
GET OUT OF MY STORE!
MAKING-OF

PyroBombastic © 2021

HOW THE GAME WAS CONCEIVED
The first idea we got to make this game was far away from the final product we have right
now. At first, we wanted to make a game whose main mechanic would be dashing! When
we in the moment thought that our concept was nearly impossible to implement in such a
tiny deadline, we decided to group up and lay out some ideas.

The next idea we had was a top-down shooting game with a bow and arrow, in which
you’ll have to shoot some bullseye with your bow and complete some puzzles. But that
idea didn’t convince us at all since it didn’t pose a challenge to the player regarding
movement and mechanics. We wanted something more fast paced, which required
practice and skill, not just knowing the answer to the puzzles.

Then, an idea just came into our minds: What kind of game makes us play an infinite
amount of hours? And then, we all thought the same: survival round-based games.

Our main influences are:
- Smash TV, an Amstrad CPC classic.
- Boxhead, a very popular flash game.
- Call of Duty Zombies, the most popular side mode of every Call of Duty iteration.

TECHNOLOGIES USED
The so�ware we used to make this game is:

- Visual Studio Code for programming.
- CPCTelera as the framework.
- Arkos Tracker for making music and SFX
- GIMP for making sprites and scenarios.

DESIGN PROBLEMS AND SOLUTIONS
During the development of Get Out Of My Store! We faced many problems and challenges.

The first problem that we faced was the enemies. How many of them should we include?
And how difficult should it be? For this problem, we decided to make easy enemies, each
time increasingly difficult to both implement and play against. We started with the
zombie, which is the simplest enemy of the game because its pattern is just to go to the

2

https://www.youtube.com/watch?v=cWEA90ovgJI
https://www.youtube.com/watch?v=WUtgioCJIRk
https://www.youtube.com/watch?v=kMIn6hR7sf0

food. A�er that, we made the ghost, which is quite a simple enemy whose pattern is to
chase you, with almost the same code used for making the zombie.

With only these two types of enemies, we noticed that the game lacked substance. We
needed something that made the player take decisions and constantly change his game
strategy. So we decided to make more enemies. We made enemies that had simple
movement patterns, like UFOs and bats.

When these enemies were implemented, we made more difficult enemies, like the
pumpkin, whose pattern is to seek you and then go to your position at a high speed, the
spider whose pattern is to move between the walls, and the skeleton, whose pattern is
erratic but predictable.

The second big problem we had is the playground. We wanted a game with only one
scenario and we wanted to use this scenario as much as we could. For this issue, we made
a door system, in which, on some levels, some doors will open and some will close. This
includes changes of strategy because it’s not the same having to deal with enemies with 2
doors than dealing with them with 5 doors laid out differently. These changes made the
game more entertaining and less difficult in the first stages of the run. While making it
more interesting and demanding in the later stages.

TECHNOLOGIC PROBLEMS

Technology-wise, we had many difficulties with assembly language, since we were just
learning it for the first time.

Ironically, our main obstacle was not breaking the game while building it.

In many instances, we accidentally overwrote chunks of code, which lead to various (and
sometimes scary) crashes. Other times we mixed up the tags we were using in some parts
of the game, which led to what’s broadly known as ‘spaghetti code’. Nonetheless, we
continued forward, learned from our mistakes, and during the last weeks of development,
it flowed as smooth as butter.

Having learned how tags work, how the CPU writes and reads from the RAM, and most
importantly, how to not break chunks of memory by accidentally drawing a box outside of
video memory, by the last stages of development, we felt much more comfortable with

3

assembly language, and even took the liberties of adding features to the game we would
had never thought of us being capable of doing in so little time.

Our little journey to solve flickering
As you may know, our game has tons of enemies, and is very fast paced, so, inherently, we
would have problems with the render. We had flickering and framerate issues at the start.
We had two main options to solve this: Double buffer, or using Interruptions to time the
rendering process.

At first we tried making the double buffer, but it had many downsides, including having to
lower the screen resolution, and making many changes to what we already had, without
even mentioning the cost in RAM it would imply. A�er a couple of tests, we decided it
wasn’t the way to go.

We finally went for interruptions. But it had a tiny problem; Writing any kind of string of
letters would mess up the timings of the interruptions, and to make the render solution we
needed, we required perfectly timed interruptions. The way we came about this was
implementing a custom font, with our own method of drawing strings that wouldn’t touch
the interruptions.

Once we had the custom fonts, another problem came up. The memory of the game was
broken. Every once in a while the whole game would crash, and have all sorts of scary
glitches because we were randomly wrecking parts of the RAM.

A�er many hours of debugging, we found out what was breaking our game: A badly
initialized rendering value.

All entities on screen save a pointer to the last position they had on video memory so they
can erase the sprite that was there before drawing the next frame. What we didn’t take into
account was that the pointer in question was initialized to 0x0000, which is a pointer to the
start of the RAM. Therefore, in the first frame of the game, the first entity would first try to
draw a box on its previous position (which was 0x0000), which wrote random bytes inside
the code of our game, and if you were unlucky enough, you would encounter one of these
random strings of bytes where code was supposed to be, and the game breaks.

We solved this by initializing all entities’ previous pointer to video memory to 0xC000,
which is the start of video memory, so we wouldn’t break the code of the game.

4

With that out of the way, we could FINALLY fix the rendering issues.

We made a variable initialized to 0. It was the should_render flag. Long story short, if this
variable was 0, the game loop would wait until it is not 0, so it can start rendering the next
frame. We set the variable up with interruptions to always become 1 when the raster had
covered about 3/4ths of the screen. So we would start rendering the next screen in
advance, without affecting the game logic.

But, however, this implied another problem. Now we had permanent flickering on the
bottom part of the screen. Because it would overwrite the current screen with the next one
in that bottom part.

The fix we finally found for this was to change a bit the way we rendered the game. We had
only one function to render all entities, but we split it up to two. One that would render the
upper part of the screen, and another that would render the lower part of the screen. The
only difference between these two is just a comparison in the Y axis before rendering, to
know if that entity was in the upper part or the lower part. We made another variable that
would indicate when to render the lower part of the screen.

So, we would start rendering the upper part of the screen first, and when it ends, it would
wait for the second variable to become 1. By interruptions, we made this second variable
to become 1 in the 6th interruption around the Vsync area, so it would render the lower
part of the screen when we knew for a fact the raster had already gone over it.

With this done, we solved our flickering issues. We went from being able to draw 3
flickering enemies on screen, to being able to draw 4 perfectly clean enemies plus the
main player plus a bullet without the game loop throttling or the sprites flickering.

Right now, the only flickering that can be perceived is when you have the maximum
number of enemies on screen and you shoot with the fastest weapon in the game from
one side of the room to the other. The sprites only briefly blink, but decreasing the fire rate
or the enemy count would negatively affect gameplay, so we decided to keep it this way.

5

SCREENSHOTS AND VIDEOS
You can see all the development progress of Get Out Of My Store! in our twitter account.

https://twitter.com/PyroBombastic

6

https://twitter.com/PyroBombastic
https://twitter.com/PyroBombastic

