
The Making of Fips‘ Tale

Background
When I was a child, my dad introduced me to video games. I remember especially
the first ones, most of which were on the Amstrad CPC – the likes of Elite, Tau Ceti,
Antiriad, Boulder Dash, Prince of Persia, , and many others that I have fond me-
mories of. We also had a physical CPC 664 machine at home so I was able to get
some kind of second-hand retro experience.

I also learned different programming languages over the years but had never
thought of making a game on a retro system.

The Beginning
My dad, who‘s keeping up with the CPC scene, told me about the competition in
mid July 2020. At that time I had no other game project going already so I decided
to try and submit a game (first commit in my Git repository was on July 23). So I
went and learned C, and also started using CPCTelera, conducting basic tests for
drawing sprites and tilemaps while coming up with a game idea. I made some in-
itial sketches that are still quite close to the finished game.

Initially, progress was slow because I had to get accustomed to C and the CPC. I
learned that you shouldn‘t be lazy with debugging tools. It got much better after I
started to use the debugger of WinAPE and wrote my own text rendering function
(needed if you overwrite the builtin Amstrad font), which sped up debugging quite
a bit.

The CPCTelera examples and demo projects also helped quite a lot and gave me
an idea of what a decent project structure might look like.

Development
I started out with the concept of a green, grassy platform
game where you‘d collect coins and keys which would be
used to extend bridges in order to progress while fighting
the ocasional enemy in a Prince of Persia style sword fight.

Page 1 of 3

Image 1: The tileset

Some weeks into development it became clear that going for a nature setting was
more challenging artistically and, also given the limited palette of the CPC, I swit-
ched to a darker setting inside a castle, which also helps to set the mood (and I‘m
not a great artist either).

I was able to work faster over time as I was getting used to how things worked. I
also learned about optimizations for loops and other things like inlining small
functions in tight loops (mainly thanks to „Professor Retroman“ Videos).

The AI in the game got roughly three iterations. In the current one, it‘s both acting
randomly and reacting to what the player does. It attacks, defends, steps back-
ward (without falling off ledges) and pursues the player once it has been alerted,
again avoiding falling from a ledge to death.

I admit that I had a look at the source code of Prince of Persia (here on GitHub,
Apple II version) every now and then, but that out of interest and for inspiration,
not for technical details.

The screen system
I quickly realized my levels would need large amounts of memory, so I looked into
compressing individual tilemaps (called screens here).

One screen has 40x40 tiles, so that‘s 1600 bytes per screen. A level has a maxiu-
mum size of 3x3 screens which could use 9*1600 = 14,4kB for just one level!

When using the zx7b compression included with CPCTelera 1.5 on each individual
tilemap, each would only use between 50-200 bytes which oviously saved lots of
memory.

Finishing up
The last four (or so) weeks I was in a bit of a rush. I put in the last features and de-
signed out levels while also looking to create a casette loading screen, main menu
etc. At that time I also included player routines from Arkos Tracker 2 for music and
sound effects (which turned out alright given my mediocre music skills).

That mainly worked but I couldn‘t polish all of it to a level that I was completely
happy with. On the other hand, that‘s the thrill of a game jam, isn‘t it? Learning to
work faster with time constraints.

For me the best way to design levels was to sketch their rough structure out on

Page 2 of 3

https://github.com/jmechner/Prince-of-Persia-Apple-II

paper, then block them out in Tiled, after that
put them into the game and playtest them.
The last step was decorating and making mi-
nor adjustments.

Initially a two player mode was planned,
where you would have a sword fight against
each other and some kind of point system for
each victory. However, time ran out, altough
the code is designed to work with any kind of
input, be it an AI or a human player. I might
add that in a post-competition version of the
game (there also are some minor bugs still lin-
gering…)

Learned Lessons
For my next game of this type, I‘d probably use 8x8 tiles (saves memory and can
help graphical fidelity), make bigger sprites and use Mode 1 if I don‘t need that
many colors anyway.

I‘d also make a more torough entity system that‘d be more flexible than my cur-
rent approach. This would also involve animations, collectables etc. Currently an
entity component system (ECS) looks favorable and may even be benefical for per-
formance.

We‘ll see what happens in the next years so… stay tuned :)

In summary I learned a lot, got lots of help from the nice community on the cpcwi-
ki.eu forum and generally had a lot of fun building Fips‘ Tale.

Page 3 of 3

Image 2: Blocking out levels in Tiled

