, a generic enemy with simple behaviour that                
moved up and down the screen and an enemy that tried to "lock" the passage of the player                  
seeking to position itself in front of him, as well as running towards him once he was in this                   
position, this system was more than enough. 

The implementation was very simple, in the header we had defined the types of enemies               
with the bit that should be each one, and the manager had a get function that returned in the                   
HL register a pointer to the template of each type of enemy.  

To know which enemy to return, it consulted the A register. With this we could start the level                  
generation system. 

Level generation (Enemy system 2.0, part 2)  

Once we had a way for the generator to consult what kind of enemy to generate, when to do                   
it, and where to do it. However, we lacked something, to indicate when the level would end. 

That's when the concept of distance was born. Once the player had travelled a certain               
distance, the level would end, giving way to the next level. 

For this, we started to use the Info_Screen module, which showed us information on the               
screen, both the level we were going to play and the game over screen. We implemented a                 
very basic version of the distance system, using the ASCII codes of the numbers from zero                
to nine, putting in the register IX the position of the lowest number, that is, the units. We then                   
checked if it was zero, as we were decreasing that number, and if the condition was met, we                  
assigned that number to nine, and called the function again by reducing the position stored               
in register IX, so that we could aim for the tens. This was used for each digit of the distance. 

Seeing that it was more or less functional, we proceeded to create a basic system of points,                 
performing the inverse operation, if the distance system decreased the ASCII codes, the             
points system was dedicated to increase this ASCII.  

This system, although rustic, was functional, and the score has been maintained in this way               
until the final version. 

Page 11 of  33 



Making of Raven Squad 

These two systems eventually moved to a separate module, called GUI, and an additional              
system would be created which would then be retouched, the lives system, using the same               
logic as the points but limited to no more than nine lives. 

With this done, we lacked a way to communicate the distance of the level to the interface,                 
and to the game itself, to know when the level was finished, this was done through readings                 
to the level data, we decided that the first three bytes of each level would be the ASCII                  
codes of its distance values, for example, to symbolize that a level had three hundred of                
distance, the first three bytes of the level would have the values 0x33, 0x30, and 0x30. 

Finally, there was only one way to communicate that the level was over. We opted for the                 
input system itself to take care of this, a questionable solution, if we think about the design                 
as such, but from the point of view of efficiency and with our little experience in the field, it                   
was a small way of optimizing the game, since the input controls through the remaining level                
distance whether we have to stop the scrolling effect and free the character from his area in                 
order to move freely or not. 

In this way, just as the character was released from his zone, we proceeded to see if the X                   
of our character ever passed the value sixty (approximately three quarters of the screen).              
With this we knew that the level was over. 

Enemy behaviour 

Having already two very basic and simple enemies, we could start creating enemies and test               
them easily, since we only had to create one level and put them with relative distance 0 to                  
make them look directly on the screen. 

Also, thanks to our enemy manager, we could specify the new ones in a very quick and                 
simple way, and the generator could interpret them and generate them when they should,              
combining the level and enemy system. 

The logical step then, as mentioned, was to start designing new enemies. The first thing we                
thought about was the prototype of a "tank", a bigger enemy, which would remain static and                
besiege the player, so that we would have some kind of enemy that we could position on the                  
screen without having to worry about its movement, just shooting. 

We then designed a more hostile enemy, a jeep loaded with a machine gun that would shoot                 
and appear on the screen moving in a straight line to the left side of the screen, where the                   
player is, but this posed certain problems, the jeep was too wide, and our generator               
generated the enemies in the position marked as the maximum width of the screen minus               
the width of the sprite, so the jeep would "pope" almost three quarters of the screen directly. 

To fix this, we tried to implement a multi sprite system, where the render itself could,                
interpreting the components of each entity, detect that it was a multi sprite and draw it in                 
"pieces", as it appeared on the screen. 

Page 12 of  33 



Making of Raven Squad 

MultiSprite Render System 

We already had entities with useful attributes such as components, and with this we could               
start specifying to our entities what types of behaviour they had to have, so we thought of                 
implementing an alternative render, which would take care exclusively of the entities that             
were too wide to be rendered normally on the screen, and allow them to appear little by little                  
on the right side. 

The idea and implementation was simple, the operation would be identical to that of the               
render, but the very wide entities would not have a single sprite, using the same system as                 
that of the animations, we would cut the sprite into pieces that would be drawn as possible                 
due to their position and the width of the screen. 

After a whole day of trial and error, we arrived at a functional version of this, if our jeep was                    
20 pixels wide in 0 mode, we would cut it out in five-pixel pieces, then by looping its X and                    
increasing it with respect to its width, we could know when to draw. It was similar to the                  
following pseudo-code: 

 

 

Although functional, it was very basic, and to delete the entities many things had to be taken                 
into consideration, so in spite of everything and after losing a whole day in this system, it                 
was decided to discard it and adopt the design criteria of enemies that these were narrow by                 
default, to avoid the effect of "popping" on the screen. 

Despite the fact that this system was discarded, it helped to gain fluency with the Z80                
programming, as well as to get to know the machine better due to the difficulties involved in                 
adapting this, so that we do not see it as a waste of time, but as another experience that has                    
contributed to our learning. 

Page 13 of  33 

Loop: 

       If X_Current < maximum_size_screen - piece_width, skip to piece_drawing 

jump to end_loop 

draw_piece: 

Draw current piece 

X_Current = X_Current + piece_width 

If there are pieces left to draw, jump to Loop 

end_loop 



Making of Raven Squad 

Enemy behaviour, part two 

After adopting our new design patterns when thinking about enemies for our game, we              
thought again about bullets, and how they work.  

Until this point, the bullets were random, we had a maximum number of possible bullets on                
screen for our enemies, and each enemy used a pseudo-random number to decide when to               
fire.  

This could be strange, we had enemies that always appeared in the same place, with their                
own behaviour, but even though the experience of playing a level was always the same in                
the generation of enemies, the shots were totally random, turning two games in which the               
player did the same into totally different experiences, adding once again that unpredictability             
factor that we didn't want them to have. 

With this in mind, we thought about how to solve this issue using things that we already had                  
in the game, to avoid having to waste a lot of time, and we found a solution, using the AI                    
counter that the bullets used and that by default had all our entities as a countdown to shoot,                  
this way, in addition, we could have different rates of shooting according to the enemy. 

Once we had changed our enemy's IAs so that they would fire in this way, we could                 
implement some idea like that of an enemy in a fixed machine gun that would fire at a much                   
higher rate than that of ordinary soldiers, but that's where the problems came from, as               
performance was impoverished to unsuspected levels. 

Performance problems, optimizing the game 

This was another of the headaches we had, and it took about two days of thinking about a                  
solution. 

The problem was simple, we had our logic and rendering in the game cycle and at the end                  
we were expecting two VSYNC, at this moment we started to measure the cycles using               
Winape to see where the biggest load of the game was at that moment. 

The answer was as expected, collisions and rendering. 

The rendering became a more specific system at this time, a specific way of rendering               
bullets was created to avoid additional calculations, checking before rendering an entity what             
type it was, and in case it was a bullet, simply copying a black pixel to the video memory                   
address where it had to be represented according to its position. 

This, although it improved approximately 5% the rendering time, it was still insufficient, so we               
moved on to improve the collisions. 

Page 14 of  33 



Making of Raven Squad 

The collision system made many checks, more than necessary, for example by checking             
things that did not have to collide with each other. We then remembered the system that we                 
had initially thought of, and which we left for later, adding an attribute for each entity that told                  
it what it should collide with. 

This system is the one we have left today, to check what each entity should collide with, we                  
consult a byte that is used as a flag, since the types of entities that we have are eight, and                    
we can use each bit to make comparisons about whether entity B is one of the types                 
indicated in the collides_with attribute of entity A. In addition, when using the bits as flags,                
the collisions can have multiple things to collide with, for example the player must check that                
it does not collide with the enemy bullets, and at the same time with the enemies or                 
obstacles. 

With this implemented, collisions dropped approximately 30% in cycle consumption, and the            
game was back to acceptable performance, or so it seemed. 

Since we didn't want to waste a lot of time creating a system of collisions with walls, in order                   
not to add complexity, we decided to create static enemies that wouldn't behave, in this               
case, we talk about the enemy barbed wire, an almost totally vertical entity that serves to                
limit the player's movements without having to resort to implementing "braking" collisions. 

The horror came next, the performance of the game was again terrible, as the vertical sprites                
consumed a lot, due to the calculation of their vertical position and how the video memory of                 
the Amstrad is structured. 

At that point we were left blank, we didn't know how to tackle the problem, which led us to                   
investigate the operation of the machine even more. 

The first idea was to delay the execution of certain functions in case the performance was                
optimal, thus worsening the time between frames, and to eliminate one of the VSYNCs, but               
after hours of investigation, we did not find any way to do this, at least none that did not                   
consist of welding some clock to the machine's board. 

We tried then to optimize everything, but no matter how much it will be optimized, the render                 
still took a lot of time, so when we waited for the two VSYNCs, sometimes one had already                  
passed, having then in some frames three VSYNCs, the one that had passed by the time the                 
render took to finish, and the two that we always had. 

We didn't know how to deal with this, we had to find some way that a VSYNC wouldn't be                   
done in case the render had taken too long, we were running out of options. Because we                 
didn't know what we were doing. 

After giving it a couple more laps, we fell into the little that we understood what we were                  
doing, why were we waiting for two VSYNCS at the end of each cycle? Could we wait for                  
another time that was not at the end? 

Page 15 of  33 



Making of Raven Squad 

And so it was, like moving one of the two VSYNCS at the end of the logic part, just before                    
the render, and leaving the other one after the render, all the performance problems went               
away. 

It was quite frustrating to see that the simplest solution was the optimal one, and to see how                  
easy it would have been from the beginning if we really understood at that moment what was                 
happening, but on the other hand, it was a very didactic experience, which made us learn                
quite a lot from the machine, especially at the electronic level when we saw the diagrams                
where it was indicated how to solder a clock. 

And that's how all the development started going well, or so we thought, until our greatest                
enemy to date, the phantom bullet, arrived. 

The Phantom Bullet, also known as The Bug 

Normally, we assumed that we were being killed by bullets that we hadn't seen coming, but                
as we increased the rate of fire from some enemies like the fixed machine guns, we realized                 
something, there were bullets that weren't coming from the machine gun, they were             
appearing out of nowhere. 

This led us to raise many hypotheses, the most possible was that the render system was not                 
destroying the bullets in time, making them reappear in the middle of the screen when               
coming out from the left side, or that some enemy coming out from the left side, shot before                  
dying, causing the bullet to be in this position when appearing out of coordinates. 

We tried many things, preventing the enemies from shooting once they passed a certain              
position on the screen, which was only partially successful, because although less, it kept              
happening, which confirmed a great fear we had, the bug was the result of something else,                
but it was caused by many factors. 

We also noticed the totally unpredictable behaviour, sometimes it was practically impossible            
to play without several bullets appearing out of nowhere in the same mission, in others, it                
never happened and you could play several levels without it happening. 

Desperate to see where this bug was coming from, and having lost a whole day trying to                 
figure out what was going on, we discovered that Winape allowed us to record the sessions,                
so we waited a long time for it to happen, starting the game over and over again and                  
pressing record. 

It may seem simple, but at this point it seems that the bug realised that we wanted to correct                   
it and it became more elusive, we spent about an hour starting the emulator, playing,               
recording, and it didn't happen. 

By the time we got it right, it was on the first level, practically at the end, we had to wait                     
about forty seconds to find the behaviour we wanted to inspect. 

Page 16 of  33 



Making of Raven Squad 

At this point, we discovered yet another feature of Winape, we could make recordings of the                
recordings themselves, while they were running, so we started the playback, and when there              
were a couple of seconds left for it to happen, we pressed the record button again. With this                  
we had a three second recording where the bug appeared. 

After inspecting this carefully, we finally discovered the cause, the destruction of entities was              
not working as we had hoped. 

Once again, we faced the problem from the wrong perspective, the problem was never the               
destruction of the bullets, but the enemies, and after losing several hours in this, we realised.                
The behaviour was very complex, and it was the following: 

1. An enemy was dying on the screen. 

2. That enemy was our ​last entity ​in the array of entities. 

3. By being killed from collisions, and checking the collisions before executing the AI,             
there was a possibility that an enemy ​would shoot​ being dead. 

4. At that point, we had a bullet being created, and a dead enemy at the end of the                  
array. 

5. When the bullet entity was created, the ​entity manager would look for where to write               
this entity, and this position would coincide with the enemy that would fire this same               
bullet. 

6. Since bullets use the position of the person who fires them, let's say his "father" entity                
to define his position, but at this moment the enemy ​was dead​, when the bullet was                
created he over-wrote his own father. 

7. By overwriting his father, the bullet had the ​default position that we established for              
him in his template, and this was none other than the very centre of the screen. 

All this behaviour was passing through something very simple, our entity manager was not              
marking well the destroyed entities, until now, it worked with an entity counter, which was               
insufficient for such complex and unpredictable behaviours as these, so we decided to             
completely rewrite the code of entity destruction. 

We did without the counter completely, which also forced us to change the control inversion,               
but since all systems depend on this inversion, just by changing that function we had already                
fixed all possible failures. The system we chose was to put an invalid entity at the end of our                   
array of entities, so that when we resort to the inversion of levels, it ends up finding an entity                   
with this specific type.  

With this, the destruction was already well done, and we didn't have any more problems,               
even so, we also decided to move the collision checks to the end of the game cycle, just                  
before the rendering, as collisions are the biggest cause of death of our entities, there               

Page 17 of  33 



Making of Raven Squad 

wouldn't be any possibility that anyone would execute behaviours after being marked to be              
destroyed.  

This was the last big challenge we faced, since with this, the system was solid enough to be                  
able to incorporate behaviours, enemies and levels, in a very simple way. 

All this happened during week five of development, at the end of this week, exactly ​eleven                
days from the delivery of the game to the competition, which put some pressure on us, we                 
had a level system, enemies, collisions, rendering, the game was going well, but we had no                
content, we had to quickly design something to be able to continue testing and iterating on                
the game. 

We decided to make one more enemy in order to have variety, and not to design more until                  
we had a few levels to show the game even as a demo. 

Testing the final engine, first advances in content 

As mentioned earlier, we had eleven days to add content to the game, and make it fun, so                  
we decided to create a new enemy, something more challenging and "intelligent" than we              
had before, an enemy that could get into position to shoot the player. 

The idea was that when the player was "on top" of this enemy, the enemy would get in this                   
position to cut him off and shoot him, following the same logic when the player was below.                 
The first versions of this enemy had a lower speed than the player, but it was very easy to                   
ignore it. 

After changing the speed to be the same as the player's, it now seemed that the enemy's Y                  
position was fixed to the player's, which gave a strange feeling. 

Also, bullets inherited the Y speed from the entity firing them, a rudimentary way for enemies                
to "take aim". It was at this point that it was decided to dispense with this inheritance of                  
speed, and that enemy bullets would always be in a straight line. 

With these changes, it could feel a little unfair, it was difficult to get close, and the feeling that                   
the Y was fixed on the player made it feel very strange, so we were about to erase it, but we                     
discovered that by having this effect and that the player's bullets inherited their speed Y, it                
was very easy to eliminate as long as the player avoided it the first time by moving upwards,                  
avoiding his shot, and then moving downwards by shooting.  

For this reason, we decided to keep this enemy, because once the mechanics were              
understood, it was satisfying to be able to eliminate him easily, even though the first               
encounters with him were challenging. 

All this was done in parallel while we were creating levels, where we had four levels that met                  
a minimum quality standard, and finally we could see how our idea became a playable               
demo. 

Page 18 of  33 



Making of Raven Squad 

To finish this demo, we noticed that the player's shots felt strange, there was no feedback to                 
the player about whether his shots were right or wrong, so enemies who were hit near the                 
right side of the screen could give the impression that they were not being hit. This,                
considering that there were enemies that were alive, i.e. that were able to withstand more               
than one hit, was odd. 

That's when we decided to implement, using our animation system, an "explosion" animation             
for the bullet, which would transmit that the shots were right, this was done by creating                
temporary entities. 

These entities had AI that made them self-destruct when their animation was over, and they               
had no collision component, allowing them to be harmless. The improvement of feedback for              
the player and the visual experience was notorious. 

We also decided to put on some music, and asked a fellow robotics student with musical                
knowledge if he could do something simple for us to try to make a music system and later                  
add some definitive music to the game. 

One of the disadvantages of this, was that when passing us the music in midi format, we                 
could import it to arkos 2, but CPCtelera only worked with the binaries generated from arkos                
1, which was included.  

It didn't take much thought, after looking for documentation on the difference in formats and               
seeing that it was non-existent, and based on our previous experience of keeping everything              
as simple as possible, we moved on to another approach, importing the music into Arkos 2,                
and handing over the score from one program to another, along with the instruments, speed,               
and all the attributes. 

Perhaps it would have been faster to use the raw data generated by Arkos 2 directly, but                 
since we did not know how that would work with the CPCtelera functions, and seeing that                
the information generated by the songs in binary format in Arkos 1 when translated by               
CPCtelera did not have half the information of the raw data in Arkos 2, for fear of wasting                  
more time trying to make this data functional, we decided to do it this way. 

This finally worked out, and we were able to test the music system to check that we had                  
done the process well. 

First review of the game 

After the effort involved in providing content to the game in those four days before the                
review, from what we saw as the first time the game really reflected what we wanted to do,                  
we received feedback from the teacher, with whom we agreed on everything. 

The first thing he told us, which we hadn't thought of, since it was natural for us to eliminate                   
all the enemies on screen, was that you could go underneath practically all the enemies               

Page 19 of  33 



Making of Raven Squad 

while staying stuck at the bottom of the screen, which was true, it was a funny feeling to see                   
someone play the game for the first time and see the first "exploits" appear. 

The second thing was the interface, we had the lives, the score, and the distance in text,                 
which was a bit ugly, which we had to agree with, we had paid so much attention to the                   
bugs, and then to the content, that we had forgotten about this section completely since its                
first implementation, which was before we even had the first version of the functional level               
generation finished. 

The third and last one was to add a button to mute the music, as it was very short and                    
repetitive, and could end up tiring the player. 

Once the meeting was over, we got down to work, and decided to use a cut-out of the                  
player's sprite head as a life counter, which would be located in the upper left part of the                  
screen, and the score would dispense with the text informing that they were score, as it was                 
easily intuitive. 

For the distance, we decided to implement a bar with a flag, symbolizing the goal, or end of                  
level, and an arrow indicating where you were. 

To facilitate this task, we decided to change the data structure that our levels had, we                
changed the three bytes that indicated the ASCII of the distance by two bytes that would                
have the information of the distance, and the third byte became the partial distance. This               
partial distance represented ten percent of the total distance of the level, and with this we                
could know when to move the arrow where the player's position was marked.  

After a few proofs of concept, the distance was already represented correctly, it increased by               
eight pixels each time the player covered the amount equivalent to ten percent of the total                
distance of the level, and stopped when he reached the goal. 

This meant that we were able to dispense with many strings, and check both lives and                
distance with the ASCII codes, which significantly improved not only the visual quality of the               
game interface, but the code itself. With this done, it was rare to see the new interface                 
elements floating around, so we decided to put a couple of blue squares at the limits of                 
movement of the game's characters.  

These blue squares, are rendered at the moment we initialize our interface at the beginning               
of each level, so they are drawn only once, like the whole interface in general, the only thing                  
that is redrawn is the arrow when it changes position, as well as the score when it changes,                  
this way, we save time in rendering in constantly redrawing these elements. 

Enemy behaviour, part three 

With this we had solved one of the three points, we were missing two. Since adding a button                  
to mute the music was the lowest priority, we started designing enemies. 

Page 20 of  33 



Making of Raven Squad 

At that time we had the following: 

● Normal soldier, vertically patrolling the screen and shooting. 

● Dog, which first tracked the player's Y position, and once aligned with it, ran towards               
it in a straight line. 

● Fixed machine gun, which was a static enemy that fired more quickly than the rest. 

● Tank, which currently had no noticeable difference from the machine gun, apart from             
being a tank. 

● Commander, who sought to place himself in the same Y position as the player and               
shoot him. 

● Barbed wire, designed to be an obstacle that the player could not cross, killing him if                
he tried. 

 

This was insufficient to create levels that were not repetitive in the short term, and we also                 
had the problem that the player could skip certain sections of the levels, not to say whole                 
sections, and go through the bottom. We thought about adding enemies that could nullify              
these game patterns, the first thing we thought about was something simple, replicating the              
normal enemies, but being able to assign them reduced spaces to patrol through, that is, just                
as the ones we had now went from the top of the screen to the bottom and vice versa,                   
having enemies that never moved from the bottom of the screen, only reaching the middle               
and returning downwards. 

With this we got two new types of enemies, and we could already by designing levels                
prevent the player from being able to avoid the combat, it was a first idea that later was                  
expanded by using the barbed wire to draw "circuits" that limited where the player could               
move. 

With this a new problem arose, we could no longer use the generation of enemies as before,                 
since we had reached eight, and we could no longer use a byte to have a flag indicating the                   
type of enemy we wanted, however, we reached a quick solution. Now the byte would be a                 
number, instead of using it to store a bit flag, and the generator would use CP to check if the                    
enemy we asked for was the right one by checking if the result of this instruction was zero.                  
As the systems were well separated from each other, we were able to make this change                
quickly, and no outside system was affected, leaving the level generation intact. 

We then decided to implement another type of immobile enemy, the trench, to protect              
strategic points such as the end of the final levels, but with this we already had three                 
immobile enemies that did not differ from each other, the tank, the trench and the fixed                
machine gun. 

This led us to reconsider the behaviour of these enemies, and to think about whether we                
could do something other than just shooting normal bullets, and so our explosive missile              
system was born. 

Page 21 of  33 



Making of Raven Squad 

First we decided to test it with the tank, the idea was simple, as the bullets had an AI that                    
had stopped being used several iterations ago because it didn't feel good for them to               
disappear into thin air, but we hadn't erased that code just in case, we could reuse it, adding                  
at the end of its "life", that is, when the AI counter reached zero and the bullet was                  
destroyed, the creation of a square entity that would cause damage. 

This led us to redesign certain types of entities, in order to have better control over what                 
each one did, because if the bullet was an enemy, we could shoot it, and the bullets would                  
collide with it. After these iterations, it was no longer necessary to use an "explosion" type to                 
manage the animation of the bullets, and at this point our byte that we used as a bit flag                   
already had eight entity types, so we dispensed with this one to create a new entity type,                 
enemy_background, objects from the environment that would harm the player but would not             
collide with the bullets. 

This also took us to change the barbed wire so that it was of this type, since sometimes the                   
bullets could collide with it being of enemy type, causing a bad experience, reason why we                
solved two problems in one. 

Now we could create an exploding entity, which would be in the same behaviour as the                
bullets exploding, but the player could collide with it and suffer damage, killing him. With this                
we could already start to differentiate our enemies better by the projectiles they were              
shooting. 

To finish this, we made the AI of the explosive shot so that it would wait in the B register the                     
distance that the bullet had to travel before detonating, with this, we designed an enemy               
mortar, which would have a lot of range and explosive bullets, the tank would have a                
medium distance with the same type of projectile, and the trenches would go to do this too                 
but at a lower range to give the impression that they were throwing grenades. 

By putting different firing times for each type of "explosive" enemy, we got a better               
differentiation, and more tools to design more varied levels, but we thought it was strange               
that the mortar would only fire in a straight line, so we decided to give another twist to the                   
idea, and that's how, remembering the times when bullets inherited their speed AND from              
the person who was firing them, we decided that this group of enemies would "aim" at the                 
player. 

This was done in a very simple way, using CP to check the distance of the player on the Y                    
axis from the enemy, and so we could get five shooting angles: straight, a little bit down, up,                  
very down and very up. This is currently done by combining this system to "detect" the                
player's position, along with modifying the speed AND the bullets at the moment they are               
created according to what suits us to achieve this effect. 

To complete our template of enemies, we decided to implement one last normal enemy to               
populate our levels, a soldier mounted on a gatling machine gun, which was very simple to                
implement. This enemy would use an AI like the one in the turret but with a slower firing                  
speed, although it would fire more bullets. Thanks to the tests of modifying the speed Y of                 
the bullets to create the aiming system, we thought about this enemy, which would shoot in                
three different directions. This was achieved simply by calling our function to fire three times,               
as this function stored in register IX the pointer where the newly created bullet entity had                

Page 22 of  33 



Making of Raven Squad 

saved its data, of the three shots we modified in two of them the speed Y, to give that                   
multi-shot effect. 

We then turned our attention to our enemy dog, we had already discussed it, thinking that                
perhaps the idea of shooting an animal could be violent for the player. The concept was born                 
from looking at games from the past like Wolfenstein 3D, where they appeared as basic               
melee enemies, and it was true that they did seem a bit out of place. We finally decided to                   
visually redesign this character, changing it from a dog to a soldier armed with a knife,                
although internally it was still called a dog, to recall this anecdote. 

While all this design of new enemies was happening, more levels were also created or the                
previous ones were completely redesigned. It was at this point that we realised that we               
needed a rebalancing of the player's own power, because, while the enemies were gaining              
power as the game progressed, presenting a new enemy at each level, the player always               
maintained the same one. We had to make sure that as the enemies gained power, so did                 
we. 

It was at this point that we decided that the player's bullets would go from four by default, to                   
two, but in return, the player would gain one bullet for each level where he rescued an ally,                  
functioning as a reward system that rewarded for completing levels. Reusing the logic of the               
lives shown in the GUI, the same was done but instead of appearing from right to left, the                  
bullets would appear from left to right, and instead of a bullet being erased when shooting, it                 
would be drawn in grey, to symbolize that the bullet was not available. 

We liked this change quite a lot, while at the beginning you felt more vulnerable, as the                 
game progressed you became more powerful and could afford to play more aggressively. By              
having this element in the GUI as well, it looked more complete and less wasted, and it                 
worked very well visually to indicate in a simple way the bullets that you had available. 

At this point, we wanted to add variety, creating a game mode that would serve as an                 
interlude to our levels, allowing us to separate them by blocks, so we started thinking about                
what mode we could implement that wouldn't be strange or shocking, and would be easy to                
play with what the player had tried so far. But first we thought again about turning off the                  
music to close our suggestion list, and since we were going to look for a way to turn it off, it                     
was a good time to start thinking about adding shooting sounds to our game. 

Sound effect system 

At first it was thought to create a generic system to produce different sound effects as a kind                  
of library and thus be able to configure what sound to use with a number of parameters in                  
the templates of the entities. 

We reviewed CPCtelera's documentation on audio and Arkos Tracker's documentation,          
starting this way to make tests to use the music files we already had so that sound effects                  
could be generated from them. 

Page 23 of  33 



Making of Raven Squad 

After several tests we discovered that for the sound effects to work the background music               
should be playing, since it is that same function that makes the mix of the sound effects that                  
have been defined sound, and that one note was not enough to create a perceptible sound                
effect, at least not with the instrument that we had defined in our music file.  

We had to call up the function of generating the effects at different times with different notes                 
in order to create at the end an effect that was not a flat note. 

Another added difficulty was to design a sound effect starting from a single instrument and               
playing only with the notes, volumes and beats basically. 

In the end, after several tests, an effect was achieved that could pass for a shot that was the                   
main objective of adding the sound effects. 

At this point, another problem arose, which appeared when a new shot was produced when               
the sound effect of the previous shot had not yet finished. After several tests it was found                 
that it was enough to restart the sound effect without being strange that the sound effect of                 
the previous shot was cut off. 

However, once the effect was achieved, we found that since the music had not been               
designed to leave one of the three channels available for use by the sound effects, the music                 
was affected and the result was of poor quality. 

As a palliative measure it was decided to be able to activate or not the sound effects by                  
means of a key, leaving them deactivated by default. 

With this we returned to the initial point that led us to raise this point, that of being able to                    
deactivate the music, now that we had the shots, and as a colleague from Robotic               
Engineering was passing us new songs, we were able to finish this section and start thinking                
about how to deactivate it at will. 

Finally the way was very simple, we used two bytes in our game class, one to store a one or                    
a zero in case the music was active or not, that would be checked in each iteration of the                   
game loop, and in case it was activated, it would execute the function             
cpct_akp_musicPlay_asm, and another one for the sound effects that would be checked            
inside the function sound_effects_play, that would not do anything in case we had our sound               
byte to zero. 

Creating a new game mode 

After that, we could focus on designing a new game mode, to better symbolise that we were                 
making a transition between blocks, we decided that it would be something that would              
symbolise that we were travelling, we decided then that the player in these levels would stop                
controlling an armed soldier to control a vehicle. 

Since our character was always the first entity we created by default at the beginning of each                 
level, it was easy to make this change. The game itself would know by a somewhat crude                 

Page 24 of  33 



Making of Raven Squad 

system, storing in a byte if the current level was a car level or not, and if it was, it would                     
change the sprite and the dimensions of the player to be able to adjust to the new gameplay. 

We then designed a few exclusive enemies in this way, first the stones, which would be the                 
enemy of the first of our two levels, being a way of telling that at this moment there was                   
danger, but not so much, that the main problem of the player was the environment through                
which he was going to move. We also added our enemy mounted on a fixed machine gun,                 
so that we could also represent that the enemies had the passage covered, and that not                
everything consists simply of not having an accident on the mountain. 

For the second level we wanted to symbolize that the danger was increasing, since this level                
would be the interlude between the middle part of the game and the late game, so we added                  
mines that would replace the stones in this second level. To further enhance this hostile               
feeling, the fixed machine gun gave way to gatling guns, as well as mortars. 

On a playable level, the biggest change this mode presented was that we took away from                
the player the possibility of controlling his horizontal speed, which was always the same.              
This could be considered a tribute to another game, which will be described later in the                
corresponding section on easter eggs. We also took away the possibility of shooting, as it               
didn't make much sense for the player to shoot at rocks or mines. In this way, we also                  
increased the sensation of danger when we saw one of the soldiers shooting at our vehicle                
between the rocks or mines, knowing that the only option was to avoid it. 

Internally, these changes were simple, we only had to modify the input system, which until               
now expected the player to press the keys to move forward or backward, and if he moved                 
forward and was in the X position twenty or more, it activated the scrolling effect. We                
established in the update this way that if the game was in car mode, the player's X speed                  
would always be one, adding this to the previously mentioned that if the player passes from                
a certain X position the scroll is activated, the game mode was finished. 

After a few level designs trying out what worked and what didn't in this mode, we were                 
satisfied with the result and we gave up on the system and left it definitively implemented. 

We also noticed that now the end of level animations should not be reproduced, since these                
levels did not symbolize the rescue of any member of the squad, so we added an additional                 
in-game check to indicate that in case the level we just completed was a car mode, it would                  
not be necessary to reproduce it. 

Tuning the collision system 

After all these iterations, we started to realize thanks to the car mode that collisions were                
sometimes activated from too far away between the entities, this was caused by the "margin"               
we had left to solve the problem of eliminating the trace of our drawings on the screen. 

We decided to look for a way to fine-tune the system, our idea was to add four more                  
attributes to our entities, so that we could tell the engine where the collision of each entity                 
started, as well as where it ended. 

Page 25 of  33 



Making of Raven Squad 

Since our collision system worked by means of bounding boxes, and we were already              
making a sum with the height and width of the entities, we only had to replace in this part the                    
width and height with our values of end of X and end of Y, with this we managed to tune up                     
quite a lot the collisions coming from the right or from below, although there were still the                 
collisions coming from the left or from above. 

To achieve this, we added to the corresponding X or Y value the start values of X and Y, the                    
system became much more refined, and although it was still far from perfect, the feeling had                
improved quite a lot. 

By this time, we were already making the designs of the final level, we came to the                 
conclusion that the end should be an interior space, where we would change the colour               
palette we used to make the background colour different, adding more differentiation of this              
level with the rest. We opted for the colour grey (although Z80 insists that it is white), as our                   
end of level structures, that is, where our allies were to be rescued, had been this colour                 
throughout the game. 

 

Final level, starting with the last changes  

At this point, we were close to finishing, while the final level was being designed, some small                 
changes were occurring as well, the new music that our partner was composing arrived,              
allowing us to implement it in the game. Also, to add variety, new allies were drawn to                 
rescue, so that in each level there was a clear differentiation. 

Although we had the feeling that something was missing, we already started to prepare the               
game for its release in the competition, researching the issue of licenses, adding them to the                
game, distributing our music through the levels so that it wouldn't always sound the same               
when faced with the concern that the player would deactivate the music because they              
thought there was only one song, minor design changes to improve the experience. 

With all these changes the game finally felt like a finished product, perhaps with its flaws, but                 
it was a product that was really playable, offered variety to the player, and had a moderate                 
duration. For the time we had, we were satisfied, especially when we thought that because               
of a confusion of ours we started the development a week later than planned. 

However, even though we liked the last level, a level full of sharp steel doors that separated                 
the level into "blocks" full of enemies, it didn't seem like a good ending to the game, there                  
was still a feeling that something was missing. 

It was at this point that we decided to implement a final boss, it was thought that it would be                    
the last ally to be rescued, a traitor, and to give the background that the last level was a trap,                    
the player would enter the building where in theory would be his last friend and instead he                 
would find this level, and at the end of this, his friend waiting to fight him. 

Page 26 of  33 



Making of Raven Squad 

Final boss, designing the last fight 

Unfortunately, due to time problems, we had to avoid this idea with some animation or video                
scene, preventing the player to understand this detail of the plot, however, we believe that it                
works because it is something so "classic" to find a final boss, which would not be strange. 

After some concept ideas, there were several ways to approach this enemy, the first one               
was that it was a normal enemy with a lot of life and an improved AI, but since it was going                     
to be the final part of the level, it felt weird to have free movement around the environment                  
and fight against an enemy like that. Adding this to the fact that our character could only                 
shoot in one direction, this combat seemed out of place. 

It was then planned to introduce a second easter egg to Prince of Persia, and that the final                  
enemy would replicate your movements in reverse, being a reference to the shadow born              
from the mirror of this game, but then it didn't feel like a challenge, you just had to know what                    
to do and the combat ended very quickly.  

Finally we decided to fall a bit into the "cliché" of making an enemy formed by multiple parts,                  
this enemy would be a sum of all the enemies at the same time, omitting the enemies that                  
tracked the player, it would have a targeting system with which it would shoot a kind of                 
missiles that would cause explosions in one arm, the other arm would be similar to a gatling,                 
having multiple bullets, and the main part, the head, would be a stationary enemy that would                
shoot with a moderate cadence to prevent the player from moving freely from one side of the                 
screen to the other. 

As this would be strange if the enemy was a person, we decided that it would be a kind of                    
robot, but then we realized that it was very strange because the way we had designed the                 
enemy, each part of it was independent from the rest, needing only to break the head to                 
finish the game, and the player could eliminate the arms to make the task of finishing with                 
the head much easier. This strange feeling came from the fact that there was no union                
between the pieces of the boss, so it was decided to add a box in the colour of the boss on                     
the left side of the screen, giving the impression that all the parts were part of one body. 

Positioning was important in this match, as the player could position himself on the boss's               
face and kill him without being hurt, which was not what we wanted. The movement of the                 
arms was refined, giving him a longer route to increase the "hot" areas where shots could be                 
fired, but even so, it was possible to get very close to the boss and damage it by dodging                   
bullets easily. 

It was then that we decided to put a sort of mid-screen, which would prevent the player from                  
getting too close, killing him the moment he touched him. This was one of the two possible                 
solutions we thought of, the other being to increase the points from which the boss could                
shoot, as this eliminated the most "absolute" form of victory, which was to eliminate the two                
arms and place oneself in the boss's face by shooting all our magazines without having to                
move. 

Page 27 of  33 



Making of Raven Squad 

All this was a way to win, the boss by how it is designed has several strategies to defeat him,                    
it is also possible to eliminate him without defeating any arm, dodging all the bullets he                
throws at us, as well as destroying only one of the arms and shooting him in the head from                   
the hot spots created by this eliminated arm to finish him off without pressure.  

Last changes, ending the game 

Once we were satisfied with this final boss, we started to make some final touches, we                
proceeded to balance the life of each enemy, increasing the life of some and reducing the                
life of others, we changed the distances of the shots of our enemies with explosive               
ammunition, and a small final scene was made informing us that the forces of evil had been                 
eliminated and that both the world and our friends were safe. 

A credits screen was also implemented, we tuned the level-skip key so that if we used it in                  
the last level it would show us the final animation, some sprites were refined, and we added                 
our own music to this last level. 

It was also decided to separate the fight of the boss and the final level in two separate levels                   
that would not have transition between them, that is, the text would not appear informing us                
that it was a new mission, to try to reflect that the boss was an extension of the last level,                    
and not a new level to which we had moved. 

With this, we concluded the development. 

 

 

Sketches of the game 

 

5. Initial concept of game screen based on Smash TV 

Page 28 of  33 



Making of Raven Squad 

 

6. Initial concept of game screen based on Horizontal Command 

 

 

7. Initial design of the player's sprite for testing 

 

Page 29 of  33 



Making of Raven Squad 

1. Enemy dog, ruled out in the final version 

 

2. Enemy Jeep, discarded in the final version 

 

Page 30 of  33 



Making of Raven Squad 

 

3. Level 1 Sketches 

 

Page 31 of  33 



Making of Raven Squad 

 

4. Additional level 1 sketches, and part of level 2 

Page 32 of  33 



Making of Raven Squad 

 

5. sketches of the final boss 

 

6. Sketch of the player final model 

Page 33 of  33 


