

Making of

by Francesc Alcaucer

Making of

 Francesc Alcaucer

Content
Introduction .. 3

Argument .. 3

Graphics... 4

Text hack in mode 0 .. 4

UDG editor for text hack ... 6

Evolution of the game's graphics .. 7

First graphics test on the CPC 464 model (it doesn't go well) .. 8

Seeking for professional help .. 9

Pixel screen scrolling vertical .. 11

Title screen .. 12

Loading and presentation screen .. 13

Moving elements during the game ... 13

Speed and gameplay ... 14

Moving things .. 14

Main loop .. 14

Bouncing pattern ... 15

Movement and action of the palette .. 16

Movement of rescue capsules .. 17

Collection of effect capsules ... 17

Sound and music ... 17

Sound effects ... 17

"Positional" stereophonic effect ... 18

Music ... 18

Loading system from tape ... 22

Fast loading of extra-sized blocks .. 22

Wink .. 23

Description of the parts of the program ... 23

Resources and tools used .. 24

Farewell ... 24

Making of

 Francesc Alcaucer

Introduction
Wrecking Ball is a breakout arcade video game developed in Locomotive Basic for Amstrad CPC

computers. This game uses a graphics technique (which I thought was common in games in

machine code), which manages through UDG and some poke to firmware control addresses to

define colorful graphics without using the effect of text transparency.

Since the Basic in the Amstrad CPC is an interpreted programming language, in the code I have

not added comments with the intention of not unnecessarily slowing down its execution, but

here we will try to separate the main parts and give some explanations of their operation.

The conception of Wrecking Ball took place in the final stages of my previous development, also

in Locomotive Basic, CPC Invaders, while thinking about the best way that the background could

be repainted during the action of the game. That's when I thought of an Arkanoid style game

and if it would not be possible to preserve the background of the screen by painting a char stored

in a text-type array, choosing the char N from the X coordinate of the ball and being the element

N' of the array the Y coordinate, running at a good speed.

The first thing I did was program a play area with simple obstacles and a bouncing ball (the 231st

char of the Amstrad CPC). With the 4 colors of mode 1 of the CPC I did not think it was going to

be very showy, dedicating one of those colors to the background (although I planned to use a

repetitive pattern with plotting in the style of Arkanoid), there were only 2 more colors left for

the rest of the action, I needed more color, which I would get with mode 0.

As I said above, itis assumed that to get multicolored UDG graphics you must use the text

transparency mode and different chars with defined points according to the different colors that

you want to show, but with this project I have discovered that this is not so.

Recalling the tests I had done 30 years ago with mode 0, in which I pokeated the CPC records

so that the firmware 'believed' that it was working in mode 1 (this had been used in some

simple game, so that the markers did not look so huge with that horrible snout text font of mode

0, in the style of the scoreboard of the game Rampage of Activision in CPC), a surprising side

effect is achieved: the text are displayed in several colors; instead of just the color of the

foreground and background, others appear... Would it be possible to define which colors should

appear or was it just an uncontrollable bug?

Another of the objectives that I set out to address with this project is to take special care in the

sound and music, providing it with positional sound (ahem, more or less) and a more elaborate

melody than in my previous project, in which only repetitive tones and sounds were emitted as

drums at fixed times.

Argument
We are in the year 3021 and the space debris around the earth has become so numerous that

huge blocks of circulating material are forming in the immediate vicinity. These blocks pose not

only a risk of collision with space stations, spacecrafts, or satellites around orbit, but could

descend in altitude and reach the surface of the planet, with fatal results. You have been

appointed to be the first operator of the space wrecking ball, a huge (and dangerous) spherical

mass resulting from a secret project with a great capacity for disintegration...

Making of

 Francesc Alcaucer

Graphics

Text hack in mode 0
I will start by clarifying that the development was begun emulating the model 6128 of the

Amstrad CPC. As a reference resource when I had the CPC, I bought (and still have) the book

published in 1987 by Anaya Multimedia, Amstrad CPC 464/664/6128. Manual de referencia

avanzado, by Rafael Sarmiento de Sotomayor, in this, among other topics, the routines and

directions of the firmware of the CPCs are discussed. In the middle of page 153, the control

memory addresses of the block referring to the screen appear.

Doing this: MODE 0:POKE &B7C3,1 (this direction controls in the 6128 the active screen mode),

the text cursor goes from rectangular to square, as in mode 1, and then doing PEN 2,we get an

interesting and colorful Ready prompt:

If we test with different values for PEN, we observe that the behavior is like that of mode 1,

showing text with the values from 1 to 3 and with value 4 equals PEN 0 and the sequence is

repeated in higher values. Every time we change to a value in which text is displayed, if we refine

the view, we can see that it does so by showing points in 4 different inks (counting the

background color):

Well, the ink value of the background is always the same, but if the others vary and 3 values

are valid, we have 9 inks, what about the rest? Let's do the following test:

10 MODE 0:PEN #4,6:PEN #5,13:PEN #6,11:PEN #7,14

20 POKE &B7C3,1:PEN #1,1:PEN #2,2:PEN #3,3

30 FOR n=1 to 7:LOCATE #n,1,10+n:PRINT #n,”Ready”:NEXT

With this we establish inks for PEN before and after poke. The result is as follows:

We see that two things have happened: while typing the cursor appears in the next line when it

goes beyond the horizontal position 20 and we have texts with different combinations of inks.

To solve the 20 columns what I do is redefine all the windows with WINDOW #n,1,40,1,25 and

Making of

 Francesc Alcaucer

with that I already have the 40 columns. For the graphics window something similar happens,

but it is solved with the instruction: ORIGIN 0,0,0,640,400,0

After different tests, I get the following table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X X X

2 X X X

3 X X X

4 X

5 X X X

6 X X X

7 X X X

8 X

9 X X X

10 X X X

11 X X X

12 X

13 X X X

14 X X X

15 X X X

On the vertical axis we have the possible values for PEN and on the horizontal axis we have with

which inks the chars that will appear with dada one will be shown. As we can see, there are two

small problems and that is that there are inks that are repeated with different PEN values and

that the values 4, 8 and 12 only show 1 ink.

I decide then to take the following strategy: load the inks so that they can represent chars with

colors with some gradation, there are the colors in inks from 0 to 15:

0 4 3 2 17 8 6 16 24 12 15 18 26 13 7 11

Moving the color to the table above, we have the following multicolored combinations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X X X

2 X X X

3 X X X

4 X

5 X X X

W6 X X X

7 X X X

8 X

9 X X X

10 X X X

11 X X X

12 X

13 X X X

14 X X X

15 X X X

Making of

 Francesc Alcaucer

UDG editor for text hack
To facilitate the task of investigating how the text is presented on the screen when I use this

small hack and to create the first graphics, I make a simple UDG editor, being as follows:

In the upper-left part we have the char matrix of 8x8 points, just to its right we have the same

char when we have the text hack, showing a char of 4x8 points.

If we look closely, we can see that each row of the char we define is divided into two nibbles

that represent the two pixels on the left and the two on the right of the char, getting one ink or

another, we will say that (with the color palette we have applied) of low, medium, or high

intensity, depending on which bits we activate in each nibble.

With a little more effort and evolving the tool, I get the following result and now it allows me to

export to file with BAS extension, formatted ASCII text with all SYMBOL commands:

In conclusion, what I have is a UDG editor that allows me to generate graphics in 4 colors (3

foreground in addition to the background) thanks to the text hack of mode 0, to show 'sprites’

printing on the screen a single char with 4 colors, instead of having to print 3 chars with the text

transparency mode. According to my tests, printing a single char is 1.9 times faster. I haven't

tried it, but I imagine that with longer text strings there will be more difference.

Keep in mind that as it is logical to think, this trick can also be used from programs written in

other languages, if the firmware is not deactivated.

Making of

 Francesc Alcaucer

Evolution of the game's graphics

Here is the first and second model :

I make a new UDG design of the ball, it goes from v1 to v3, which I like more, and I leave

definitively since it seems to me that it has a metallic appearance:

v1 v2 v3

I also redesign the edge of the play area and the bricks that will have to be destroyed with

different characteristics of hardness, I add counter of those that remain to be eliminated and I

give life to the point marker. At the moment the ball is never lost, so lives do not descend:

Making of

 Francesc Alcaucer

The thing is going well, I incorporate the pause, more elements of the marker and transparent

bricks (the text hack produces a curious effect of transparency that does not look bad), after

which the background is shown, background that consists of a variable type text DIMensioned

of 40 chars in length for each element and that is redrawn with the movement of the ball or

when destroying bricks, obtaining the char with MID$ of the dimensioned variable, without

the speed suffering.

First graphics test on the CPC 464 model (it doesn't go well)
I am about to do the first test on the model 464. I generate the CDT and charge it, change the

direction of the POKE address, from B7C3 to B1C8, which corresponds to 464 model, and I

went into shock when I see this appear:

The horror. The firmware of the 464 model is different, apart from the basic instruction set. I

had already noticed certain differences for example when printing chars in the lower-right

corner, that in the 464 there is a carriage return and in the 664/6128 it does not happen like

that and things like that, but this already ... anyway, why does he do this? Frustration and despair

in equal parts...

Making of

 Francesc Alcaucer

Seeking for professional help
A disaster, without the text hack there is no game, the visual impact it supposed was decisive

and in the 464 model it did not seem to work... in this model it is different, it does strange things,

there is no multicolored text, the pixels of the letters seem displaced:

Then I retrieve my old notebook, a folder of rings that is over 30 or 35 years old and that I still

have. In that notebook I keep the design of the letters of the Arkanoid II that I played in CPC

Invaders game and by which I had left my eyes copying pixel by pixel from the screen to the

paper, it also contains some game passwords and formula annotations, small listings in Basic,

tricks with the OUT and POKE instruction, among which the following is noted:

Mode 0/1 special text design STR

10 mode 0

20 poke &B1C8,1:poke &B1D0,0:poke &B1D2,60

The CPC model I had when I was a kid was the tape model, and all the tests I did were for that

model. At that time, I had already been playing with this, but I had not exploited it, I had not

done enough research on what was happening with the text and the different inks because I did

not know how to realize anything. What I did do is play with those other directions (B1D0 and

B1D2) because it seemed like the text looked better:

I didn't remember it, but the text could also be seen in colors, and I liked how it looked, but

there was the thing:

Back in the firmware manual, what did those memory addresses control? According to the book,

the point masks and it is true that the points of the chars seemed displaced before touching the

masks and after doing so the multicolored text was also more colorful, so they had something

to do with all this.

The mask control memory addresses are those ranging from B1CF to B1D6, but apparently you

only needed the first 4. I was testing different values and I could not make it look the same as in

the 6128, a model in which the masks also had no effect and in fact their values are at zero, so

it did not serve as a reference. It seemed that in the 464 the values that I could assign to PEN

behaved as if it were in mode 1, that is, from 0 to 3 and in 4 the sequence was repeated, so that

the game would show a color lower than that of the 6128 model (remember the color table on

page 4). Again, a situation of frustration...

Making of

 Francesc Alcaucer

I search the Internet and it does not seem that anyone has done anything similar with the

firmware of the CPC, I am in a dead end, until I decide to contact "el profe”, Fran Gallego... "If he

doesn't help me with this, no one else can" I told myself.

I get in touch through the CPCtelera group on Telegram, I explain my problem to the group and

the teacher immediately shows his interest in the matter, I jumped out of my chair and passed

by private a photo of the screen where the project is seen in the two models, 6128 (left) and

464 (right):

Profe is asking me things and goes on to do his own tests and see the effects, and even reviews

the CM routines of the firmware that are responsible for printing the chars on the screen to see

how they work... As he continues explaining I’s trying different things, then… surprise! we found

that the default mask when mode 1 is on (&88, &44, &22, &11) is the one I had to use in MODE

0, but to set the ink to use I must not use the PEN statement, but a POKE &B28F,ink

To set the inks relative to another window (WINDOW #n), what I must do is change the current

text channel, B20C memory address:

POKE &B20C,#window:POKE &B28F,ink

Well, everything is almost solved, a thousand thanks to the teacher for enlightening me!

The next thing, since the same program must be able to run on all models, is to identify which

firmware version the game is running on and set variables for the memory addresses that

matter, which is easy:

IF &39=PEEK(&39)THEN

MODE.=&B1C8:CH.=&B20C:MASK.=&B1CF:PEN.=&B28F:REM 1.0

ELSE MODE.=&B7C3:CH.=&B6B5:MASK.=&B7CA:PEN.=&B72F:REM 1.1

I define an array of 15 elements (DIM PEN.(15)) with the ink values that interest me (and some

extra) for the POKE to the direction that controls the ink, from 1 to 15:

&F0, &3C, &FC, &C3, &F, &CF, &F3, &3F, &FF, &3, &C, &CC, &C0, &30, &33

Only I must do this to change the ink of the current channel:

Making of

 Francesc Alcaucer

Pixel screen scrolling vertical
Already before I got with Wreckingball, while working on CPC Invaders, I had made a small

program that featured a vertical scroll with a starry background that moved to the pixel (up, all

the stars at the same speed). The trick is very simple, you just must manipulate the CRTC records

properly to vary the position of the screen.

For example:

10 MODE 1

20 WHILE INKEY$=””:GOSUB 100

30 PRINT#7,CHR$(11):FOR n=1 TO 2:LOCATE#7,1+RND*40,1:PRINT#7,”.”;

40 WEND

50 END

100 FOR y=1 TO 7:CALL &BD19:OUT &BC00,5:OUT &BD00,y

110 FOR n=1 TO 50:NEXT

120 NEXT:OUT &BC00,5:OUT &BD00,0:RETURN

For CPC Invaders game, I did not use it, because the entire screen moves and I did not have the

opportunity to use it during the action, but this time I have introduced it in the sequence of

introduction to the game and that gives way to the menu screen.

However, this trick has once left me hanging the CPC (emulating in Retro Virtual Machine), it

has never happened to me with the emulated CPC newly initialized and loaded the game, but

when it had been a long time since I restarted it, I do not know why it is. With WinAPE it always

hung, by loading first the splash screen and then the game. That is why I only use it 2 times in

the first execution, during the introduction.

Making of

 Francesc Alcaucer

Title screen
For the menu screen where the game title is also displayed, I wanted it to be in large letters,

without using the same font as the rest of the game. I had thought of making some cool text

with 3D effect in Gimp, then passing it to the Amstrad, and this time yes, present it on the screen

with the help of the text hack and transparencies to use all the colors that were necessary. I did

some test and fast and it seemed to me that with the low resolution of mode 0 it was not going

to look clear enough and on the other hand, I had to modify my UDG editor so that it interpreted

a loaded image and converted it to char arrays with the pixels that needed to be shown for each

color ... a waste.

I then considered presenting the title with chars so that, united together, they would make up

the letters. The first test to see if it could fit everything was such this:

Aside from the lyrics looking ugly, the menu also looked too overloaded. I reduced the number

of options to those strictly necessary and designed the chars as pieces that had to shape the 3x5

or 4x5 font, depending on which letter it is:

Making of

 Francesc Alcaucer

Loading and presentation screen
This is a breakout style game, but what sense could it make that the action was in space? It

occurred to me that what was to be destroyed was space junk.

During its development and by chance I have learned of news, etc. concerning the real problem

with special garbage. It turns out that there are already companies that are responsible for

cleaning the orbit of debris (e.g., Airbus, Astroscale and ClearSpace). In the final phase of the

project, just before the presentation to the CPCRetroDev, I had the intention of including a

loading screen and it occurred to me to visit the website of the European Space Agency (ESA)

and more specifically, an article published talking about the problem of space debris (in it is

commented that the first collision has already taken place in February 2009).

One of the images that illustrate it is the one I have used as the basis for the loading screen.

With Paint.net I have increased the color saturation, I have raised the green component levels

to the globe, I have added the ball and converted the resulting image with ConvImgCPC. Already

in the CPC I have added the texts:

Note that the letters of the title are the same as on the menu screen of the game with the text

transparency mode activated and that, with the text hack and mode, it is achieved that they

really look as if they were translucent (in addition, by the inks resulting from the mixture the

color palette applied to the inks seems intentional, but it's pure chance).

Moving elements during the game
Towards the middle of development, I introduced elements that moved around the screen to

hinder the player, diverting the trajectory of the ball and not being so monotonous. I used the

char 224, which by default is a smiley face. This stayed that way until practically the end of the

project since I had no idea what story to give to those objects. In the end it has remained that

they are lost rescue capsules (I will not go into whether they are occupied or not) and the graph

has emerged by taking advantage of one of the bytes of the face, since I use the PEEK command

to detect collision between the ball and the object.

Making of

 Francesc Alcaucer

Speed and gameplay

Moving things
In the early stages of development, I have only a bouncing ball, a paddle that moves from side

to side and some obstacles, embryo of what will later be the bricks of the game. The bounce

pattern of the ball currently is as follows:

• When the ball collides laterally and/or vertically with something, the X and/or Y

direction changes, respectively.

• When the ball collides diagonally, both directions, X and Y, change.

Immediately a movement problem is noticed: when the paddle is moved, the ball seems to move

more slowly and so it is. To save this, the movement of the ball must be managed by

interruptions, so that it is as fluid and constant as possible.

When I add the score indicator, and the brick counter that remains to be destroyed, the fact of

having to erase the brick, putting in place the 2 chars that correspond to the background behind

it and then updating the indicators reveal a new problem: updating all that causes the

movement of the ball to slow down excessively.

Again, I make use of interruptions to update the indicators asynchronously, that is, when a brick

is destroyed, an AFTER instruction is executed so that soon the number of bricks is updated and

from this, another one that updates the score. If several bricks are destroyed very often, it will

not give time for the update of the score and brick counter to be executed, so this task is

postponed until a more propitious time (when the game will be more relaxed).

Main loop
The main loop while running the game action is as straightforward as possible, chasing a

keyboard response as fast as it is within reach:

100 IF NOT INKEY(kr)THEN 200

110 IF NOT INKEY(kl)THEN 210

120 IF 1>CBR THEN 260

130 IF pw AND 2 THEN 170

150 GOSUB 300:IF INKEY(kp)THEN 100

160 GOSUB 900:GOTO 100

Line 150 makes a GOSUB to the routine of movement of enemies, so to speak, they will appear

on the screen to hinder us and jumps to line 100 if the player has not pressed the PAUSE key

(pause routine is located on line 900).

It should be noted that the VARIABLE CBR (brick counter) I do not use it to decide when the

stage ends, but also to make the game jump when you have to subtract a life or other

circumstances, since by the fact of using interruptions I have noticed that making certain

changes of game situation from within a routine called by an interruption has unwanted effects,

for example: faster ball movements for a certain time, updates of out-of-place screen objects,

etc.

I use the PW variable activating and deactivating its bits to establish the player's state in terms

of the items that have been collected, but I also use it at certain times when the ball, due to its

trajectory, is placed on the player's paddle and it needs to be repainted, when it was not moving.

Making of

 Francesc Alcaucer

I also get extra performance when, after moving the palette, the same program line will continue

to run while the player holds down the arrow key (and the end of the play area has not been

reached):

200 IF pm>px THEN LOCATE#7,px,25:px=px+1:PRINT#7,pr$;:GOTO 100

ELSE 120

210 IF 2<px THEN px=px-1:LOCATE#7,px,25:PRINT#7,pl$;:GOTO 110

ELSE 120

Bouncing pattern
The scheme of checks that performed the routine of movement of the ball (from line 3000) in

each iteration initially was the following (we assume that it moves up and to the right):

 T1 T2

T3

Collision is checked (bricks, like the background, are also stored in an array of text strings) in

three possible positions: top, diagonal and side. If there is brick in each of those positions, the

collision is processed and whatever must happen accordingly (lines 4000, 4100 and 4200)

happens.

These checks were initially not too much of a problem, but when I added more content to the

game and objects circulating on the screen to hinder the player, since the collision check with

one of these objects was done by converting the X and Y coordinates of the ball to video

memory address and examining the content, it became too heavy, so to speak, the routine of

moving the ball and reacting to the player's keystrokes were no longer as fluid as I could want.

To reduce the number of checks to be carried out in each iteration (go from 3 to 1), I propose

the possibility of checking only the diagonal position, in the first instance, if there is an obstacle,

the vertical and lateral positions will also be checked:

First the brick is detected in the position in which the green is located, if it exists, the vertical

and lateral positions are also checked. But, if a case like these occurs, it would not bounce

(remember, in the example, the ball moves up/right):

Making of

 Francesc Alcaucer

The way I came up with to alleviate this problem is to include in the array of bricks a value that

indicates collision on the sides of the bricks where there is nothing, but on the screen, it is not

shown, that is: C C

Col.

Col.

 Col.

 It should be noted that, in the example on the right, the collision will be detected just one

position before reaching the brick that causes it and will be saved for processing in the next

iteration.

Another small change that I introduced is that the ball when colliding diagonally will not reverse

its movement in both axes, but the vertical and randomly the horizontal will always be reversed,

forcing the player more often to move, since otherwise it seemed to me that it was somewhat

boring because there were cases in which you could keep the paddle in a certain position

immobile sending the ball always in the same direction until destroying the intended brick.

Movement and action of the palette
The palette, as usual in this type of game, moves only laterally and only obeys one of the

directional keys simultaneously.

When the ball is at the Y coordinate 24 or higher, its X position is checked with respect to that

of the paddle and its rebound will be decided based on:

1. If the ball approaches from the left and hits the far left, it will bounce in the opposite

direction (the same applies to the opposite direction and side).

• If the ball approaches from the left and hits the central part, it will bounce off in the

same direction.

As I say, the bounce of the ball also takes place when it is at the vertical coordinate 25. The

advantage that this has is that, since the paddle moves faster than the ball, it is possible to rescue

the ball from the fall in extremis, that is, to arrive with the paddle and place it on the ball just

before it falls to save the loss of a ball..

Making of

 Francesc Alcaucer

Movement of rescue capsules
The capsules that appear and move around the screen are always four and have two

movement patterns:

• Two of them will move according to a randomly chosen direction, never diagonally.

When they collide with a wall, a new direction of movement is reconsidered. When

they reach a certain "height" above the paddle, they will remain there and move

laterally or move away.

• The other two will always move diagonally, looking for the interception of the ball and

have no height limits.

When the capsules and the ball collide with each other, the capsule destroys and a new one

will appear at the top of the screen.

Collection of effect capsules
When a brick is removed, between 25 and 35% of the time it can (and I say can because then

you check the number of bricks that are missing to be removed or the type of capsule) appear a

capsule of different colors that alters the behavior of the ball or the palette. These capsules

appear and remain static, until after a few seconds they disappear. Making them fall to the

bottom to pick them up with the pallet was too much workload, so I ruled out doing so. Instead,

it is the ball itself that collects them by colliding with them.

Effects are those that do not involve excessive additional workloads, for example: there is no

multiball effect. The list is as follows:

 Increase the speed of ball travel.

 Reduce the size of the palette (to some extent).

 The ball can be "redirected".

 Reverse palette motion controls.

 Bonus score with 1000 pts. and pass level (the proposed wink is shown).

 Increase the size of the palette (to some extent).

 Causes the paddle to have some adhesion(magnetism)when it moves.

 Super destructive ball (a single impact is enough to remove the bricks).

 Reduce the speed of ball movement.

Sound and music

Sound effects
The premise is that anything that happens on the screen should produce some sound effect,

otherwise the thing would be quite bland. Practically everything produces some effect, except

the movement of the palette and the objects that swarm the screen, since I was not going to

spend overcharging it either.

It is true that in a way the ball hitting effects are inspired by how they sound in the game

Arkanoid II, but this type of sound was somehow more natural to me than any other. These are

the configured envelopes:

Making of

 Francesc Alcaucer

ENV 1,15,-1,5:ENV 2,3,-5,1

ENT-1,1,-100,3,1,50,2,1,50,2

ENT-2,1,-100,3,2,25,2,2,25,2

Bounce effect on play area boundaries (short volume fadeout, metallic tone envelope):

SOUND 1,200,200,15,1,1

Rebound effect on bricks (different tones depending on the direction of vertical movement of

the ball):

SOUND 1,200+50*sy,80,15,1,1

Palette bounce effect (same effect, with more bass tone):

SOUND 1,300,200,15,1,1

Remove brick effect (the sharpest of all, variation in tone envelope, with some arpeggio):

SOUND 1,100,80,15,1,2

"Positional" stereophonic effect
I have provided the program with a certain stereophony for sound effects, according to the

position of the ball, of two types:

• Channel number (right, left, or both)

• Volume level (higher volume in the left channel according to the action is closer to the

left end of the play area and the same for the opposite case), while do that, I emit the

same sound on the other channel with a little less volume to give some spatiality.

For the choice of sound channel, I use a user-defined function:

DEF FNst(n)=128+ABS(20>n)+4*ABS(10<n)

For the emission of the sound, which will do so by one or another channel or both, according to

the previous function:

SOUND FNst(x),200,80,15,1,3

For the emission of sound based on volume, for example:

v=x\6:REM X es la coordenada de la bola

SOUND 129,200,5*(15-v),15-v,1,1:SOUND 132,200,5*(10+v),10+v,1,1

Music
This new project, as in the previous one, is programmed 100% in Basic, so I did not want to use

any kind of routines in CM for graphics or music (apart from the tools that the CPC firmware

gives you. In addition, the recently published contest rules prohibit it.) From the first moment I

was clear that for the incorporation of melody I was going to program a musical composition

tool, although I am not a musician, nor do I have too much idea of solfeggio apart from what a

pentagram is.

Even if I say I'm not a musician, I do have some ear and I play something with one hand (or I

played, now I lack a lot of practice). It comes to me from the same time when I had the Amstrad

Making of

 Francesc Alcaucer

and an ex-brother-in-law who liked musical keyboards and let me mess around with them. Some

of these synthesizers had a drum machine, resources more than fun to handle given my

limitations. Later I bought a small Yamaha CS01II monophonic synthesizer (not MIDI) and a MIDI

keyboard for the PC, with which I have also played some sequencers and MOD trackers.

The ultra-simple program that I have created to help me in the composition (and which I have

called Music Box), is oriented to the operation of mod trackers, only, at a very basic level,

without instruments or effects.

Again, I work with strings text arrays in which I store numerical values (1 to 5) to launch drum

sounds (the drum machine) or alphabetic chars for the tones of the notes, based on the following

formula (extracted from the CPC manual):

ma=ASC(char$)-65

SOUND 1,UNT(62500/(440*(2^((10-ma)/12)))),40,15

The alphabetical char - notes distribution would be as follows, transferred to a piano keyboard:

 Z X V

U

 S Q

P

 N L J

I

 G E

D

 B

A Y W T R O M K H F C

In Music Box the patterns are organized horizontally and on the screen (which seems a bit messy)

the indicator of the tick or playback point (64 chars in length) is shown at the top, on the right

the tempo (value that is passed to the EVERY that will invoke the interruption to sound the

notes) and the vertical position of the cursor (which marks the current pattern, although in the

capture this value does not match since it is in playback mode and as you can see, the cursor is

lower, a position that corresponds to the pattern that is sounding at that moment).

The first pattern line (in which only numerical values from 0 to 5 are seen) corresponds to the

drum machine, which will sound through the central channel and onwards, when they contain

alphabetic chars, the odd lines correspond to the left channel and the even lines to the right.

The three lower lines correspond to numerical values that will sound battery on both channels,

right and left alternately and are played individually.

Making of

 Francesc Alcaucer

The program as well as the UDG editor allows you to export the work to file .BAS with ASCII

format, containing the DATA lines:

20000 DATA BCECEGGCECEGGMNONIK

20010 DATA

1000303020003030103010302030443010003030200030301030103020342430

20020 DATA

Q000L0J0E0G0H0J0L0L0J0N0B0000000Q000L0J0E0G0H0J0L0J0G0N0Q0NQ0000

20030 DATA

X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0X0X0Q0Q0

20040 DATA

S000N0L0G0I0J0L0N0N0L0P0D0000000S000N0L0G0I0J0L0N0N0L0P0D0PD0000

20050 DATA

Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0Z0Z0S0S0

20060 DATA

L0L0E000L0L0X000L0L0E000L0L0X000N0N0G000N0N0B000N0N0G0G0N0N0B000

20070 DATA

0L0L0E000L0L0X000L0L0E000L0L0X000N0N0G000N0N0B000N0N0G0G0N0N0B00

20080 DATA

S000Z0Z0S0Z0Z0Z0S000Z0Z0S000Z0Z0Q000X0X0Q0X0X0X0Q000X0X0Q000X0X0

20090 DATA

SSSSZZZZSSZZZZZZSSSSZZZZSSSSZZZZQQQQXXXXQQXXXXXXQQQQXXXXQQQQXXXX

20100 DATA

00000000000000000000000000000000E000G0H0J0L0J000G000H0J0L0J0Q000

20110 DATA

Q0Q0J000L0L0J000Q0Q0J000L0L0J000Q0Q0J000L0L0J000Q0Q0J000L0L0J000

20120 DATA

3330003330003335554440003330003330003335552221122112212211111111

20130 DATA

4343400400304000300040300403000043434004003040003000403004030000

20140 DATA

1111111111111111222222220000000011111111111111112342342300000000

The first line DATA indicates, by means of alphabetic chars, the number of the pattern that will

be always reproduced, once I read in full the last char of that line it will go to the first position.

The advantage of using alphabetic chars is that it has made it easier for me to read and introduce

arrangements to the music so if they had been numerical codes.

The player is such that this:

30000 IF tk=1 THEN my=ASC(MID$(MUS$(0),mx,1))-65:mx=mx+1:IF

mx>LEN(MUS$(0))THEN mx=2

30010 ma=ASC(MID$(MUS$(my),tk,1))-65:IF ma>=0 AND ma<58 THEN

GOSUB 30300 ELSE IF ma<>-17 THEN ON ma+17 GOSUB

30200,30210,30220,30230,30240:GOTO 30050

30020 ON VAL(MID$(MUS$(1),tk,1))GOSUB

30100,30110,30120,30130,30140

30030 IF 1=my OR 14=my THEN 30050

30040 mc=ASC(MID$(MUS$(my+1),tk,1))-65:IF 0<=mc AND 58>=mc THEN

GOSUB 30400

30050 tk=1+tk MOD 64:RETURN

30100 SOUND 130,500,20,14,7,6:RETURN

30110 SOUND 130,500,20,14,7,,1:RETURN

30120 SOUND 130,5,5,14,6,0,6:RETURN

Making of

 Francesc Alcaucer

30130 SOUND 130,10,60,14,8,,3:RETURN

30140 SOUND 130,100,200,14,3,7:RETURN

30200 SOUND 129+3*(tk MOD 2),500,20,14,7,6:RETURN

30210 SOUND 129+3*(tk MOD 2),500,20,14,7,,1:RETURN

30220 SOUND 129+3*(tk MOD 2),5,5,14,6,0,6:RETURN

30230 SOUND 129+3*(tk MOD 2),10,60,14,8,,3:RETURN

30240 SOUND 129+3*(tk MOD 2),0,10,0,5,,1:RETURN

30300 SOUND 129,UNT(62500/(440*(2^((10-ma)/12)))),40,15,8:RETURN

30400 SOUND 132,UNT(62500/(440*(2^((10-

mc)/12)))),40,13,8,8:RETURN

And to start and sound the music:

30500 DIM MUS$(140):RESTORE 20000:FOR n=0 TO 14:READ

MUS$(n):NEXT:tk=1:mx=1:EVERY 5 GOSUB 30000:RETURN

As options in the playback, I have available (of course) the possibility of playing the melody

slower or faster (although not too fast, since I immediately run out of time). for example, when

the game is over, I play a certain part of the melody more slowly to make it look sadder.

I can also add notes that are not actually in the DATA as an accompaniment to the melody, a

few lower octaves, etc.

In total I have created 4 different melodies and 1 variation, to liven up the following parts of the

game:

• Menu screen and top scores.

• Music at the beginning of each stage.

• Music for the wink.

• Music for the end-of-game message (extract from the menu melody at a slower speed).

• Music on the Initials Intro Screen by Getting One of the Top 10 scores.

Making of

 Francesc Alcaucer

Loading system from tape

Fast loading of extra-sized blocks
When I had my Amstrad CPC 464 f.v., I had a lot of original games (most), but like every

neighbor's son I also had my tapes copied, some copied with double plate, because they

contained games with turbo charging and there was no choice, but I also had games with normal

load, in blocks. To copy such programs you could use copycats, in which you entered the original

tape, read all the blocks that could fit in memory and then introduced the virgin tape and

dumped there the blocks read. The copy I used was SpeedMaster from Angry Bear Software.

This copy was programmed in Basic, and the loading/recording routine was CM. I don't know

exactly how it happened, but tinning with it I realized that, while the first block of each file (which

was made up of several blocks) had to be 2048 bytes, from the second it could be larger. This

offered the advantage that to load any program saved me the time of loading the header of each

block and the white space on the tape that separates each one, thus taking less time to load.

I modified SpeedMaster so that, in the loading phase, from the third blocks, the data in memory

was moved, just at the end of the second block and modifying the header of this to correspond

to the new block length, when recording this block on tape a block as large as it could have fit in

the loading phase was obtained.

All this I have applied to the loading of Wrecking Ball: It is a program in Basic of loading by blocks,

but except for the first, it is loaded as if it were turbo charging, but apart from its length, it can

be considered that they are normal blocks, the firmware can load them perfectly by itself.

I also must comment that the speed at which it is recorded is 2000 b/s. (I have done tests with

the Retro Virtual Machine emulators and with WinAPE and the second is not able to correctly

interpret CDTs with blocks recorded in this way, so I had to insert a 1-byte block between the

splash screen and the game to load correctly.

Making of

 Francesc Alcaucer

Wink
This year's reference in the CPCRetroDev (2021) points out that a rainbow should appear during

gameplay, as a nod to Ocean Software's Rainbow Islands game.

A rainbow effect has been included when collecting a golden capsule (, or by pressing R+

PAUSE), which grants 1000 points and an extra ball. After showing the rainbow also sounds (in

my own way) the final part of the main melody of the game Rainbow Islands, which takes place

at the end of each phase of said game.

Description of the parts of the program
1-50 License, initialization and start of the program.

60-70 Start of game

100-150 Main loop of the game.

160 Jump to pause of the game.

170-250 Movement and on-screen printing of the player's ship.

260-290 Jumps at the end of the stage, loss a ball or end of game.

300-470 Movement capsules moving around the screen.

500-580 Erasing, collision, printing and initializing moving capsules.

600-640 End current scenario, jump to generation of new scenario and main loop.

900-990 Pause loop input and output. Initiate interruptions to move ball, etc.

1000-1390 Generate scenario.

1400-1800 Initialize vars for bricks and background. Print background, bookmarks, etc.

3000-3810 Ball movement, collision detection, bounce on player ship, etc.

4000-4260 Process collision with bricks or item capsules.

4300-4650 Score when destroying brick and decide if item capsule appears.

4700-4930 Process collision with item capsule and apply effect of acquired item.

5100-5950 Char-by-char text on screen and other effects (rainbow, etc.)

6000-7390 Define character map.

7400-7930 Define functions, variable arrays, envelopes, and memory addresses.

8000-8980 Getting Started Screen and Options Menu.

9000-9990 Screen of best scores and introduction of initials.

10100-10240 Redefine game keys.

20000-20210 Music data

30000-30540 Melody player and melody initialization to play.

64000-64040 Program Output.

Making of

 Francesc Alcaucer

Resources and tools used
Microsoft Word 2019 (Microsoft 365) © Microsoft Corporation

Paint.net. Copyright © 2014 dotPDN LLC, Rick Brewster, and contributors.

ConvImgCPC. Demoniak. (http://ldeplanque.free.fr/ConvImgCpc/new/)

RetroVirtualMachine v2.0 © 2018-19 Juan Carlos González Amestoy

WinAPE 2.0 Beta 2 © Richard Wilson

SpeedMaster v4. Angry Bear Software

European Space Agency (ESA), article on space debris on ESA's website:

https://www.esa.int/Safety_Security/Space_Debris/About_space_debris

https://www.esa.int/ESA_Multimedia/Copyright_Notice_Images

GNU GPL License (https://www.gnu.org/licenses/)

Farewell
I thank every reader for their interest in this project and in this document and I hope that my

works will be enjoyed even a small fraction of what I have enjoyed creating them.

For me, the Amstrad CPC microcomputer has always been and has shown me that it is the best

tool for learning in programming at all levels, both for its excellent user manual and reference

and for, in my opinion, its unsurpassed exploitation characteristics in its programming.

Best Regards.

http://ldeplanque.free.fr/ConvImgCpc/new/
https://www.esa.int/Safety_Security/Space_Debris/About_space_debris
https://www.esa.int/ESA_Multimedia/Copyright_Notice_Images
https://www.gnu.org/licenses/

