HiSoft C

Fast Interactive K&R C Compiler

—_—

System Requirements:

Amstrad CPC computer running cassette or disc
Any CP/M system with at least 38K TPA

Tatung Einstein computer

MSX disk-based computer

Copyright © HiSoft 1985

First Edition July 1985
Second Printing October 1987
Second Edition May 1988

ISBN 0 948517 12 3

All Rights Reserved Worldwide. No part of this publication may be reproduced
or transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder. Such written
permission must also be obtained before any part of this publication is stored
in a retrieval system of any nature.

It is an infringement of the copyright pertaining to HiSoft C and its associated
documentation to copy, by any means whatsoever, any part of HiSoft C for any
reason other than for the purposes of making a security back-up copy of the
object code.

If you own one of the computers below then please take some
time to read the notes specific to your computer ...and
remember ...always make a backup first!

Amstrad CPC/PCW Owners

If you have bought the disc version of HiSoft C to run on your Amstrad Z80
computer then this manual describes two compilers; the native compiler which is
on side A of your disc and the CP/M compiler which is on side B of your disc.

This manual describes both the CP/M and native compilers and sections specific
to either compiler are carefully marked with icons. These icons are described in
Chapter 1.

Note that the CP/M compiler must run under CP/M (so boot CP/M first) and that
it comes with a GSX graphics library (described at the end of the manual) while the
native compiler is supplied with an extra firmware library (no descriptive notes are
avalilable for this library, the source code documents itself).

If you bought HiSoft C on cassette, you only have the native version of the compiler;
the CP/M version is available as an upgrade.

MSX Owners

The HiSoft C compiler runs on disc under MSXDOS which is supplied on your C
master disc. Make a backup copy and boot your computer with the backed-up disc.
If you do not understand how to use MSXDOS then a separate booklet describing
MSXDOS commands and low-level access is available from us at a cost of £3.50
inclusive.

Note that there are some extra libraries supplied for MSX owners; these either
document themselves or have instructions included on the disc.

Tatung Einstein Owners

Your HiSoft C compiler runs under the DOS system. To make a backup you must
first format a disc with the DOS system tracks on it (use BACKUP to do this). Then
use COPY to copy all the files from your HiSoft C disc onto your newly-formatted
disc. There is a bug in the DOS system which may cause the editor installation
program to crash and also may cause you problems in using files with C. To cure
this bug, you should run the FIXDOS program supplied by us to patch the DOS;
follow any instructions given by FIXDOS.

An extra library of useful funtions is supplied for Einstein owners called EIN.LIB;
see EINLIB.HLP for information on this library.

Note that there may be two chapters headed Chapter 6; one describes the
CPM.LIB library which is specific to CP/M implementations of HiSaft C whilst the
other details BASIC.LIB which is Amstrad CPC specific.

Contents

1. Introduction

1.1 Conventions
1.2 What is HiSoft C?
1.3 CP/M Users
1.3.1 Getting Started - READ THIS FIRST
1.3.2 Using the Compiler
1.3.3 Invoking the Editor after a Compilation Error
1.3.4 Command Line Handling
1.3.5 Memory Layout & the Memory Usage Report
1.3.6 How Input and Output Work with C
1.3.7 CP/M Device Names
1.3.8 Files on CP/M
1.3.9 End Of Line Handling
1.3.10 End Of File Handling
1.3.11 Summary of CP/M File Modes
1.3.12 Special Keyboard and Display Handling
1.3.13 Making a Backup
1.4 Amstrad non-CP/M
1.4.1 Getting Started - READ THIS FIRST
1.4.1.1 Loading from Cassette
1.4.1.2 Loading from disk
1.4.2 A Quick Example
1.4.3 The Amstrad Keyboard
1.4.4 Function Keys
1.4.5 Files on the Amstrad CPCs
1.4.6 Breaking Out of Programs with the (ESC) key
1.4.7 The Firmware
1.4.8 Stand-alone Programs

C O ®PONNOCOCOONAWWWNNN = -

— ot ot —
W NN —

1.4.9 Making a Backup 4
1.5 Prices, Royailties, Publishing & Copying 15
1.6 Example Programs 15
1.6.1 CP/M Hello world with Complications 16
1.6.2 CPC Hello world with Complications 17
1.6.3 The Sieve of Eratosthenes 19
1.6.4 Numeric Conversion 2

N
—_—

1.6.5 Memory Dump

Table of Contents HiSoft C Page |

1.7 Bibliography o : 21

1.7.1 Books about C 21

1.7.2 Books about CP/M 2

1.7.3 Books about the Amstrad Computers 2

2. The Editor

2.1 The CP/M Editor ED80 23
2.1.1 Introduction to ED80 2
2.1.2 How to Use the Compiler and ED80 Together 2
2.1.3 A Worked Example of Compiler/Editor Usage 24

2.2 The Amstrad CPC Editor i
2.2.1 Introduction to the CPC Editor . i
2.2.2 The Editor Commands
Cassette and Disk Commands v

Extemal Commands vi

2.2.3 An Example Session using the Editor vi

3. Language Summary

3.1 Numbers and Characters

3.2 Strings

3.3 Names or Identifiers

3.4 Keywords

3.5 Formal Syntax Summary

3.6 Programs

3.7 Layout

3.8 Comments

3.9 Functions

3.10 Stctements

3.11 Compound statements or blocks
3.12 Expression Statements

3.13 The if or conditional statement
3.14 The while statement

3.15 The do statement

3.16 The for statement

3.17 The switch statement, case labels & the default label
3.18 The break statement

3.19 The continue statement

3.20 The retum statement

SRREBELEBLLERELRBIBVRY

Page i HiSoft C Table of Contents

3.21 Labelled statements and goto
3.22 The inline statement

3.23 The null statement

3.24 Expressions

3.25 Table of Operator Precedence and Types
3.26 Identifiers, Constants and Strings
3.27 lvalues and array names

3.28 Parenthesised Expressions

3.29 Function Call

3.30 Subscripts

3.31 structure member operator
3.32 structure pointer operator

3.33 indirection operator

3.34 address operator

3.35 unary minus operator

3.36 logical NOT operator

3.37 bitwise NOT operator

3.38 the increment and decrement operators
3.39 the sizeof operator

3.40 the type cast operator

3.41 multiplication operator

3.42 division operator

3.43 modulus or remainder operator
3.44 addition operator

3.45 subtraction operator

3.46 shift operators

3.47 relational operators

3.48 equality operators

3.49 bitwise AND

3.50 bitwise exclusive OR

3.51 bitwise inclusive OR

3.52 logiical AND operator

3.53 logical OR operator

3.54 conditional operator

3.55 Assignment operators

3.56 Type coersions and the type of the result of an expression
3.57 Constant Expressions

3.58 Data Declarations

3.59 The scope of identifiers

3.60 Data Types and type specifiers
3.61 Aggregate data types

3.62 Storage Classes

BERI222EFEEEBIVER LR AFRLREBBBIIBBBIZIEEAISGTERS

Table of Contents HiSoft C Page il

3.63 Initialisation

3.64 The Compiler Preprocessor

3.65 Constants and Macros

3.66 Error Message Sacrifice

3.67 Listing Control

3.68 Direct Execution

3.69 Using The Data Origin Directive (CP/M)
3.70 CPC File Inclusion

SINNIZTIS

3.71 CP/M File Inclusion 74
3.72 CPC Stand-Alone Programs 74a
3.73 CP/M Object Programs Names 74
3.74 Conclusion 74b

4. The Expert's Guide

~
(4]

4.1 Differences from Kernighan & Ritchie

1. Introduction
2. Lexical Conventions
3. Syntax notation
4. What's in a name?
5. Objects and Ivalues
6. Conversions
7. Expressions
8. Declarations
9. Statements
10. External definitions
11. Scope rules
12. Compiter controt lines
13. Implicit declarations
14. Types revisited
15. Constant expressions
16. Portability considerations
17. Anachronisms
4.2 Low-Level Interface
4.2.1 Source Format
4.2.2 ZX Spectrum File Format
4.2.3 Amstrad Cassette & AMSDOS File Format
4.2.4 CP/M File Format
4.2 .5 Function Linkage and the Stack
4.2.6 Register Usage

PR R R e R R R BB R Yy YN

Page IV HiSoft C Table of Contents

4.2.7 Data Storage

4.2.8 Spectrum Memory Layout 87
4.2.9 Amstrad Memory Layout 87
4.2.10 CP/M Memory Layout 87
4.3 CP/M Input-Output System Buffers 88a
HiSoft C Standard Function Library
Arithmetic functions 90
5.1 int max(n,) auto 0
5.2int min(n,) auto 0
5.3 int abs(n) %0
5.4 int sign(n) Q0
An lilustration of How to Grub Around in the Store 91
5.5 char peek(address) 91
5.6 void poke(address, value) AN
5.7 int inp(port_number) 9
5.8 int out(data, port_number) 91
Format conversion routine ASCII to binary integer 21

5.9 int atoi(s)
Sorting function - a Shell sort
5.10 void gsort(list, num_items, size, cmp_func)
String Handling Functions
5.11 char *strcat(base, add)
5.12 char *stincat(base, add, number)
5.13 int stremps, t)
5.14int stmcmp(s, t. n)
5.15 char *strepy(dest, source)
5.16 char *stmcpy(dest, source, number)
5.17 unsigned stren(s)
5.18 char *strchr(string, ch)
5.19 char *strrchr(sring, ch)
5.20 char *strpbrk(s1, s2)
521 int strspn(s1, s2)
5.22 int strcspn(s1, s2)
Character Test and Manipulate Functions
5.23 int isalnum(c)
5.24 int isalpha(c)
5.25 int isascii(c)

BRE O/ RLR8888888322¢

Table of Contents HiSoft C

O
Q
Q
o
<

5.26 int iscnfri(c)

5.27 int isdigit(c)

5.28 int isgraph(c)

5.29 int islower(c)

5.30 int isprint(c)

5.31 int ispunct(c)

5.32 int isspace(c)

5.33 int isupper(c)

5.34 int isxdigit(c)

5.35 char tolower(c)

5.36 char toupper(c)

5.37 char toascii(c)
Storage Allocation and Freeing (Heap Management)

5.38 char *calloc(n, size)

5.39 void free(block)

5.40 char *sbrk(n)
Miscellaneous Functions

5.41 void swap(p. 4. length)

5.42 void bit(dest, source, length)

2888889999399 88888888

Input-Output Functions 99
Character-level Input-Output Functions 14
5.43 FiLE * fopen(name, mode) 99/100
5.44 int fclose(fp) 99/100
5.45 int getc(fp) 100
5.46 int ungetc(c, fp) 100G
5.47 int putc(c, fp) 100a
5.48 int getcharQ 100G
5.49 int putchar(c) 100a
Complex-level I-O Functions 101
5.50 void exit(n) 101
5.51 char *fgets(s, n, fp) 101
5.52 void fputs(s. fp) 101
5.53 char *gets(s) 101
5.54 void puts(s) 101
5.55 void printf(control, argl, arg2, ...) 074
5.56 void fprintf(fp, control, argl, arg? ...) , 102
5.57 void sprintf(s, control, argl, arg? ...) 102
5.58 int scanf(control, argl. arg? ...) 103
5.59 int fscanf(fp, control, argl, arg? ...) 104
5.60 int sscanf(s, control, argl, arg? ...) 104

Page VI HiSoft C Table of Contents

Raw-Level /O Functions

104

5.61 int rawinQ 104
5.62 int keyhitQ 105
5.63 void rawout(c) 105
System Interface 105
5.64 void _exit(n) 105
Some Functions for 32 bit number arithmetic 105
5.65 void long_multtiply(c, a, b) 105
5.66 void long_add(c, a. b) 106
5.67 void long_init(a. n1, n0) 106
5.68 void long_set(a, n, d) 106
5.69 void long_copy(c. Q) 106
Pseudo-Random Number Generator 106
5.70 int randQ 106
5.71 void srand(n) 107
Auxiliary Input-Output Functions 107
5.72 General Points to Remember about CP/M\input-Output = 107
5.73 int read(stream, buffer, bytes) 107
5.74 int fread(buffer, item_size, num_items, stream) 108
5.75 int write(stream, buffer, bytes) 108
5.76 int fwrite(buffer, item_size, num_items, stream) 108
5.77 int fflush(stream) 108
5.78 int _seek(stream, hi_offset, lo_offset, mode) 108a
6.79 int seek(stream, offset, mode) 108b
5.80 int fseek(stream, offset, mode) 108b
5.81 int _teli(stream) 108b
5.82 long ftell(stream) 108b
5.83 void tell32(stream, pos_ptn) 108¢
5.84 int fname(stream, buffer) 108d
5.85 freopen(filename, mode_string, stream) 108d
5.86 int getw(stream) 108d
5.87 void putw(w, stream) 108d
Table of Contents HiSoff C Page Vil

CP MSPECIFIC

6. The CPM.LIB Library

6.1 int cpm_bdos(func, param) 13
6.2 int cpm22_bios(func, bc_param, de_param) 14
6.3 int cpm3_bios(func, a_param, bc_param, de_param, hi_param) 115
6.4 Command Line Support & I/O Redirection for Compiled Programs 115

6.5 cpm_dir(drive, user, afn, sp, fp, width) 117
6.6 int cpm_drive(new_drive) 17
6.7 cpm_pfcb(fcb, afn) 17
6.8 int >pm_user(new_user) 118
6.9 char *instr(main_string, sub_string) ns
6.10 itob(n, string. precision) 18
6.11 read_file(filename, address) 118
6.12 char *striower(sting) 118
6.13 char *strupper(sting) 119
6.14 write_file(fiename, address, length) 119

CPC SPECIFIC

6. The BASIC.LIB Library

6.1 BASIC Keywords and their C Equivalents 109
6.2Eventsand C 12
6.3 Sounds of the C 123
6.4 Graphicsand C 125
6.5 after(delay_in_ticks, control block, function_name) 126
6.6 every(period_in ticks_, control_block, function_name) 126
6.7 add_ticker(ctr_block, initial_time_delay,

recharge_delay, function_name). 126
6.8 init_event(event_block, function_name) 127
6.9 cass_speed(speed) 127
6.10 border(colourl, colour2) 127
6.11 catalogQ 127
6.12 clsO 127
6.13 event_disable() 127

Page Vili HiSoff C Table of Contents

6.14 event_enable() 127

6.15 flash_speed(timel, time2) 128
6.16 ink(ink_to_setup, colourl, colour2) 128
6.17 int inkey(key number) 128
6.18 char *instr(main string. sub string) 128
6.19 itob(n, string, precision) 128
6.20 joy(joystick_number) . 129
6.21 Int key_function(iranslated_key_number, expansion_string) 129
6.22 key_speed(start_up_delay, time_between_repeats) 129
6.23 key_transiation(key_number transiated_key_number) 129
6.24 play(string, channel) 1%
6.25 read_file(filename, address) 129
6.26 S release(channel bits) 130
6.27 S_ampl_envelope(number, envelope) 130
6.28 S_tone_envelope(number envelope) 130
6.29 S_hold() 130
6.30 S_continue(130
6.31 setup_sound(130
6.32 sound_check(channel) 131
6.33 char *strlower(string) 131
6.34 char “strupper(string) 131
6.35 symbol(character number, matrix) 131
6.36 symbol_after(number,table_memory) 131
6.37 time(array) 131
6.38 write_file(flename, address, length) 132
6.39 draw(control_string) 132
6.40 T_set_graphic(on) 132
6.41 T_win_enable(x1 x2,y1.,y2) 132
6.42 T_swap_streams(stream_number, another_stream_number) 132
6.43 T_get_cursor(px_column, py_row, p_roll count) 132
6.44 G_ask_cursor(pdx,pdy) 132
6.45 G_set_origin(x.y) 132
6.46 G_win_width(x1 x2) 133
6.47 G_win_height(y1.y2) 133
6.48 G_clear_window(Q 133
6.49 G_set_pen(ink) 133
6.50 G_set_paper(ink) 133
6.51 G_wr_char(c) 133
6.52 G_move_absolute(x.y) 133
6.53 G_move_relative(dx, dy) 133
6.54 G_plot_absolute(x, y) 133
6.55 G_ploy_relative(dx, dy) 133

Table of Contents HiSoft C Page IX

6.56 int G_test_absolute(x, y) 133

6.57 int G_test_relative(dx, dy) 13
6.58 G_line_absolute(x, y) : 134
6.59 G_line_relative(dx, dy) 134
6.60 extcmd(string, args ...) auto 134
6.61 int makestr(string, descriptor) 14
7. Errors 1356
7.1 introduction 135
7.2 stack overflow (runtime error) 136
7.3 The List of Error Messages 136
7.69 Common Mistakes in C Programs 146

Page X HiSoft C Table of Contents

HiSoft C

Fast Interactive K&R C Compiler

Chapter 1

Infroduction

HISOFT C MANUAL version 1.2 Page 1

1. Introduction

This manual describes the HiSoft implementation of the programming language C on
Z80 CP/M computers including the entire range of Amstrad CPC and PCW machines,
MSXDOS computers, the Tatung Einstein, the Spectrum +3 (under CP/M) and many
more. It also describes the implementation of HiSoft C running on Amstrad CPC
machines without disks and on Amstrad CPC machines with disks but using the
AMSDOS operating system, instead of CP/M.

1.1 Conventions

So that you can easily identify which parts of the manual are pertinent to your particular
computer we have marked those sections with the following icons:

HiSeR-C

PC PECIFIC
indicates that this section or sub-section of the manual applies
only to the Amstrad CPC version of HiSoft C i.e. the version that does not run under

CP/M. .

HiSef:C

P/MSP 1F1
C SPEC C indicates that this section or sub-section of the manual applies
only to the CP/M version of HiSoft C and not to the Amstrad CPC version running under

the native operating system.

1.2 What is HiSoft C?

C is a general purpose programming language that places the emphasis on concise
programs and flexible expressions. The user is provided with little protection - it is
possible to write elegant, powerful programs but it is also possible to write amazingly
obscure bugs - this is what makes it so powerful!

The HiSoft implementation of C is a compiler designed with home computers very
much in mind. The emphasis is on the speed of development: compilation is extremely
fast (we don't know of a faster one), and the overall development cycle is made much
faster and less wearing on the fingers by automatic entry to the editor on detection of
errors. There is no intermediate pass through assembly language or linkers such as is
normally found in C compilation systems. This means that program development can be
very rapid indeed.

The manual is divided into chapters which each discuss one major aspect of the
compiler. This first chapter provides a general introduction. Following that is a chapter
on the editor and how to create programs. The third chapter is a detatled description of
the C dialect accepted by the compiler with examples of every part of the language. The
fourth is an expert's guide to the language. The next two describe the extensive range of
functions supplied with the compiler in the libraries. Finally there is a chapter devoted
to errors - the messages they produce and how to find them.

Section 1

Page 2 HISOFT C MANUAL version 1.2

We try to keep as much of the manual as possible the same for different computers (eg
CP/M, Amstrad and Spectrum). This is partly because the comptiler is compatible on the
different micros; and partly because it reduces the chances of errors in the manual. We
hope you will accept the odd piece of information which isn't relevant to your computer,
and that you find it useful if you have more than one. Chapters One, Two and Six have
machine-specific information in them, while chapters Three, Four, Five and Seven are
general.

The C Programming Language is the title of a book by Brian Kernighan and Dennis
Ritchie which provides the best definition of the language. It is also a good tutorial
introduction to C. We do suggest that you read this book; perhaps you can borrow it from
the library if you feel it is too expensive. Full details of the book are given in the
Bibliography. Some other less expensive books are now becoming available and details of
some of these can also be found in the Bibliography.

The implementation is designed to be as close as possible to the definition given in the
C Refererce Manual, which is Appendix A of the Kernighan & Ritchie book mentioned
above. There is a chapter in this manual - Expert's Guide - which describes in detatl the
differences between this implementation and the definition. There is one main omission
- floating point arithmetic and one main area of difference - linkage of modules. There
are also some minor differences for technical reasons.

CP MSPECIFIC

1.3 CP/M Users
1.3.1 Getting Started - READ THIS FIRST

Before running the compiler, we suggest that you make a backup as discussed below.
After doing that you may need to install the full-screen editor so that it uses the correct
screen control codes for your particular computer. This is explained in the separate
ED80 manual. You will then be able to follow the example given in Examples which
shows exactly how to type in a program, compile and run it.

The compiler, editor and various other files are provided on the disc; although the exact
contents of the disc may vary as we improve the product. In particular any late news will
be on the disc in a file called READ .ME because it is easier to change the disc than the
manual. So have a look at the disc directory and if there is a READ .ME flle read it now by
using either ED80 or the CP/M TYPE command.

When calm prevails again please read the rest of this chapter and at least skim through
those on the editor, the language and the library so that you have a general idea what is

there. Yox)x can read the chapter on errors when the need arises (of course you may never
need it ...).

1.3.2 Using the Compiler; the Command Line

The compliler can be driven in the usual CP/M style by typing the name of the compiler
followed by the name of the source program:

A>hc my-prog.c [ENTER]

Section 1

HISOFT C MANUAL version 1.2 Page 3

It will produce a ready-to-run file called MY-PROG.COM as its output. This can of course be
run just by typing its name:

A>my-prog [ENTER]

Note that the compiler must be called hc.com in order to be restarted properly by the
editor. The filename extension of the source file (e.g..C) must not be omitted, but it can
be any extension that you wish. An extension of .C is conventional.

A whole series of source file names can be typed on the command line instead of just
one source file. The output COM file wiil be named after the first source file. You can
cause the output binary object flle to have a different name by using the #translate
directive, either at the top of the source flle or on the command line.

Compiler directives can also be included on the command line, in order to influence the
behaviour of the compiler. This is particularly useful for #error, #list, #data. The
directives are all described in the Language Reference Guide. (In fact the source file
names are handled by simulating a #inCiude directive inside the compilert).

Command line arguments are separated by spaces. They can be enclosed in quotes if
necessary. Eg:

A>hc four arguments including "one argument with spaces”™

A>hc "#translate object.com" ex.c #list+ #list+ ?library?

1.3.3 Invoking the Editor after a Compilation Error

The compiler and editor are designed to form an integrated development environment.
What this means is that after finding a compilation error the compiler will invoke the
editor on the faulty line. After you have corrected the error (which may involve editing
as many files as necessary) the editor will restart the compiler automatically. Full details
of this powerful time-saving technique are given in Chapter 2.

1.3.4 Command Line Handling

Command line handling is provided by HiSoft C, but there are certain differences from
UNIX command line handling as described in Kernighan & Ritchie. We have however
tried to retain as much compatibility as possible. The compiled program can access a
series of arguments supplied on the command line, and the standard input (stdin} and
standard output (stdout) are automatically redirected by command lines such as:

A>program argl <input arg2 arg3 >>append arg4

Full details of what is allowed on a command line are given in Chapter 6.

1.3.5 Memory Layout & the Memory Usage Report

The memory map of a compiled program can be tmportant both for production
programs and when debugging a pro?‘am. There is a diagram of the overall layout on the
next page, and a full explanation of the map in Chapter 4. The layout of a HiSoft C
program can be controlled using the #data directive which is explained in Chapter 3.

The Memory Usage Report is displayed at the end of compilation. It shows the area of
memory occupied by the various parts of the compiled program and also suggests a value
to be used with the #data directive if portability is desired. An example of the report is
shown in Examples.

Section 1

Page 4 HISOFT C MANUAL version 1.2

«o6)—» 6)—» :
11O workspace
globals / e
stack
I/O workspace
spare
stack
#dato—p stidm—p-
globais
spare
stdim—p>
initializers initializers
code code
#1000 -» #100 —»
Deafautt Memory Map #data Memory Map

1.3.6 How Input and Output Work with C

Input and output in C is done by a set of standard library functions. These functions do
not form part of the C language itself but are modelled after those provided on UNIX
systems. UNIX is the name of the operating system used where C originated and it is
used as a reference for tnput-output in C.

Input and output in C is done serially via files These flles cover not only what is normally
thought of as files (on disc, tape etc) but also input from the keyboard and output to the
display and other devices. This goes some way towards making input and output appear
to be device independent as far as the C programmer is concerned.

There are three standard files in a C program. These are the standard input stdin, the
standard output stdout, and the standard error output stderr These are assigned to the
keyboard stream, text display stream and text display stream (again} respectively. They
can be redirected to other devices or files by using the standard library function
freopen. The names stdin, stdout, and stderr are defined in stdio.h for use in your

programs. -

Section 1

HISOFT C MANUAL version 1.2 Page 5

All output is done by the function putc() although this will usually not be called directly
by the programmer but rather will be called by a more sophisticated function and in
particular by printfQ which is the workhorse of C output. Similarly all input is done by
getcO which has a similar relationship with scanfQ

getc and putc need to know which flle the input or output is directed at. They do this by
taking a file-pointer as an argument (file-pointers are also often called stream-numbers).
The three standard files stdin, stdout, and stderr are actually flle-pointers. There are many
special functions which use these files without needing to specify them explicitly. For
example characters are input from the keyboard using the standard function getcharQ
and output to the display using putcharQ. These correspond to getc(stdin) and putc(c,
stdout) respectively.

Before using putc or getc or any other genera! flle function you must have a file-pointer.
You can use stdin and stdout as file-pointers for the keyboard and display as mentioned
above. Before using another device such as a disc or serial line or printer it is necessary
to call the standard library routine fopen(filename.mode) first to get the file-pointer.
getc and putc can then be used to read or write characters and finally fclose tidies up
and writes the last block of an output flle.

The characters are collected into blocks before being put in a file. The input and output
done by the compller is done in the same way as by user programs so you can create or
read C source files using your own programs. The memory for a block buffer is also
arranged by fopen and fclose. The normal system messages are produced for disc and
cassette handling.

1.3.7 CP/M Device Names

There are several special built-in filenames which refer to CP/M devices. These device
names are used just like normal filenames in calls to fopen and freopen. In fact the
runtimes set up the stdin flle using the TRM:, and the stdout and stderr files using the CON:
device name. For example:

list_file = fopen("LST:", “w");

fprintf(list_file, "Hello Hard-Copy World\n"):

fclose(list_file);

The full list of devices names is as follows:

CON: Buffered Input & Output to console (uses BDOS functions 1 & 2).

RDR: Input from the reader (AUXIN on CP/M+} (uses BDOS function 3).

PUN: Output to the punch (AUXOUT on CP/M+} (uses BDOS function 4).

LST: Output to the list device (usually a printer} (uses BDOS function 5).

KBD: Direct I/0 usually done by rawinQ & rawout(Q (uses BDOS call 6).

TRM: Line buffered console input (uses BDOS function 10).

Section 1

Page 6 HISOFT C MANUAL version 1.2

1.3.8 Files on CP/M

This section discusses the way in which HiSoft C has been fitted to CP/M computers and
focusses on the input-output system which is the main part of the tailoring. CP/M file
handling does not correspond very well with that expected in a C environment, and a
great deal of support has to be provided by the runtime system of the compiler in order
to provide a smooth interface.

The differences force us to divide file accesses into two principal types: text and binary.
This need was foreseen by the original implementors of UNIX and we have adopted the
solution which they proposed. There are two particular areas of difference which force
this upon us, which are end-of-line and end-of-file handling. We will discuss these two
problems first, and then move on to consider how we circumvent them by using two
kinds of file access. Chapters 5 and 6 contain full descriptions of the many library
functions which we refer to.

1.3.9 End Of Line Handling

In C a line of text is separated from the next one by a single character called a NEWLINE.
This is often abbreviated to NL and is represented within a C program as \n. It has a
numeric value of 10. This convention is used on many large computers and some micros
including the Sinclair QL. But many micros (including CP/M) use a different, older
convention. On these, a line of text is separated from the next by two characters: a
CARRIAGE-RETURN followed by a LINE-FEED. A CARRIAGE-RETURN has a numeric value of
13 and a LINE-FEED has a numeric value of 10 unfortunately!

So on input from a text file a CARRIAGE-RETURN + LINE-FEED is adjusted by the C runtime
package so that it appears to produce a single NEWLINE character with a value of 10. And
on output a value of 10 is made to produce the two values 13 and 10 in sequence.

These translations must not be made when reading or writing a binary file, because
there is no special significance attached to the values 10 and 13 in a binary file. This
then is the first reason that forces us to distinguish between text and binary access.

1.3.10 End Of File Handling

C programs expect their files to behave like those on a UNIX system because the design
of the library functions comes from there originally. On UNIX a flle can be thought of as a
"sequence of characters”, and the exact number of characters in the file is remembered
by UNIX. So when reading a flle character-by-character, a C program is passed each
character in turn until they have all been seen; after that the program is passed the
special value of -1 (ile 0xFFFF) which is also known as EOF.

CP/M flles are much more complicated and less precise about their end. CP/M only
remembers how many "records” of 128 characters there are in a file, and cannot tell
how many of the characters in the last record really are part of the file. For instance if a
file actually consisted of 133 characters, there would be two records in the file, but only
the first five characters in the second record would be meaningful.

In text files CP/M programs write a special character just after the last real character so
that we can tell when we have reached the true end of the file. The special character is
control Z ({CTRL] -2, or 0x1A, or decimal 26).

This in itself raises a problem because it means that we cannot have a {CTRL]-2 value in
the file. Now [CTRL]-Z represents a perfectly ordinary Z80 machine code instruction (LD
A, (DE)) so here is another reason why we cannot treat text and code files in the same
way on a CP/M computer.

Section 1

HISOFT C MANUAL version 1.2 Page 7

But it is even worse than that because some CP/M programs don't always write a {CTRL] -
z at the end of text files (they leave it off if the last character is exactly at the end of a
record). This can also happen If the file wasn't written properly. So C programs must
check for the end of the last record as well as for the last character! Another problem is
brought by some supposedly CP/M compatible systems which behave differently and for
example may expect every character in the last record after the last real character to be
[CTRL] -2.

There are two more pieces of bad news; one of which prevents us appending to a binary
file properly.

The first piece of bad news is that CP/M-Plus can actually record the number of valid
bytes in the last record and so calculate the true file size. In order to be compatible with
CP/M 2 we don't feel able to use this. It also bears on another ambiguity in CP/M which
you need to be aware of. If there are two or more [CTRL]-Z characters in a text file then
we have to choose one to represent the end-of-flle. There is no unique way of doing this!
Any program accessing a file serially {ie most programs) will find the first [CTRL]-2 in
the file and treat it as end of file. But the CP/M-Plus trick implies that the end of file is
always in the last record and that is not necessarily true. The safe rule is that you must
ensure that all text files have exactly one {CTRL]-Z in them and that must be in the last
physically allocated record. The C runtimes work on this assumption and actually choose
the first (CTRL] -2 in the last record as the end of file (or choose physical end of file if
there is no such [CTRL]-2Z).

The second plece of bad news is that since there is no equivalent end of file marker in a
binary file it is impossible to find the exact end of file at all. So when you do a seek to
the end of a binary file (which is implied when you open a flle for appending) you are
sent to the end of the last record in the file. This will almost never be where you wanted
to be, and will only be guaranteed to coincide if your file contains data structures which
are all multiples of 128 bytes. Most unlikely! All we can suggest is that you allocate the
first four bytes of the file to hold the actual file size. Then after writing the file and just
before closing it use tell32 to get the actual file size and write it into these bytes. The first
thing to do after reopening the flle at a later time is to read the first four bytes to get the
actual file size. This can be passed to _seek in order to append to the flle. Do not try to
use a mode2 seek with a binary file.

1.3.11 Summary of CP/M File Modes

In summary there are two modes of access which can be applied to any file: text and
binary. Binary mode provides straightforward access to each byte in the file, whilst text
mode filters the ends-of-line and end-of-file to be what a C program expects. This fixes
most of the difficulties but does occasionally produce surprising results. The reasons for
this mixup are buried in the history of computing and telegraphy and it is small comfort
to know that sometime in the future everything will be done the C way!

1.3.12 Special Keyboard and Display Handling

There are a couple of points which follow on from the preceding discussion and which
concern the keyboard and display. These are usually handled as text flles and this results
in some keys appearing to have different values to normal.

[CTRL] -2 (ie press the z key whilst holding down the [CTRL] key {[ALT] key on the
Amstrad PCWs]) is used as the End-Of-File key because this is the key normally used on
CP/M systems and many users will already be familiar with it. But note that when writing
C programs this key appears to have a numeric value of -1 rather than the 26 you might
expect. This is because C programs the world over expect -1 for EOF.

Section 1

Page 8 HISOFT C MANUAL version 1.2

[ENTER] (also known as [RETURN], [CARRIAGE RETURN], or [CR]} is also different from
what you might expect. because of the difference between the C end-of-line and the
CP/M one. The [ENTER) key is adjusted by C so that it appears to produce a value of 10,
and on output a value of 10 is made to produce the two values 13 and 10 in sequence.

There are also two special lbrary functions (rawin and rawout) which sidestep these
conversions and do direct I/0 via CP/M BDOS function 6.

1.3.13 Making a Backup

We strongly suggest that you make a backup copy of the distribution disc before using
the compiler. How to do this depends on the particular computer that you own; but it
can usually be done by copying all the the files using the program PIP. Please read the
manual that came with your computer.

Keep the original disc that we supply since you will need it for any upgrades.

Please note that while we encourage you to make a backup, this is not a licence to make
extra copies for other computers. You are entitled to run the compiler on one computer
only; if you are a company or institution which intends to use the compiler on more than

one computer then you should contact us for details of multiple copy prices. Please read
the next section also.

CPC SPECIFIC

1.4 Amstrad non-CP/M

1.4.1 Getting Started - READ THIS FIRST

1.4.1.1 Loading from Casselle

To start running the HiSoft C compiler, load the cassette into your recorder with the
label COMPILER facing upwards and type [CTRL] - [ENTER] (using the small [ENTER] key !).
Press PLAY and any other key. The compiler will now load and autorun.

1.4.1.2 Loading from disk
From disc the compiler is run by typing:

run "HISOFT-C" [ENTER]

1.4.2 A Quick Example

The compiler is a single binary file called HISOFT-C on cassette and HISOFT-C.BIN on
disc. There is also a fast loading 2000 baud version on the reverse of the compiler
cassette. You may well be able to load this but its not guaranteed, because it is dependent
on the alignment of the tape mechanism,

After loading, the compiler will display its sign-on message and enter the editor:

Section 1

HISOFT C MANUAL version 1.2 Page 9

HISOFT-C Compiler V1.2
Copyright C 1984 HISOFT

>

After the sign-on message you will see a cursor, and you can now type a C program. First
activate the compiler by typing c followed by [ENTER] and then a short program (using
[SHIFT]-[for { and [SHIFT]-] for }):

>C

HISOFT-C Compiler V1.2
Copyright C 1984 HISOFT

main ()

{
printf ("Hello world");
}

Now type {CTRL]-Z (for End Of File} and the compiler will ask you:
Type y to run:

Type y and you will see the program run and prompt you again. You can rerun the
program any number of times by typing y but this time just press {ENTER] and it will
then go back to the editor:

Hello world
Type y to run: [ENTER]
>

You will probably now want to try a longer program (perhaps one of the examples given
later in this chapter} and to do that we suggest that you turn to the next chapter on
using the editor, rather than typing straight to the compiler.

Aflter giving the ¢ command to the editor the comptler is sitting just behind your
keyboard and everything you type is sent straight to it. One thing that you will often want
to type to the compiler is:

#include

to make it compile a program that you have created using the editor, or if you have put
the program onto a tape as a file called fred then just type:

#include fred

When calm prevails again please read the chaplers on the language and on the library -
or at least skim through them so that you have a general idea what is there. You can read
the chapter on errors when the need arises (of course you may never need it ...).

1.4.3 The Amstrad Keyboard

The keyboard is mainly laid out in a common way, and the compiler tries to use it in the
same way as the Locomotive BASIC, so you should have very little trouble in using the C
compliler. There are a few points worth making about particular keys.

Curly braces { } are actually provided on the keyboard but are not marked on the
CPC464! They are above the square brackets {). Left brace is [SHIFT]-[and right brace
is {SHIFT]-]. These are rather important keys in C and you will quickly get used to
them.

Section 1

Page 10 HISOFT C MANUAL version 1.2

The vertical stroke | is shown on the keyboard at {SRIFT]-@ with a gap in the middle,
although it is displayed on the screen without the gap. These are just alternative ways of
showing it. The vertical stroke is used in C in logical expressions to mean 'or'.

The circumflex ~ is shown on the keyboard and screen as an arrow pointing upwards
(next to the {CLR) key). This again is an alternative way of showing it. Don't confuse it
with the cursor up key. The circumflex means 'exclusive-or' in C.

End-Of-File, or EOF, is an important concept in C and we have a key to represent it. We
use [CTRL]-2Z (ie press the 2 key whilst holding down the [CTRL] key) because this is the
key used on CP/M disc systems and many users will already be familiar with it. The C
compiler. recognises the end of a compilation when this key is pressed. Note that when
writing C programs this key appears to have a numeric value of -1 rather than the 26 you
might expect. This is because C programs the world over expect -1 for EOF. When you
type [CTRL]-Z you will normally see a double ended horizontal arrow. This is the graphic
character for a numeric value of 255, which is what -1 becomes when chopped down to
a single byte.

[ENTER] is also different from what you might expect, because the C world uses a
different convention from the small micro world. In C a line of text is separated from
the next one by a single character called a NEWLINE. This is often abbreviated to NL and is
represented within a C program as \n. It has a numeric value of 10. This convention is
used on many large computers and some micros including the Sinclair QL. Many micros
(including the Amstrads and CP/M) use a different convention. On them, a line of text is
separated from the next by two characters: a CARRIAGE-RETURN followed by a LINE-FEED.
A CARRIAGE-RETURN has a numeric value of 13 and a LINE-FEED has a numeric value of 10
unfortunately! The [ENTER] key is adjusted so that it appears to produce a value of 10,
and on output a value of 10 is made to produce the two values 13 and 10 in sequence.
This fixes most of the difficulties but does occasfonally produce surprising results.

The reasons for this mixup are buried in the history of computing and telegraphy and it
is small comfort to know that sometime in the future everything will be done the C way!

[ESC] is used to escape from various things. It is handled in rather a clever way by the
computer and this can produce side-effects. Please read the special section below. When
you use the [ESC] key you may see various graphics including a rocket ship! This is quite
OK

1.4.4 Function Keys

You will often have to type the same thing repeatedly when writing programs or
operating the compiler, and you may find that it saves time to set up some function keys
to-help you. The Amstrad computers let you use up to 32 function keys but it is easfest
just to use the ten on the numeric keypad. Some people like to set up keys so that they
can type keywords like while or continue with one keystroke; and another useful
sequence to have on a function key is:

¢ [ENTER] #include [ENTER]

which lets you compile a program from the editor with just one keystroke. You can use a
C program to set up the function keys (see BASIC.LIB).

Section 1

HISOFT C MANUAL version 1.2 Page 11

1.4.5 Files on the Amstrad CPCs

This section discusses the way in which HiSoft C has been fitted to the Amstrad CPC
computers and focusses on the input-output system which is the main part of the
talloring. We start out with a basic knowledge of the computer and of the C input-ocutput
functions.

The functions provided in the standard library are modelled after those provided on
Unix systems. Unix is the name of the operating system used where C originated and it
is used as a reference for C compiler input-output. Input and output in C is done serially
via files. These files cover not only what is normally thought of as flles (on tape, disc etc)
but also input from the keyboard and output to the display.

These files greatly resemble the streams provided on the computer and indeed on later
versions of Unix streams is what they are sometimes called. This goes some way towards
making input and output appear to be device independent as far as the C programmer is
concerned.

There are three standard files in a C program. These are the standard input stdin, the
standard output stdout, and the standard error output stderr. These are assigned to the
keyboard stream, text display stream O and text display stream O {again) respectively.
Some translations are done on the characters as discussed above for the keyboard. If you
want to use these names in your programs then define them like this:

#define stdin 0
#define stdout 0
#define stderr 0

Input and output to other devices is done to files using file-pointers. The file-pointers
used for input and output in C are used to represent stream numbers on the Amstrad.
They have type pointer-to-FILE so that they are compatible with file-pointers on other
systems, but actually their value (as a bit pattern) is just the stream number as in BASIC.
So streams 0-7 are screen windows, 8 is the printer, and 9-10 are cassette.

Characters are input from the keyboard using the standard function getchar() and
output to the display using putchar(c). These correspond to getc(0) and putc(c, 0)
respectively.

Before using putc or getc you must make sure that you have a file-pointer. You can use 0
as a file-pointer for the display and keyboard as mentioned above. You can also use the
screen streams 1-7 and the printer stream 8. All that is necessary to send output from a
program to the printer is to use stream 8. For example:

putc('X', 8); fprintf(8, "\nThe answer is %d", 42);

Before reading from or writing to tape or disc it is necessary to call the standard library
routine fopen(filename, mode) first to get the file-pointer. getc and putc can then be
used to read or write characters and finally fclose tidies up and writes the last block of
an output file. All input and output on cassette or disc is done using the functions
getc(fp) and putc(c.fp). The characters are collected into blocks before being put in a
file. The input and output done by the compiler is done in the same way as by user
programs so you can create or read C source files using your own programs.

The memory for a block buffer is also arranged by fopen and fclose. The normal system
messages are produced for disc and cassette handling. Note that you can only have one
file open at once except you can have one input file and one output file simultaneously if
you call setbufout first.

Section 1

Page 12 HISOFT C MANUAL version 1.2

1.4.6 Breaking Out of Programs with the [EsC] key

You can pause or break out of a running C program by using the [ESC] key. It can also be
used to break out of a compilation, and out of a listing to screen or printer.

Pressing [ESC] causes the computer to pause, and pressing any other key causes it to
resume (eg press [ENTER]). Pressing the [(ESC] key for a second time whilst paused
breaks back to the editor. There is a short delay before keyboard scanning resumes so be
sure not to type anything more until you can see the editor > prompt and the cursor

again.

The computer may pause in the middle of drawing a character on the screen or even in
the middle of scrolling the screen up (which may leave old text in the bottom right
corner of the screen). This is normal. If you are interested, there are some details of
why this happens in the next section.

1.4.7 The Firmware

Inside the Amstrad are some programs in ROM which are known as the firmware. These
are called to use the features of the computer such as the screen, keyboard, cassette,
disc etc. The compiler makes use of them and you can also make use of them in your
own programs. These programs are fully described in the Firmware Specification (see
dibliography) and you should refer to this to learn what they do. We type their names
using capital letters and underscores throughout this manual. A library of C functions is
available which lets you access each of them.

The way that the firmware is used by the compiler may have an effect on your program's
use of the firmware and so we give a comprehensive description here for those who find
they need to know. You don't need to read or understand the rest of this section to
make normal use of the comptler.

The first thing is that the compiler runs as a foreground program in order to gain access
to the maximum possible memory. A return to BASIC therefore involves a complete
restart with no possibility of saving any information. The normal way out is to press
[CTRL] - [SHIFT] - [ESC] which restarts as though the computer had just been turned on.
It is also possible to use the slightly less severe |BASIC command but we don't
recommend this because it can leave BASIC confused and you may receive strange error
messages when you start typing commands.

Starting the compiler as a foreground program involves calling KL_CHOKE_OFF which
means that all external commands are lost. Commands from background ROMs such as
the disc are reinstated by calling KL_ROM_WALK. There is no provision in the firmware
to recover RSX commands except by execution of a program. The loaders supplied with
commercial RSX programs are likely to assume a BASIC environment and would
therefore need adaptation. There are also strong technical difficulties which make it
more problematical.

SOUND_RESET , KM_INITIALISE and JUMP_RESTORE are also called along with
KL_CHOKE_OFF. The call to KM_INITIALISE is necessary because under interrupts the
keyboard manager buffer pointers can get out of step and require to be reset.
JUMP_RESTORE is necessary to keep the disc commands such as Itape.in and ldisc in
good working order.

The initialisation sequence described above is also called every time the [ESC] key is
used to abort a listing. This draconian step is taken to make sure the firmware is able to
run, but does resuilt in a number of things being set to their initial state and in particular
prevents access to RSXs.

Section 1

HISOFT C MANUAL version 1.2 Page 13

Special facilities are provided by the firmware to support the [ESC] key so that it can be
used to break out of running programs. The compiler makes use of this feature to abort
listings, compilations, and running user programs.

The feature is used not just because it is neat but also because it provides a way around
the slow running that occurs if the keyboard is actively polled for a break key. In a
compiled program this has to be done very frequently because of the speed of the
compiled code and the necessity to check inside every loop and every function call to
guarantee being able to break out of non-terminating programs. The firmware calls used
to do this cause a significant time penalty which slows down the program in relation to
identical programs on other computers.

The event-handling capabilities of the computer contribute to this problem as well. The
implementation technique known as synchronous events is used to avoid certain real-
time race conditions in user programs. Unfortunately regular polling is used as part of
this technique and this has to be inserted into the frequently executed checking code in
a compiled program. It would be easy to perform this polling in the main control loop of
an interpreter, precisely because the interpreter runs at a much slower rate.

But there is hope! Another weapon in the firmware's armoury s the asynchronous event
which drops unannounced much like the stone from a siege catapult. We can arrange for
an asynchronous timer event to occur regularly at some slower and more acceptable
rate. This event performs the polling of the synchronous events which is required (and
this includes the [ESC] key as a special case which solves our original problem). But this
is a nuclear age and there are two kinds of fallout from this final solution.

The first consequence follows from various unfortunate restrictions on what an
asynchronous event may do - and that is what our [ESC] key is now disguised as. It turns
out that in particular it cannot gently transfer control of the computer back to the
compiler, but must do it in the very brutal fashion explained above.

The second consequence is that since all synchronous events are now dressed in the
appearance of an asynchronous event, they no longer protect us against the race

conditions they were designed to avoid. This is why the screen can be left in a wayward
state when the [ESC] key is used to abort a listing.

1.4.8 Stand-alone Programs

If you write a C program which you use a lot, or that you want to sell or give a copy of to
someone, then you will want to make a stand-alone version of it. This saves the time and
fuss necessary to load the compiler before using your program, and lets you give or sell a
working copy to someone who doesn't own the compiler.

The facility to make stand-alone programs is called #transiate and details of how to use it
are given in the Language Reference Chapter.

The program is executed immediately after it has been saved to disc or cassette.
A stand-alone program is loaded and run from BASIC in the usual way:
RUN"program_ name

It does not permit users to break out by using the [ESC] key. but {CTRL] - [SHIFT] - [ESC]
can be used to restart BASIC.

Section 1

Page 14 HISOFT C MANUAL version 1.2

After the program finishes executing it will restart the machine (it is difficult to do
anything else). If this will erase information that you have put on the screen, then put in
a delay loop to allow it to be seen, or use a call to getchar(Q) so that the user can press
[ENTER] when he has finished looking at the screen. Eg:

printf ("Press [ENTER] when finished");

getchar ()

1.4.9 Making a Backup

Your compiler cassette is supplied with a lifetime guarantee, so if you have any problems
loading the tape or if the cassette is damaged just get in touch with us and we will
exchange it for an identical working copy. Compare this with the guarantee that you get
with your copy of Kernighan & Ritchie or with your computer. If you have the cassette

version and now need a disc version we provide an upgrade service. Please write to us or
give us a call.

You may want to copy the function library so that you can change the functions or add
new ones; and if you have discs then you may well want a working copy on disc.

The function library is supplied as normal C source text files, and you can use the
compiler itself to make a copy. The function library comes in several parts and we are
going to read each part of the library into the editor's buffer in turn and write it out
again. At this stage put the Library cassette into the datacorder, stdio side uppermost, and
rewind the cassette. We start by making a copy of the header. Now type:

g, ,stdio.h [ENTER]

Press PLAY on the tape recorder now and Press STOP when the cursor reappears. Now
save the header by typing:

pl,9999,stdio.h [ENTER] (to save to cassette - remember to put a blank one in).
Wait until the cursor reappears again.

Now we will repeat this process to save the library itself; but first we need to clear the
editor’s buffer: Type:

dl, 9999 {(ENTER]

Now read the cassette file;

g, ,stdio.lib [ENTER]}

Press PLAY and wait for the library to be loaded. Now save it by typing:
pl1,9999, stdio.lib [ENTER]

and wait for the cursor again. After this turn the tape over and repeat the process for the
remaining lbrary flles. That's all.

Keep the original tapes that we supply since you will need them for any upgrades. If you
are making copies to your discs then, before following the instructions above, type:

|tape.in
|disc.out

Section 1

HISOFT C MANUAL version 1.2 Page 15

1.5 Prices, Royalties, Publishing & Copying

We are often asked by people whether they would have to pay royalties if they were to
sell programs compiled by our compilers. The answer is a resounding no! After all, that's
what the compiler is for!

We are very happy for people to sell compiled programs and we wish you every success.
We want to help you in every way we can, and are very happy to talk to you about
products that you are writing. We may offer to publish the program for you, if we feel
that it fits in with our range (and is of a high enough qualityl). Or we may be able to
suggest another publisher.

Any compiled programs will include our runtime routines, and we do require you to
acknowledge our copyright of these on any programs that you publish. We'd also be very
grateful if you mentioned that the program was written using our products.

What we don't like is theft. We sell our products at prices that are very low compared
with similar products on other machines. The only way that we can do this and continue
to produce more products in the future is by selling in volume. So please don't make
copies for other people. The ugliest form of this is copying for money - piracy. We will
do everything we can to stop this, and would appreciate being told of any pirate copies
that you see.

Also please note that whilst we are happy to replace damaged cassettes, discs or
manuals we cannot supply new copies of manuals to replace any that you lose so please
take good care of them. (Again, compare this with what would happen with your
computer or book).

Finally, I would like to apologise to the vast, honest majority of our customers for
belabouring this point. ‘Nuff said!

I would now like to make our own acknowledgement to Leor Zolman at BD Software.
This compiler was originally written entirely in BDS C (and a good C it is). It has been
rewritten in assembler to achieve the size, but there are still a few C functions left in
there. The runtime support for those functions is copyright of Leor Zolman. The
functions themselves are copyright of HiSoft.

1.6 Example Programs

To demonstrate a few of the more basic techniques of C programming to the beginner,
and to illustrate how to use the compiler, we have produced a few short example
programs here which may be typed in, compiled and executed, or simply examined for
reference. In addition, you may find some of the functions and techniques used may
come in handy in more complex applications. For many more examples of C
programming technique have a look in the library.

Section 1

Page 16 HISOFT C MANUAL version 1.2

CP MSPECIFIC

1.6.1 CP/M Hello world with Complications

This small program is just designed to show you how to type in and run a short program
which uses the function library. First make sure that you have an installed copy of the
editor ED80, then load it.

A>ed80 hello.c

Now type in the program finishing each line with [ENTER].

#include stdio.h

main ()
{
char s[(20];

s[0] 'H';

s(1] 0;

strcat (s, "ello, Worldi"):;
printf (s);

}

#include ?stdio.lib?

Save the program and exit from the editor with the command [CTRL]-K X. Now compile
the program:

A>hc hello.c

HiSoft-C Compiler V1.3, Copyright (C) 1985
Line File

* 8 HELLO.C

MEMORY MAP Start End

Runtimes 0100 11FF

Code 1200 13A2

Initialisers 13A3 13A6

Fixed Data C2E7 C306

Smallest #data 0x13CF

Finally we get to run the program:

A>hello
Hello, World!
p.>4

Section 1

HISOFT C MANUAL version 1.2 Page 17

HiSeR:-C
CPC SPECIFIC

1.6.2 CPC Hello world with Complications

This small program is just designed to show you how to type in and run a short program
which uses the function library.

After loading the compiler type the INSERT command:

>i10,10 {ENTER]
Now type the program after the line numbers, finishing each line with [ENTER].

10 #include stdio.h

20

30 main()

40 {

50 char s[20]:

60

70 s{0] = 'H';

80 s([1] = 0;

90 strcat({s, "ello, World!"):
100 puts(s):

110 }

120

130 #include ?stdio.lib?
140

150 (ESC]

>

The [ESC] key brings you back to the editor prompt and so now we compile the
program, by typing

>c [ENTER]

HiSoft C Compiler V1.2
Copyright c 1984 RiSoft

#include [ENTER]
The compiler starts to compile your program, listing it on the screen as it goes. The
very first line is to include the library header, so put the Library cassette in the recorder

and press PLAY and another key when it asks. If you are using discs then the whole
compilation will go through with no interruption. You should see

#include stdio.h

Press PLAY then any key:

Section 1

Page 18 HISOFT C MANUAL version 1.2

Loading STDIO.H block 1

/***********************i*****/

/* HiSoft C */
/* Standard Function Library */
/* HEADER */
/* */

/* Copyright (C) 1984 HiSoft */

/* Last changed 15 Apr 1985 */
/***************t***i********t/

#list-
/*****i*********t******t*it***/
/* HiSoft C */

/* Standard Function Library */
*/

/* End Beader
/*********t*ﬁ***i*************/

main ()

{

char s{20);

s[{0] = 'H';

s{1l] = 0;

strcat (s, "ello, World!i"™):
puts(s);

}

#include ?stdio.lib?
Press PLAY then any key:

Loading STDIO.LIB block 1

/*************i**********t****/

/* HiSoft C */
/* Standard Function Library */
/* version 1.2 */

/* Copyright (C) 1984 HiSoft */
/* Last changed 20 Mar 1985 */
/*****************************/

Loading STDIO.LIB block 4

/************************t****/

/* HiSoft C */
/* Standard Function Library */
/* End */

/***************************i*/

The cursor will reappears so that we can type in more of our program, but we have
finished so we type [CTRL]-Z and then answer y to its question. The compiler asks us
whether we want to run the program again, but we got back to the editor prompt by
pressing [ENTER]. We should see: <> (double headed arrow).

Type y to run:y
Hello, World!

Type y to run:
>

Section 1

HISOFT C MANUAL version 1.2 Page 19

1.6.3 The Sieve of Eratosthenes

This program uses the famous algorithm known as the Sieve of Eratosthenes to calculate
all the prime numbers up to 16384. It is taken from BYTE magazine.

After you have run this program and timed it, add the word static just before int and
time it again. The program is both smaller and faster now, as you can see . It is well
worth using static variables wherever possible!

/* SIEVE BENCHMARK from June 84 BYTE */
/* compute primes using Sieve of Eratosthenes */

#define NTIMES 10 /* number of times to run sieve */
#define SIZE 8190 /* size of number array */

#define FALSE O

#define TRUE 1

char flag[SIZE+1];

main ()
{

int i, j, k, count, prime;

printf("%d iterations: ", NTIMES):
for (i=1:; i <= NTIMES; i++) {(
count = 0;
for {(j=0; j <= SIZE; j++)
flag[j) = TRUE:
for (j=0; j <= SIZE; j++) {
if (flag[j] == TRUE) {
prime = j + j + 3;
for (k=j+prime; k <= SIZE; k += prime)
flaglk] = FALSE: /* discard multiples */
count++;
}
}
}
printf("%d primes.\n", count);

Section 1

Page 20 HISOFT C MANUAL version 1.2

1.6.4 Numeric Conversion

This program is not particularly elegant but allows the user to enter a decimal number of
up to five digits, which will subsequently be printed out in both hexadecimal (base 16}
and binary (base 2). The readn function, which reads the decimal number in, is very
unsophisticated and surprisingly easy to crash. If more than five digits are entered, or if
one or more of the characters read In are not digits, then the results are quite
unpredictable. Herein lies one of the golden rules of C - you can do literally anything, but
any bugs are entirely your problem!

/* A program to convert a decimal number to hexadecimal and binary */

main ()
{
int n;
char b{17}:

printf ("\nGive me a number: ");

n=readn () ;

binary(n,b):

printf ("\nThis is %x in hex and %s in binary\n",n, b):

int readn{) /* reads in a decimal number of up to 5 characters */

char s[5};
int i,c,total;

i=0;
while ((c=getchar())!='\n')
s[i++]=c;
total=0;
for (c=0;c<i;++c)
total=total * 10 + s[c] - '0°';
return total;

}

binary(num,digits) /* converts a number to a binary string */
int num;
char digits([}:; /* or char *digits; */
int i,c;
for (i=15;i>-1;--i)

c=num & (1 << i); /* progressively divide by 2 */
digits{15-i] = ¢ ? '1' : '0°';

}
digits{16] = O;

Section 1

HISOFT C MANUAL version 1.2 Page 21

1.6.5 Memory Dump

This example is actually just a function rather than a complete program. It dumps out an
area of memory in hexadecimal, which can be useful when debugging a program or
trying to discover exactly what the operating system does. It dumps an area of 32 byles
after the starting address it is given.

dump (address)
char *address;
{

static int i;
for (i=0; i<32; ++i)

printf(" %02x ", *address++);
putchar ('\n"');

}
HiSef:-C
CPC SPECIFIC

#direct+

dump (0xB00O) ;)
XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
XX XX XX XX XX XX XX XX XX XX XX XX

These examples are small pieces of C programming designed to impart the flavour of the
language. Once you have studied them and know how they work the whole world is open
to you. Remember that you can do just about anything in Ci

1.7 Bibliography

1.7.1 Books about C

Most of the books in this section are of a tutorial nature, so we really recommend you to
have a close look at several before buying because your preferences for style of writing
are nearly as important as the actual contents. Also we have tried to concentrate on the
less expensive books which are more in proportion with the cost of the compiler. There
are some very good, but more expensive, books such as the first one in the list.

The C Programming Language
Brian Kernighan & Dennis Ritchie Prentice-Hall 1978
ISBN 0-13-110163-3

Contains the essential C Reference Manual and is a useful tutorial text. ‘But it is
expensive.

Learning to Program in C

Thomas Plum Prentice-Hall 1983

ISBN 0-13-527847-3

A good tutorial book which starts from first principles.

Section 1

Page 22 HISOFT C MANUAL version 1.2

The Big Red Book of C
Kevin Sullivan Sigma Press 1983
ISBN 0-905104-68-4

A tutorial book which is very inexpensive.

The C Programming Tutor
Leon Wortman & Thomas Sidebottom Prentice-Hall 1984
ISBN 0-13-110024-6

At last Prentice-Hall produce a less expensive book about C!

Cat a Glance
Adam Denning Chapman and Hail 1985
ISBN 0-412-27140-0

A tutorial book which uses HiSoft C in particular {along with DR C on the 8086) and also
doesn't cust a lot. Very good value.

Practical C for the Home Micro
Mark Harrison Sigma Press 1985
ISBN 1850580359

Also uses HiSoft C in particular, is tutorial in nature and doesn't cost a lot! It is written in
a different style to the previous book so there is probably at least one of them which will
suit you. Very good vaiue.

1.7.2 Books about CP/M

Mastering CP/M
Alan Miller Sybex 1983
ISBN 0-89588-068-7

Many people will already understand CP/M or will be able to read the manuals by Digital
Research normally supplied with it. But some computers do not come with these
manuals. and they can be rather daunting as a starting place. If you feel the need of more
information then read this book.

1.7.3 Books about the Amstrad Computers

The Complete CPC464 Operating System
(Firmware Specification)
AMSOFT SOFT158

DDI-1 Firmware

(specification for Amstrad discs)
AMSOFT SOFT158A

Section 1

HiSoft C

Fast Interactive K&R C Compiler

-

L

Chapter 2
The Editor

HiS6ft

High Quality Software

HISOFT C MANUAL version 1.2 Page 23

2. The Editor

HiSeR-C
CP/MSPECIFIC

2.1 The CP/M Editor ED8O

2.1.1 Introduction to ED80

The editor supplied with the CP/M version of HiSoft C is our full-screen editor ED80O
which is designed to be easy to use and to give the ability io edit programs quickly and
efficiently. It is detailed fully in the separate manual contained within the binder.

As supplied, its commands match those of the very well known WordStar editor but you
can tailor them to your particular preferences so it will be quickly learnt.

This version of ED80 includes the ability to automatically restart the HiSoft C compiler
when the editor was invoked as the result of a compilation error. For this reason you
should not try to use any existing copy of ED80 which you may already have. Instead use
the installation program ED80INST supplied with this editor to make this version behave
like your existing one (its quite painless if you use an E80 installation flle}.

If you do not have an existing copy of ED80 then you will probably have to install it so
that it knows about the control characters which are used by your particular display
terminal. This is a simple procedure which is described in ED80 manual.

2.1.2 How to Use the Compiler and ED80 Together

When the compiler {inds an error in a compilation it prints an error message and waits
for the user to press a key. If the user presses the E key then ED80 is started with the
cursor placed on the line where the error was detected. Pressing any key other than the
E key will exit from the compiler and return to CP/M command level.

The user can make as many changes as are required after the editor has been
automatically invoked by the compiler. All of ED8O's facilities can be used including the
ability to finish editing one file and proceed immediately to another one - as shown in
the example session below. This can be very useful where the error was caused by a fault
in another file (eg a header file} or if it is simply required to look at another flle before
making the correction.

When all the corrections have been made the user just exits from ED80 in the normal
way. But in this case ED80 will restart the originai compllation instead of returning to
CP/M.

The whole of this development cycle is shown in the diagram below, and illustrated by a
worked example.

Section 2

Page 24 HISOFT C MANUAL version 1.2

FAULTY.C LINE: 536 <COL:1 INSERT
A>hc program.c #list+ test.c $list- ?library? a functlon{)

Line file {
536 FAULTY.C ’—.@—. 8 st ructure->cypo=FALSE;

ERROR 35 AT LINE 536 IR FILE FAULTY.C return structure->member:
not a defined member of a structure)

FREE:50167 § $

Diagram of Compiler/Editor Integration

2.1.3 A Worked Example of Compiler/Editor Usage

This worked example might better be called a contrived example, but it does show how
the compiler and editor may be used together to correct errors very quickly. First we
list the program file. The other two files will be seen later when we come to edit them.

/* A small program file called: PROG.C */
#include words.h

main{)

{
}
#include ?my-lib.1lib?

my_function():

/* the end of the program file */

Having typed all three flles in we type the command line to start the compiler. This can
be quite complicated and as an example we have put a #data directive on the command
line.

A>hc "#data 0x3000" prog.c

HiSoft-C Compiler V1.3. Copyright (C) 1985
Line File

my-1ib.lib

ERROR 0 AT LINE 6 IN FILE MY-LIB.LIB
missing ')"*

The compiler finds an error in the compilation and stops. waiting for us to press a key.
We press the key in order to invoke the editor. The resulting screen looks something
ltke the output on the next page:

Section 2

HISOFT C MANUAL version 1.2 Page 25

MY-LIB.LIB LINE:6 COL:1 INSERT
/* A library file called: MY-LIB.LIB */
my_ function()

{
* printf("%s, %s!", HELLO, WORLD);
}

/* the end of the library file */

FREE:50351 $ $

The cursor is at the beginning of the line where the problem occurred but there doesn't
seem to be anything that would cause the error. We suspect therefore that the problem
must lie in the constants and which are defined in the header file. So we abandon
editing of the library file and go to the header file by typing:

[CTRL]-K Q [SPACE] WORDS.H [ENTER]

You can refer to the ED80 manual for full details of this command sequence. ED80O niow
transfers us to the header file and the screen looks something like:

WORDS.H LINE:1 COL:1 INSERT
/* A small header file called: WORDS.H */

#define HELLO "hello":
#define WORLD "world";

/* the end of the header file */

o e e e

FREE:50351 $ $

Now we can see what is actually a very common mistake: we have put semicolons at the
end of the #define lines. These semicolons are substituted into the program wherever
HELLO and WORLD are used and in this case spolled the argument list of printl. All we need
to do is delete the semicolons, which can be done by the following WordStar-like
command sequence:

[CTRL]-X [CTRL]-X [CTRL]-X [CTRL]-Q D [DEL]
[CTRL]-X [CTRL]-G

Finally we just exit the editor, saving the altered header file.

[CTRL]-K X [ENTER]

This automatically restarts the compilation which proceeds swiftly to a satisfactory
conclusion. Notice that the #data 0x3000 command has taken effect because the original

command line 1s used to control the compilation. We then immediately run the resulting
PROG.COM file and are overjoyed by the startling message which it produces!

Section 2

Page 26 HISOFT C MANUAL version 1.2

HiSoft-C Compiler V1.3. Copyright (C) 1985
Line File

MEMORY MAP Start End

Runtimes 0100 11FF
Code 1200 1244
Initialisers 1245 1248
Fixed Data 3000 3000

Smallest #data 1252

A>prog
hello, wecrld!
f. >4

This ends the introduction to using the HiSoft C CP/M compiler with the interactive
editor. Please consult the separate ED80 manual for full details of the editor and how to

use and configure it.

Section 2

HISOFT C MANUAL version 1.2 Page i

HiSeR-C

2.2 The Amstrad CPC Editor

2.2.1 Introduction to the CPC Editor

The editor supplied with the CPC HiSoft C is a line-based editor designed to be easy to
use and to give the ability to edit programs quickly and efficiently. It has been tailored to
the Amstrad computers and uses many of the same commands as the Locomotive BASIC
editor so it will be quickly learnt.

The editor allows you to work on a program without using cassette (or disc] except
when you want to save the program. This means that you can type in a program using
the editor, then compile it and test it, returning to the editor to correct it and add
more features until your whole program is finished. The editor keeps the text of your
program in memory and allows you to add more. or change what is there, or delete
some. The compiler can then read and compile the text (by #include). The editor can
also put the text onto cassette or disc (by p) and read it back {by g). The compiler is also
able to read these files directly from tape or disc (by #include filename).

In order to go back to the editor when you are compiling or running a compiled
program you should press the [ESC] key twice. There will be a short delay whilst the
firmware resumes keyboard scanning and then you will see the editor prompt > and the
Cursor.

There is a special way of entering the editor after an ERROR message has been printed
which makes it easier to correct mistakes. After the compiler has printed the error
message it stops and walts for you to press a key. If you press the e key then the editor
will perform an E command (edit line) on the last line compiled. You can make a
correction immediately and carry on. You will go back to the editor in the normal way if
you press any other key after an error message.

In response to the prompt you may enter a command line of the following format:

C N1.N251.52 followed by [ENTER].

C is the command to be executed.

N1 is a number in the range 1 - 32767 inclusive.

N2 is a number in the range 1 - 32767 inclusive.

St is a string of characters with a maximum length of 20.
2 is a string of characters with a maxdmum length of 20.

for example, to replace fred by tom in lines 1-50 of the file, you would type:.
F1,50, fred, tom[ENTER]

Very few of the editor commands need or expect all five parts of a command line and in
some cases most would be inappropriate anyway.

To return to the C compiler you should type C followed by [ENTER]. You can also exit
(permanently) to BASIC by typing [CTRL] - [SHIFT]-[ESC].

Section 2

Page i HISOFT C MANUAL version 1.2

The comma is used to separate the various arguments {although this can be changed -
see the S command). The editor remembers the previous numbers and ‘strings that you
entered and uses these former values, where applicable, if you do not specify a particular
argument within the command line. The values of N1 and N2 are initially set to 10 and
the strings are initially empty.

The editor uses line numbers in many of the commands. These line numbers ‘are only
used by the editor and are not stored in flles on cassette or disc, nor are they used by
the compiler. Lines are given numbers automatically by the editor when it reads them
from tape or when you type them in with the | command. It is therefore best to regard
these line numbers as notional, provided only for your benefit when using the editor.

If you enter an illegal command line such as F-1, 100, HELLO then the line will be ignored
and the polite message Pardon? displayed - you should then retype the line correctly e.g.
F1,100, HELLO. This error message will also be displayed if the length of 52 exceeds 20 if
the length of S1 is greater than 20 then any excess characters are ignored.

Command ; may be entered in upper or lower case.

The various commands available within the editor are described below - note that
wherever an argument is enclosed by the symbols < > then that argument must be
present for the command to proceed.

Text may be inserted into the textfile either by typing a line number, a space and then
the required text or by use of the i command.

Text is typed in lines, and each line can have up to 80 characters in it. If you get to the
end of a screen line then the screen will be scrolled up and you may continue typing on
the next screen line.

Command lines, and new text lines, can all be edited as described below under the EDIT
LINE command; for example the [DEL] key can be used to correct typing mistakes.

The text is kept in memory and so it is possible to fill up the memory. When this
happens you will see the error message:

ERROR 60
LIMIT: no more memory

To save memory you can Put some of the text to cassette or disc, or you can use the
compller's #error feature to sacrifice the error messages, and then re-enter the editor:

>C

HISOFT-C Compiler V1.2
Copyright © 1984 HISOFT
#error

(ESC] [ESC]

Once some text has been created there will inevitably be a need to edit some lines.
Varfous commands are provided to enable lines to be amended, deleted, moved and
renumbered. Most commands are executed immediately, but the E command selects a
particular line for further special editing commands.

Section 2

HISOFT C MANUAL version 1.2 Page iil

2.2.2 The Editor Commands

INSERT TEXT Command: | m,n

The editor will display line numbers, and you can type in text (much like the AUTO
command in BASIC). The line numbers start with m and go up in steps of n. Both the
starting line number and the step size will default to 10 if you leave them out. You enter
the required text after the displayed line number, and terminating the text line with
[ENTER]. All the EDIT LINE commands described below are available when inserting text.

When you have typed as many lines as you want, press [ESC].

If you enter a line that already exists then the existing line will be shown on the screen
and you will be able to edit it. If you wish to delete all the text from the existing line just
hold down [CLR] until it has all disappeared. If the automatic incrementing of the line
number produces a line number greater than 32767 then the Insert mode will exit
automatically.

LIST TEXT ON THE DISPLAY Command: L m,n

This lists the current text to the display from ine number m to line number n inclusive.
The default value for m is always 1 and the default value for n is always 32767 i.e. default
values are not taken from previously entered arguments. To list the entire textfile simply
use L without any arguments.

You can make the listing pause at any stage by pressing the [ESC] key once and resume
it again by pressing any key other than [ESC] (eg press [ENTER]). Pressing the [ESC] key
for a second time whilst the listing is paused will abort the listing immediately.

The listing may pause in the middle of drawing a character on the screen or even in the
middle of scrolling the screen up (which may leave old text in the bottom right corner
of the screen). This is normal.

WRITE TEXT TO PRINTER Command: W m,n

The W command causes the section of text between lines m and n inclusive to be listed
on the printer. If both m and n are omitted then the whole textfile will be printed. The
[ESC] key can be used to pause or abort the listing just like the L command. If the W
command is given and there is no printer then it will be necessary to use [ESC] [ESC]
to abort the command.

VIEW DEFAULTS ‘ Command: V

The V command displays the current delimiter and the current values of the two default
line numbers and the default strings N1, N2, S1 and S2. This is useful befcre entering any
command in which you are going to use default values, to check that these values are
correct.

The command also displays the start and end address of the textfile in decimal.

Section 2

Page iv HISOFT C MANUAL version 1.2

SET DELIMITER Command: §,,d

This command allows you to change the delimiter which is taken as separating the
arguments in the command line. On entry to the editor the comma (,) is taken as the
delimiter; this may be changed by the use of the S command to the first character of the
specified string d. Remember that once you have defined a new delimiter it must be
used {even within the S command} until another one is specified. Use V to discover the
current delimiter. This command is mainly used when a find or substitute string
contains a comma.

Note that the delimiter may not be a space.

RETURN TO THE C COMPILER Command: C

When you have finished editing the text and want to compile it, just type C and press
[ENTER].

RETURN TO BASIC Command: (CTRL)-(SHIFT)-(ESC)

You can return to BASIC by pressing [CTRL] - [SHIFT)-[ESC]. This causes a full Early
Morning Start, and all trace of the C compiler and your programs will be lost.

DELETE LINES Command: D m,n

All lines from m to n inclusive are deleted from the textfile. If m > n then no action will
be taken; this protects against careless mistakes. A single line m may be deleted by
typing Dm [ENTER]. To prevent accidents, you cannot delete a line just by typing its
number.

RENUMBER TEXT Command: N m,n

Use of the N command causes the entire textfile to be renumbered with a first line
number of m and in line number steps of n. Both m and n default to 10 and if the
renumbering would cause any line number to exceed 32767 then the original numbering
is retained.

EDIT LINE Command: E n

Edit the line with line number n. If n does not exist then no action is taken: otherwise
the line is displayed on the screen (with the line number). The cursor appears after the
line number and the special editing commands can then be used to edit the line:

[CTRL] -[TAB]
The editor is automatically in insert mode when editing the line. This can be
changed to overtype mode by pressing [CTRL]-[TAB) and back again by pressing
it again (like Locomotive BASIC). There is no separate edit-command mode as
with previous versions of the editor.

{ENMTER]
terminate the line edit and keep all the changes made.

[ES8C}
abort the line edit, discarding any changes.

f}tlep u:l:ng to the next character on the line. You cannot step beyond the end of
e X

Section 2

HISOFT C MANUAL version 1.2 Page v

—
step back to the previous character on the line. You cannot step backwards
beyond the beginning of the line.

[CTRL] ~-—
moves the cursor to the end of the line.

[CTRL] -«
moves the cursor to the start of the line.

[COoPY]
Copy cursor editing is available and works in a similar way to the BASIC using
[SHIFT) and cursor keys to move the read cursor around and [COPY] to copy the
character under the read cursor down to the main write cursor.

[DEL}
deletes the character to the left of the cursor.

[CLR]
deletes the character under the cursor.

[CTRL}-F
Jfind the next occurrence of the find string previously defined using the F
command below. This sub-command will automatically end the edit on the
current line (keeping the changes) if it does not find another occurrence of the
find string in the current line. If an occurrence of the find string is detected in a
subsequent line (within the previously specified line range) then the Edit mode
will be entered for the line in which the string is found. Note that the text
cursor is always positioned at the start of the found string.

[CTRL] -8
substitute the previously deflned substitute string for the find string where the
cursor is and then search for the next occurrence of the find string. This,
together with the F sub-command above, i1s used to step through the textfile
optionally replacing occurrences of the find string with the substitute string.

FIND STRING Command: F m,n,f,s

Text in the line range m to n is searched for an occurrence of the string f - the find
string. If such an occurrence is found then the relevant text line is displayed and the Edit
mode is entered - see above. You may then use commands within the Edit mode to search
for subsequent occurrences of the string f within the defined line range or to substitute
the string s (the substitute string) for the current occurrence of f and then search for the
next occurrence of f; see the EDIT command above.

Note that the line range and the two strings may have been set up previously by any
other command so that it may only be necessary to type F [ENTER].
Cassette and Disk Commands

These are fully compatible with the DDI-1 discs running AMSDOS and operation can be
switched between tape and disc operation in the normal way using the external ROM
commands from within the editor:

>|tape.in
>{disc.out etc.

Section 2

Page vi HISOFT C MANUAL version 1.2

The [ESC] key can be used to abort a tape/disc operation.

Note that fillenames must be CP/M compatible if they are to be used with a disc rather
than the more general fllenames possible on cassette. (ie up to eight character name
optionally followed by a dot and up to three characters of extension, rather than
arbitrary sixteen character fllenames). Bad fllenames cause output files to be sent to the
screen and input flles to be read from the keyboard.

PUT TEXT YO CASSETTE OR DiSC Command: P m,n,s

Text in the line range m to n is put onto cassette or disc, using the fillename specified by
the string s. Remember that these arguments may have been set by a previous command.
The line numbers are not put into the flle. The normal system messages are given for
cassette operation.

GET TEXT FROM CASSETTE OR DISC Command: G,.s

The cassette or disc is searched for a flle with a fllename of 8; when found, it is loaded at
the end of the current text.

Line numbers are attached to the lines of the file as they are read in. The line numbers
£o up in steps of 10. They start at 10 if there is no existing text and otherwise the text
from tape is put at the end of the already resident text.

External Commands

External ROM commands can be used from the editor. This allows the disc commands
to be used for example. The commands are used very easily in a similar way to BASIC,
but more tidily. For technical reasons it is not possible to access RSX commands (see
Chapter 1).

A vertical stroke | at the start of a line tells the editor that the name of an external
command follows. The name is followed by any parameters, separated by spaces. Strings
are just typed as a sequence of characters, although quote marks (") can be used if a
string needs to include space characters or starts with a digit. Numeric parameters are
typed as decimal numbers. Examples are:

>{basic

>|tape.in

>ldir *.c

>{user 3

>|ren newfile oldfile.ext
>|FUNny$cOmMand 1234 "a long parameter with spaces" third parameter

2.2.3 An Example Session using the Editor

As a simple example of using the editor provided with the C compller, we'll write a
short program and attempt to compiie it. We won't explain the program in too much
detail here as it is not appropriate.

Load the C system. You will be presented with a > prompt. Type

i [ENTER]

to start inserting text at line 10 with a line increment of 10.

Section 2

HISOFT C MANUAL version 1.2 Page vii

The line number is displayed on the screen along with a space and the cursor. Type in
the lines below exactly as you see them, pressing the [ENTER] key at the end of each

line.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

Blank lines are entered into the textfile by simply typing [ENTER] with no text.
/* An example editor session */

#define EOF -1;
#define FILE int

main ()

{

int c¢,i,count, inword;
char s{20]:
static FILE fp:

do
{

printf ("Filename: ");

i=0;
while ((c=getchar()) != '\n"')
{

s[i++] = c;
if (i==19) break:;
}

s[i] = "\0O";

fp = fopen(s,"r"}:
if (fp==0)
printf ("\nFile not found!\n");
1

while (fp==0)
count=inword=0;
while ({c=getc(fp)) != EOF)

if (i=isspace(c))
inword = 0;

else if (inword==0)

{
inword = 1;
++count;

}
}
fclose (fp):

) print ("\nWords: %d\n",count):

Now, this program contains four errors, three of which could be described as syntax
errors. See if you can spot them before going any further.

Once the program is entered, leave INSERT mode by pressing [ESC] and then go to the
compiler by typing C and pressing [ENTER]. Now compile the program by typing
#include and pressing [ENTER].

Section 2

Page viii HISOFT C MANUAL version 1.2

The first thing we see is that the compilation stops at the line containing the call to
fopen with error 32 - bad type combination. Seasoned C programmers will
immediately notice that the declaration of fp in line 120 is wrong - it should be a
pointer, so we have to put an asterisk immediately in front of fp. To do this, re-enter the
editor by hitting {ENTER] and entering the editor in the usual way. Now edit line 120 by

typing:
E120 (ENTER]

The line appears on the screen along with its line number and the cursor. We want to
step along the line and insert a * before £p, so repeatedly press — until the cursor is
over the f of fp. Now type the asterisk, which appears in the line. Press [ENTER] and the
altered line is entered as it is displayed on the screen. The cursor returns to the main
editor and the machine awaits another command.

Go back to the compiler (C and [ENTER]) and try compiling the program again. It
progresses quite smoothly but suddenly stops with error 0 - missing *':' right after
displaying count=. It does this because the while immediately above this line is the
terminating condition of a do ... while loop, and unlike simple while loops, there must be
a semi-colon after the while condition. So we must edit this line.

Use the E command to edit the line as before but rather than stepping along the line,

press [CTRL]-—. The cursor jumps straight to the end of the line. We can now insert
characters at the end of the line, so type in a semi-colon and press [ENTER] to get back
to the main editor.

Compile the program again. This time it stops at line 350 with error 0 - missing *)'.
Why? Well, this is a very obscure bug that frequently catches programmers out,
especially if they are used to other languages like Pascal. It stems from the #define
statement on line 30.

#define allows macros to be used in C programs. In this context a macro is any amount
of text from the first separator after the identifler up to the next end of line marker.
Whenever the identifer ts used in the program, it is substituted-for the entire macro
text. This means that whenever we use EOF it is replaced by the rest of the line - -1; .
This is where the problem lies - the semi-colon after the -1 is confusing the compiler. It
shouldn't be there. So we'll have to edit it out.

Use E30 [ENTER] to edit line 30, and then press {CTRL]}-— as before tc go to the end of
the line. Now press [DEL] to delete the semicolon and press [ENTER] to leave the edit
mode. If we look at the line we see that it no longer has the offending semi-colon, so we
can attempt compilation yet again!

It works! Or at least it seems to. Press [CTRL]-Z to indicate end-of-source-file to the

" compliler, but don’t execute the program yet. Up springs another error message - error
27 - undefined variable (s). The offending identifier is print on line 470. It should of
course be printf. Edit the line using E470 [ENTER] and insert the requisite f in the
proper place using the techniques already discussed.

The final compilation now produces an error-free program - at least as far as the
compller is concerned - and it can be run by pressing [CTRL] -2 followed by Y. It counts
the words in a gjven file.

The other features of the editor are all in their turn useful and it is a good idea to

experiment with it as much as possible. As the editor is such a powerful program-
building tool, it is vital that you can use it with familiarity and ease.

Section 2

HiSoft C

Fast Interactive K&R C Compiler

-

Chapter 3

Language Summary

HiS6ft

High Quality Software

HISOFT C MANUAL version 1.2 Page 27

3. LANGUAGE SUMMARY.

'Wouldst thou' - so the helmsman answered. -
'Learn the secret of the C?

Only those who brave its dangers
Comprehend its mystery!'

H W Longfetiow

This chapter aims to provide a concise but complete reference to the C programming language as
implemented by Hisoft C. It is intended that programmers familiar with other high-level languages
such as Pascal will quickly grasp the concepts involved in C programming. If you are learning
programming for the first time, or have any doubts, we suggest you look at some of the books
recommended in the Bibliography in Chapter 1.

C provides the programmer with a structured and very concise way of representing data and algorithms,
A C program is essentially a series of data and function definitions; the data structures describe the
facts that we have and the results that we want; and the functions describe how to calculate the
results from the facts. :

This Language Summary is based around the syntax of the language (ie the rules for putting together a
program), and it summarises each part of the language in turn. The approach is from the outside-in
(or top down), but before starting it is useful to set out the basic building blocks or tokens from
which the language is constructed.

3.1 Numbers and Characters.

There are several ways of writing numbers. The most straightforward is just as a decimal number. The
largest number which can be handled is 65535.

For example 0 1 10 32767.

Numbers can also be written in two other bases. Octal numbers use 8 as their base and are written by
putting a leading zero onto the number. Note that this means that decimal numbers must NOT start with
a leading zero. Octal numbers are mainly of historical interest nowadays but they are used in strings
inC. The first twenty octal numbers are written as:

001 02 03 04 05 06 67 010 011 012 013 014 015 016 017 020 021 022 023

The third base is hexadecimal, which uses sixteen as its base. These numbers are written by putting
Ox or OX in front of the number, and using letters A to F (or a to f) for the extra digits that are
needed. Hexadecimal numbers are used a lot today because they are closely related to both binary and
to a byte. A hexadecimal digit represents the same as four binary digits or bits, so two hex digits
are a neat way of writing down the state of all the bits in a byte, The first twenty hex numbers are
written as:

0Ox0 Oxl 0x2 Ox3 Oxt¢ Ox5 Ox6 Ox7 Ox8 0x9 OxA OxB OxC OxD OxE OxF OxIG Ox!{t Ox12 0xl13

Section 3-)

Page 28 HISOFT C MANUAL version 1.2

Single characters are written between single quote marks ('). They are really just a convenient way
of writing down the numerical ASCIl value which corresponds to them. For characters which can't be
shown easily there are two special ways of writing known as escape sequences. One way is a set of
special abbreviations for commonly used control characters.

name abbreviation value
newline \n 10
horizontal tab \t 9
backspace \b 8
carriage return \r 13
form feed \f 12
backslash W 92
single quote \ 39
double quote \" 34

The other way is to write the OCTAL code value of the required character after a backslash,

control-Z \32 26
null character \0 0

One extra feature is that a backslash right at the end of a line is ignored together with the end of
line character. These escape sequences are most frequently used in strings.

Some example characters are shown below. The last one is the character with code value 255 (or OxFF)
and illustrates a useful technique for getting at graphics characters on many micros.

AT B 'CY Tt \n' V'Y 320 \0' "\377!

3.2 Strings.

Strings are very important and quite complicated in terms of the place that they occupy in the C
language, but writing them down is easy. A string is just a sequence of characters enclosed in double
quotes. The compiler automatically adds a null character (ie with value 0) at the end of each string
so that programs can check for the end of the string. This means that each string occupies one more
character space than might be expected; and also means that the null character cannot be incorporated
into a string and dealt with successfully by normal C functions. The string is stored as a sequence
of bytes in ascending order, so a typical string, its storage, and appearance when printed might be:

"Hello\n\"John\""
72 101 108 108 111 10 34 74 111 106 110 34 0

Hello
ll]ohn"

Section 3-3

HISOFT C MANUAL version 1.2 Page 29

3.3 Names or Identifiers,

Many things in C are given names, also called identifiers. Names follow a set of rules which are
similar to those in many programming languages. A name must start with a letter or an underscore (A-
Z, a-z, _) and then the rest of the name must consist of letters, digits or underscores (A-Z, a-z, o
0-9). There can be an arbitrary number of characters in a name but only the first eight are taken
account of inaC program. The rest are just there to make a more meaningful name. Upper and lower
case letters are different so abc is a different name to aBc. C programmers normally use lower-case
wherever possible and reserve upper case names for preprocessor names (gv). There is a convention
that names beginning with an underscore are reserved for the compiler's own use. Examples of names
allowed for normal use in programs are:

A a fred Sinclair_ZX Spectrum Sinclair_Qu
main _exit EX _DE HL

There are some points to make about some of these names:

Sinclair_ZX_Spectrum and Sinclair_QL are THE SAME NAME.
main is always the name of the main function in your program where execution of the program begins.
and _exit may well be system names. [t would be unwise to use them in your programs.

EX_DE_HL would conventionally be the name of a constant (#define EX DE HL OxEB).

3.4 Keywords.

Some names are kept for special uses in the language and they cannot be used for anything else. These
names are called keywords or reserved words. The list of keywords is:

auto break case cast
char continue default do
double else entry extern
float for goto if
inline int long register
return short sizeof static
struct swi tch typedef union
unsigned while

3.5 Formal Syntax Summary.

After looking at the tokens which are used to write C programs we will now look at the overall plan of
a program and begin our examination of the parts which make it up.

We start with a syntax summary based on that in Kernighan & Ritchie so that it is easy to compare, but

it reflects the syntax accepted by the Hisoft-C compiler and has been re-ordered so that the overall
structure of a program is clearer.

Section 3-5

Page 30 HISOFT C MANUAL version 1.2

The aim of the summary is to describe what is permitted in Hisoft-C programs, and this is done by
splitting a program up into its components and then describing what makes up each part. A special
notation is used to help with this task, but the notation is very simple and easy to understand. The
naime of each component is given, followed by a list of possible alternative ways to write one of these
parts. Each alternative is on a separate line and if there are several parts making up an alternative
then they are just listed after one another on the line.

If an item has " _OPT" attached to it then it is an optional item. [f an item has “_LIST". attached to
it then it may be repeated an arbitrary number of times, but must be there at least once. I[f an item
has both _LIST and _OPT attached, then it may be missing altogether or repeated an arbitrary number of
times.

For example, if we look at the very first definition for a "program", we can see that a "program" is
just a sequence of "external definition"s. The next definition tells us that an "external_definition"
is either a "function_definition" or a "data_definition" and so on.

3.5.1 Programs and External Definitions.

program:)
external_definition LIST

external_definition:
function_definition
data_deiinition

function_definition:
type_specifier OPT function_declarator function_body

function_declarator:
declarator ()
declarator (parameter_list)

parameter list:
identiticr
identifier , parameter_list

function_body:
type_declaration LIST { declaration_LIST_OPT statement LIST }

data_defintion:

type_specifier OPT init_declarator_list H
extern type_specifier OPT Tnit__declarator_list H
static type_specifier OPT init_declarator_list H

Section 3-5

HISOFT C MANUAL version 1.2 Page 31

3.5.2 Declarations.

init_declarator_list:
init_declarator
init_declarator , init_declarator_list

init_declarator:
declarator
declarator initializer

declaration:
decl_specifiers declarator_list ;

type_declaration:
type_specifier declarator_list ;

declarator_list:
declarator
declarator , declarator_list

declarator:
identifier
{ declarator)
* declarator
declarator ()
declarator []
declarator [constant_expression]

decl specifiers:
“sc_specifier
type_specifier
sc_specifier type specitier

sc specifier:
T auto
static
extern
register
typedef

type_specifier:
char
short
int
long
unsigned
short int
long int
unsigned int
struct_or_union_specifier
typedef_name

Section 3-5

Page 32 HISOF T

typedef_name:
identifier

struct_or_union_specifier:
struct { struct_decl_list }
struct tag_name { Sstruct decl | list |
struct tag_name
union { struct_decl list |
union tag_name { struct_decl list |
union fag_name

tag_name:
identifier

struct_decl_list:
type_declaration LIST

initializer:
= co stant_expression
= { initializer_tist }
= | initializer_list , }

‘nitializer list:
constant_expression
initializer_list , initializer_list
{ initializer_list 1}

3.5.3 Statements.

compound_statement:
[statement LIST OPT |}

“tatement:
compound_statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;

for (expression OPT H expression OPT H expression OPT)
switch (expression) statement -

case constant_expression : statement

defauit H statement

break H

continue H

return H

return expression H

goto label _name H
label_name : statement

Section 3-3

C MANUAL version 1.2

statement

HISOFT C MANUAL version 1.2

inline (constant_expression_list) ;

’

label_name:
identifier

3.5.4 Expressions.

expression_list:
expression
expression , expression_list

expression:
primary
& lvalue
expression
I expression
expression
4 Ivalue
- lvalue
lvalue ++
lvalue --
sizeof (type specifier)
cast (type specifier) expression
expression binary operator expression
expression ? expression : expression
Ivalue assign_operator expression

primary:
primary lvalue
constant
string
(expression)
primary ()
primary (expression_list)

primary_ivalue:
identifier
primary [expression]
Ivalue . identifier
primary -> identifier
(Ivalue)

ivalue:
primary_lvalue
* expression

binary_operator:
*

Page 33

Section

3-5

Page 34

v

Ree— 11U AV

==

HISOFT C

«

assign_operator:

= -z * /= %= »= «=

constant_expression_list:
constant_expression
constant_expression , constant_expression_list

constant_expression:
expression

3.5.5 Preprocessor Lines.

#define
#include
#include
#include
#include
#include
#direct+
#direct-
#lists
#list-
#error

3.5.6 Notes,

identifier token_string

filename

"filename"
<filename>
?filename?

MANUAL version 1.2

We have broken our rules in the definition of "binary operator" and “assign_operator” in order to

achieve a neater appearance.

Each operator is just one of those shown, not a whole line of them!

Constant expressions are only brought in as a syntactic term to emphasise those places where they are
needed. They are identical to ordinary expressions except that their value can be (and is) calculated
when the compilation is being done.

Section 3-6

HISOFT C MANUAL version 1.2 Page 35

3.6 Programs.

A C program is just a collection of functions and interspersed data. Functions are similar to the
procedures, subroutines etc of other languages. A function has a name and possibly some parameters
(known together as the function heading) and some statements to be executed (known as the function
body). All the work of a C program is done by these statements.

Among the functions there must be one called "main", and when a C program is rum, all that happens is
that the "main" function is called.

The smallest possible C program is:
main(){}
which does absolutely nothing. The smallest program which is normally presented as an example is:

main()

{
}

printf("Hello, world.");
which simply displays a message on the screen.

3.7 Layout.

Layout of a C program is not important to the compiler, as you can see from the smallest possibie
program above, but most people have strong views and prefer a neat indented layout.

A C program is made up of names and constants together with a number of other special symbois usually
including a liberal sprinkling of { and }. Collectively, these items are known as tokens,

Each of these symbols can usually be placed right next to another one, but sometimes they have to be
separated where confusion might occur, and the program is likely to be easier on the eye if symbols
are separated.

The characters used to separate tokens are known as white space. They are: the space character, the
newline, form feed, tab.

3.8 Comments.

Comments can also be used anywhere that white space can go. They are used to explain what a program
is doing, and to give it a title etc. A comment starts with /* and finishes at the next */. There

can be no spaces between the /and the *, Any characters may appear in a comment. Comments DO NOT
nest.

Section 3-9

Page 36 HISOFT C MANUAL version 1.2

3.9 Functions.
syntax

function_definition:
type_specifier OPT function_declarator function_body

function_declarator:
declarator ()
declarator (parameter_list)

parameter_list:
identifier
identifier , parameter_list

function_body:
type_declaration LIST { declaration_LIST_OPT statement_LIST }

example

unsigned strlen(string)
char string[};
{

int length;

for{length=0; string{length]; length=length+1l) ;
return length;

}

Functions are a very important part of C programs and indeed it can be said that they ARE the entire
program. In the example programs above we saw a function definition. We told the compiler what we
meant by the "main" function.

In the "Hello, world." example we also saw a function cail. We told the compiler that we wanted to
perform a function. In this case the function was a built in library function named "printf", which
displays a message on the screen. All functions are called in the same way by writing their name
followed by a pair of parentheses. In between the parentheses are any arguments which are to be
passed to the function.

In C a function always has a result which can be used in an expression. By ignoring the result of a
function, we have a procedure. The result of a function has a data type just like a variable,
although there are some types which a function cannot return. These restrictions are discussed below
in the Data Type section.

Now let's move on to consider how to write functions in detail. When a function is defined, the given
identifier (the name of the function) is followed by a pair of parentheses enclosing a “parameter
list", which states the number and variety of the arguments a function expects to be passed. The fact
that a function has the parentheses and parameter list in its declaration marks it from a variable
declaration. The parentheses, '(' and ')', are always there, even for those functions which do not
expect parame ters.

Section 3-9

HISOFT C MANUAL version 1.2 Page 37

Note that there is NO semi-colon following the parameter list, as there may be more to come in the
declaration - the parameters themselves need to be declared in terms of type. You can see this in the
example, where the parameter "string" is shown as an array of characters.

Immediately foilowing a function declaration of this form is the function body. This is enclosed in
braces, ‘(' and '}', and consists of some optional variable declarations followed by any number of
statements formed from C keywords and expressions. [t is not possible to define functions within
other functions,

Parameters to functions are always passed by value, not by reference. The only manipulations possible
upon functions are to call them and to take their addresses. A function declaration with no storage
class and no data type specified returns an integer.

There is an additional feature in Hisoft C function definitions which provides a way of defining
functions which take a variable number of actual arguments (these are called "variadic" functions).
The reserved word "auto" can follow the function-declarator before the function-body (eg between the
"strien(...)* and the ‘"char stringl}; (...}"). The effect is to cause the compiler to place the
number of bytes of actual arguments as an additional argument after the rest. The function can access
this argument and use it to work out how many other arguments there were. The standard library
functions "min" and "max" make use of this facility and the source code in the library HEADER file
"stdio.h" provides an example of how to write such a function.

We will move on now to consider statements and expressions, leaving the discussion of declarations
until later. This is because the way that declarations are written is unique to C and depends heavily
on how expressions are written. We will consider the "pre-processor" at the end.
3,10 Statements.
A function is comprised of individual statements, ali of which are executed in textual sequence unless
a "control flow" statement is used to specifically alter this order. We will look at each individual
type of statement in turn,
3.11 Compound statements or blocks.
syntax

{ statement LIST OPT }
example

{ putc(character, file_pointer); putchar(character); }
In every instance where the syntax dictates one statement, we can have as many statements as we see
fit by creating a compound statement.A compound statement is formed by placing an arbitrary number of
statements inside braces, '(' and '}'. The language treats this as one statement, but executes each

statement inside the block as individual statements. A compound statement is enclosed in braces and
is not terminated by a semi-colon.

Section 3-11

Page 38 HISOFT C MANUAL version 1.2

3.12 Expression Statements.
syntax

expression ;
examples

+4i;

a = 3;

printf("hello");
Any expression can be turned into a statement by putting a semicolon after it. Expression statements
are very common and in fact most calculation in C programs is done by expression statements. The
expression is evaluvated and then the value is discarded; which means that the only effects of the
expression are its side-effects! Typically these are a new value assigned to a variable, or some
input or output.
3.13 The if or conditional statement.
syntax

if (expression) statement

if (expression) statementl else statement2

examples
if (units == 10) { units = 0; ++tens; }
if (i > 0) printf("positive"};
else if (i < 0) printf("negative");
else printf("zero");

This causes the expression to be evaluated. If it has a TRUE (non-zero) value, the first statement is
executed. If it is FALSE (zero), then the first form does nothing, while the second executes the
second statement. In the case of numerous nested if-else clauses, any ambiguity concerning the
attachment of the "else" is resolved by connecting it with the prior "if".

Section 3-13

HISOFT C MANUAL version }.2

3.14 The while statement.
syntax
while (expression) statement

example

Page 39

while ((c = getchar()) != EOF) putchar(c);

This evaluates the expression, and if it is TRUE (non-zero), executes the statement. It then repeats
the process, stopping only when the expression becomes FALSE (zero). As the expression which
determines the condition is evaluated before the statement is executed, the zero-case is catered for.

Thus, .
while (0) statement

will cause the statement to be executed no times, and
while (1) statement

will cause the statement to be executed for ever.
statement).

3.15 The do statement.
syntax

do statement while (expression) ;
example

do *stringl = *string2++;
while (*stringls++);

There are ways out of this (see the break

This causes the statement to be executed, and then the expression is evaluated. If it is TRUE (non-
zero), the process repeats itself, while if it is FALSE (zero), the statement terminates. Note that
the semi-colon following the expression is necessary. The do statement always evaluates its

expression after execution of the controlled statement.

Section 3-15

Page 40 HISOFT C MANUAL version 1.2

3.16 The for statement.
syntax

for (expression_OPT H expression OPT B expression OPT) statement
examples

for (s = string; c=*s; ++s) putchar(c);

for (x=0; s[x};) putchar(s[x++1);

for (;;) if (! *ss++) break;
The first expression is evaluated once only to initialise the loop. It then evaluates the second
expression, and if this is TRUE (non-zero), executes the statement followed by the third expression
before reiterating to evaluate the second expression again. The for statement terminates if the
second expression is FALSE (zero); neither the controlled statement or the third expression is
executed aghin.
If the first expression is treated as an initialisation statement, the second as an iteration test and
the third as a loop increment, the for statement can be compared easily with other languages' FOR
loops:

for (x=0; x<i0; ++x) statement
is equivalent to BASIC's:

FOR x = 0 TO 9 STEP 1|

statement

NEXT x
Any or all of the expressions in the statement may be left out; if the second (testing) expression is

left out, it is equivalent to a "while (TRUE)Y' loop. The semi-colons must be retained even if the
expressions are left out.

Section 3-16

HISOFT C MANUAL version .2 Page 41

3.17 The switch statement, case labels, and the default label.
syntax

switch (expression) statement

case constant__expression : statement

default : statement
example

switch (day)
{

case 0: printf{"Monday - back to the grindstone");
break;

case 4: printf("Friday - tomorrow's the weekend!");
break;

case 5:

case 6: printf("weekend - don't wake me early");
break;

case l: case 2: case 3:
printf("boring days");
break;
default: printf("%d is not a day of the week!!!", day);

1
}
The statement is almost always a compound statement, so:
switch (expression)

statement LIST

}

is probably a more useful way to look at the syntax, The switch causes control to be passed to one of
several statements inside the block depending on the value of the expression, which must evaluate to
an integer. The switch chooses which statement to pass control to by comparing the resuit of the
expression with a "case label" inside the block.

Any statement inside the block may be given a case labei, but each case label must have a different
value constant expression. A statement may be given more than one case label, in which case numerous
values of the switch expression cause control to be transferred to that statement. Each case label is
simply a destination for control; it does not imply the Pascai-like "go there, do that statetment, and
end". It is a multi-way GOTO contruct. If, after the control has been transferred, other case-
labelled statements are met, no extra or special action is taken. This situation can be controlied
using the "break" statement (see below).

At most one statement may be labelled with a special case label called the default label. This causes
the control to proceed to this labelled statement if the value of the switch expression matches no
other case label. 1f the default label is not present, and the switch expression does match any of the
case labels, contro! is transferred to the statement following the switch statement,

Section 3-17

Page 42 HISOFT C MANUAL version 1.2

3.183 The break statement.
syntax

break ;
example

see switch statement above

This causes the nearest (smallest textually enclosing) while, do, for or switch statement to be
terminated and control is passed to the statement immediately following the terminated statement.

3.19 The continue statement.
syntax

continue ;
example

tens = units = 03
for (i=0; i<100; ++1i)
{

printf("\n%d %d", tens, units);
++units;
if (units <10} continue;
units = 0;
++tens;

}

The continue statement causes control inside the nearest (smallest textually enclosing) while, do or
for statement to pass to the loop iteration part of the statement, causing the iteration test to be
performed. In all cases, this means that continue has the same effect as a jump to the very end of the
controlled statement. For instance, the example above is equivalent to:

tens = units = | = 0
while (i<100)
{

printf("\n%d %d", tens, units);
++units;
if (units <10) goto contin;
units = 03
++tens;

contin:
++i;

}

Section 3-19

HISOFT C MANUAL version }.2 Page 43

3.20 The return statement.
syntax
return 3
return expression ;
example
return end - start;
This statement causes the termination of a function. The first form, with no following expression, is
equivalent to "falling out" of a function by coming to its textual end; and the result of the function
is not defined. When return is followed by an expression, this expression is used as the result of
the function.
3.21 Labelled statements and goto.
syntax
goto label name ;
label_name : statement
example
label:

switch(getchar{))
{

': puts{"YES"); break;
‘: puts("NO"); break;
: goto label;

case 'y

case ‘'n

default
}

Any statement inside a function may be labelled by preceding it with an identifier and a colon. This
label serves one purpose only - as a destination for a goto statement. The label is in scope anywhere
inside the function in which it was defined. The label must apply to a statement, and the null
statement { ;) can be used for this purpose if required.

The goto statement causes control to pass to the statement labelled by the given identifier, which
must be defined in the same function,

In a language like C it is almost always possible 1o find a clearer, more efficient way to rewrite a
function without using goto statements. Except on rare special occasions they are an indication of
careless programming or a poor algorithm.

Section 3-21

Page 44 HISOFT C MANUAL version }.2

3.22° The inline statement.
syntax

inline (constant_expression_list)
examples

/* to jump to location 0: */

intine(0xC3,0,0); /* 0xC3 is the Z80 'IP' instruction */

/* to call location Ox160! with 3 in the A register */
/* (open stream 3 on a Spectrum): */

#define CHAN OPEN Oxi601
#define LD A with O0x3E
#derine CALL™ 0xCD
intine(

LD A with, 3,
CALL, CHAN_OPEN
)i :

/* to store an input character in a global variable "c": */

#define LD HL into 0x22
inline(-7
CALL, getchar,
LD_HL_into, &c
|H

A new type of statement (which looks like a function call) is used:
inline (k1, k2, k3, ...) ;

kl, k2 etc is a list of constant expressions which will be put into the output code. An expression
which has a value in the range 0 to 255 inclusive will cause a single byte to be generated and any
other number will cause two bytes to be generated. Any constant expression may be used. Many other
examples of the use of inline can be found in the machine specific library "BASIC.LIB".

This statement introduces native machine code directly into a C program. Each constant_expression in
the parenthesised list following the "inline" is entered into the compiled program at exactly that
point, and each will be executed as machine instructions in the sequence in which they appear in the
list. There can be an arbitrary number of constant expressions in the list, but there must be at least
one.

Be careful when using this facility. Consult the "Low-Level" section in this manual to find out which
registers need saving etc.

Section 3-22

HISOFT C MANUAL version 1.2 Page 45

3.23 The null statement.

syntax

r
examples
while (getchar() == ' ')

if (some _condition)
{
if (another condition) goto label;
do_something();
label: H

}

The extreme case of a statement is the null statement which is perfectly valid, and causes nothing to
be done. It is often useful in delay loops or control flow statements which do all their work in the
controlling expression. It is also useful sometimes as the destination statement of a goto.

3.24 Expressions.

Expressions are combinations of constants, variables, operators and function calls which together have
a single value. While expressions in C share the common aspects of other languages' expressions, the
variety of operators available is far greater.

To understand how to form valid expressions, we need to consider the operators available. The
operators are divided into three approximate groups, according to how they are put together with their
operands. The "primary" operators form the first group: these each have a special syntax or pattern
to write them. The second group comprises the "unary" operators which take a single operand, usually
after the operator (as in -27). The third group contains the "binary" operators which are all infix
operators, sitting between their two operands (as in 2 + 3). There is actually a single “ternary”
operator which takes three operands (? :); and this is best regarded as part of the binary group for
most purposes.

Each operator has a 'precedence’ and an ‘associativity' which determine the meaning of an expression
involving several operators. Operators of higher precedence bind more tightly than those of lesser
precedence; and operators of equal precedence usually asscciate (form chains) from left-to-right.
These rules are designed to match our previous experience with arithmetic. For example:

1 -2 -4*5
evaluates to -2i just like:

(r - 2) - (4 *3)

and not like some of the other possibitites:

Section 3-24%

Page 46 HISOFT C MANUAL version 1.2

((1 - 2) - 4) » 5 /* strict left-to-right with no precedence */
1 - (2 - (& * 5)) [* strict right-to-left with no precedence */
1 - (2 - (4 * 5)) /* right-to-left with * higher precedence */
(1 - (2 - 48)) =5 /* right-to-left with * lower precedence */

There are a few exceptions to the left-to-right associativity rule. These are the assignment
_ operators, and the conditional operator (7:). The precedence and associativity of each operator is
given in the table below,

Precedence and associativity can be over-ridden with parentheses, and the golden rule is "“if in doubt,
use parentheses",

It should be noted that the order of evaluation of an expression (the sequence in which the value of

the parts of an expression are calculated) is NOT specified by the language; and it certainly varies

considerably from one compiler to another. This means that you cannot ever trust an expression like:
n = getchar() + (getchar() << 8);

and should rewrite it in two separate statements:

getchar();
getchar() << 8;

n
n +

The &&, |I, and ? : operators are about the only ones which make guarantees about order of evaluation.

Section 3-24

HISOFT C MANUAL version 1.2

Operator & Needs
Precedence Lvalue

(exp) 16
func() 15
] 15
. 15 yes
-> 15
. 14
& 14 yes
- 14
! 14
14
- 14 yes
- 14 yes
slzeof 14
cast 14
* 13
/ 13
2 13
+ 12
- 12
> 11
<« 11
< 0
>
(=
S
[9
1w
& 8
- 7
| 6
&& 5
i 4
? 3
= 2 yes
op= 2 yes
NOYES
arith-ptr means
grp-r-1 means

3.25 Table of Operator Precedence and Types.

Ty;ec of Arguments
Left |

ight
any
func returning ...
ptr to integral
structure meaber
ptr member
ptr to ...
arithpetic
arithmetic
ptr
integral
type_specifier
type_specifier
arithwetic ari{thmetic
arithmetic arithmetic
integral integral
arithmetic arithmetic
ptr to ... integral
integral pPtr to ...
arithmetic arithmetic
ptr to ... integral
ptr to ... ptr to ...
integral(L) integral
iategral(L) integral

arithoetic arithmetic
ptr to ... ptr to ...
arithmetic aritheetic
ptr to ... ptr to ...
ptr to ... integral
integral integral
integral integral
integral integral
arith-ptr arith-ptr
arith-ptr arith-ptr
arith-ptr arith-ptr
arith-ptr arith-ptr

Page 47

Result Type

unchanged

type of meaber
type of member

ptr to ...
arithmsetic
int

int
integral

int
type specified

arithmetic
arithometic
integral

artithmetic
ptr to ...
ptr to ...
aritheetic
ptr to ...
int

integrai(L)
integral(L)

int
int

int
int
int

integral
integral
integral
int

int
arith-ptr *grp-r-1

arith-ptr *grp-r-l

as for = but also constraired by the operator (op)

arithmetic or pointer type

groups right to left

Section

3-25

Page 43 HISOFT C MANUAL version 1.2

3.26 Identifiers, Constants, and Strings.
syntax

identifier

constant

string
examples

a_very_long _name
i

42

at

"Hello, World"

The very simplest expressions consist of just one item: either the name of a variable, or a numeric
constant, or a string. The value is just the value of the variable, or of the constant (considered as
an int). The value of a string is a constant which points to it {of type pointer to char).

3.27 lvalues and array names.

The difference between lvaiues and primaries can be very confusing, and the question often arises as
to why both exist. The answer lies in the fact that Ivalues are basically addresses of some area of
memory such as a variable; which allows extra kinds of expressions. For instance, an lvalue is needed
as the destination of an assignment.

Most identifiers are lvalues, but in particular array names are not. This is because of the way an
array name is used to refer to the array. It is treated as though it were declared as a pointer to
the element type, but it is a constant pointing always at the first element of the array. The only
operations which can be performed upon an array name are ones in which the notional value of the name
is not changed. For instance (array_name + 1) is a perfectly valid expression, yielding a pointer to
the second element in the array and we can use it to assign a new value to the element:

*(array_name + 1) = &;

But an assignment to the array name, to make IT point at the second element does not make sense and
will be rejected by the compiler,

array _name = (array_name + 1);
ERROR - 34 - need an lvalue

Because of this property no address operator { &) is needed before an array name when a pointer to

the array is required. This is also true of the names of functions, but contrasts with normal
integral variables and structures. For example:

Section 3-27

HISOFT C MANUAL version 1.2 Page 49

qsort(array, 100, 5, strcmp); /* sort array using strcmp function */
blt(&structure, array, 128); /* move contents of array into structure %/

scanf(" %d %d", &integer, array); /* reads into first element */

3.28 Parenthesised E xpressions.
syntax

(expression)
example

(2 + 5) =7
Any expression can be enclosed in parentheses in order to alter precedence, as in normal arithmetic.
This does not alter the type or value of the enclosed expression.
3.29 Function Call.
syntax

primary ()

primary (expression_list)
examples

printf("Hello")

c = getchar()

scanf(" %d", &n)

(*cmp_func)(a, b)
The function call passes the values of any given arguments to the named function, and returns a result
of the type given in the function's definition. The values of the arguments passed are passed by
value and cannot be changed; but variables outside the function can be changed by passing a pointer to
them. A function call is not an Ivalue and cannot appear on the left-hand-side of an assignment.
Neither the type nor number of arguments are checked against those specitied when the function was
defined. This insecurity can be useful on occasion, but is also a large source of errors. The order

of evaluation of arguments is not specified by the language. Recursive calls are permitted to any
function,

Section 3-29

Page 50 HISOFT C MANUAL version 1.2

3.30 Subscripts.
syntax

primary [expression]
examples

i = array[5}

array[subscript]}{3] = 27

pointer[index]

2 [location_vector]
Subscripts are usually applied to the address of an array, which may be the array name or a pointer to
the array. The specified index is multiplied by the size of the base element of the array and added
to the base address. [In fact the subscript operator is more general than found in most languages and
is identical in all respects to writing:

* ((primary) + (expression))
This flexibility allows all the normal uses of subscripts, and the particularly important extra
ability to treat a pointer as though it were the base of an array. Further uses are boundless!
Please note that as a consequence of this flexibility there is NO BOUND CHECKING of arrays.
3.31 structure member operator.
syntax

Ivalue . identifier
example

file_control block . record_number
This is the structure / union analogy of array subscripting, The result is an Ivalue corresponding to
the specified member of the named structure / union. The identifier on the right of the dot must be
the name of a member of a structure. Normally the lvalue to the left of the dot will refer to a
structure of the appropriate type, but ANY lvalue is permitted.
3.32 structure pointer operator.
syntax

primary -> identifier

Section 3-32

HISOFT C MANUAL version 1.2 Page 51

example

file_pointer -> record_number
The structure pointer operator yields an lvalue corresponding to the specified member of the pointed-
to structure. The identifier on the right of the arrow must be the name of a member of a structure.
Normally the pointer to the left of the arrow will refer to a structure of the appropriate type, but
ANY pointer is permitted. The operation is equivalent to writing:

(* primary) . identifier

3.33 indirection operator.
syntax
* expression
examples
*pointer + 5
*{pointer + 5)
*s++ = getchar()
*strchr('A', string) = 'B'

This operator is applied to a pointer and yields an Ivalue corresponding to the item pointed to.

3.34 address operator.
syniax
& lvalue
examples
&variable
scanf(" %d", &integer variable)
*& * & * & * & do_nothing just_for_amusement
The address operator is the opposite of the indirection operator, in that it yields a pointer to an

Ivalue. The binary value of this pointer is actually the machine address of the lvalue. As non-
Ivalues do not have addresses, it is an error to apply the aperator to non-ivalues.

Section 3-35

Page 52 HISOFT C MANUAL version 1.2

3.35 unary minus operator.
syntax

- expression
examples

-5

(i)

This operator reverses the sign of an expression, by taking its twos complement.

3.36 logical NOT operator.
syntax

! expression
examples

I flag

! poincer
The result of the operator is | if its operand has the value 0, and 0 otherwise, So it reverses the
boolean statz of an expression, such that a FALSE (zero) value will be switched to a TRUE (non-zero)
value and vict-versa.
3.37 bitwise NOT operator.
syntax

expression

example

“inp() & bitmask
The bitwise NOT operator takes an expression and regards it as a binary bit-pattern, It 'flips' the

state of all the bits in the expression value, yielding the one's complement. So the bitwise NOT of
Ox135AF is OxEA 50 (in binary the two numbers are 0001 G101 1010 1111 and 1110 1010 0101 0G0OQ).

Section 3-37

RISOFT C MANUAL version 1.2 Page 53

3.38 the increment and decrement operators.

syntax
++ lvalue
- lvalue
Ivalue ++
Ivalue -
examples
s+

*string pointeres
(structure_pointer+s+)->member

The ++ operator increments an Ivalue while the — operator decrements it. As it implicitly includes
an assignment, the expression that it is applied to must be an lvalue,

The ++ and -- operators can be used either as a prefix or as a postfix. 1f the operator is written
before the lvalue, then the lvalue is incremented and the resulting new value is the value of the
expression; while if it follows the lvalue, the value is incremented but its original value is the
value of the expression,

Its action is to add | to (or subtract | from) the lvalue, but this 'l' is better regarded as 'sizeof
(type_of lIvalue)’, as it actually increments in type-sized units. For example, if ptr points to the
nth element of an array, then
*riptr
refers to the (n+i)th element and resuits in ptr pointing to this element, while
*ptres+
refers to the nth element and results in ptr pointing to the (n«l)th array element. If the array is
an array of integers (which each occupy two bytes) then the binary value of ptr will increase by TWO

each time it is incremented. The decrement operators are analogous to the increment operators but
decrease the value of the lvalue by | unit.

Section 3-38

Page 54 HISOFT C MANUAL version 1.2

3.39 the sizeof operator.
syntax

sizeof (type_specifier)
examples

sizeof(int)

struct fcb { int fieldl; struct fcb *field2; } ;
sizeof(struct fcb)

typedef char *char_pointer;
sizeof(char_pointer)

The sizeof operator yields the size of the specified type in bytes.

3.40 the type cast operator.
syntax

cast (type_specifier) expression
example

cast(char_pointer) OxABCD

This operator performs ‘type coercion' upon an expression; forcing its type to be that specified.

changes take place in the binary value of the expression.

3.41 multiplication operator.
syntax

expression * expression
example

3¢5

This operator multiplies the first expression by the second, and returns the product as its result.

No

Arithmetic overflow is not considered an error in C, so a value exceeding the data type range of the

result may be ‘wrapped around’.

Section 3-4]

HISOFT C MANUAL version |.2 Page 35

3.42 division operator.
syntax

expression ./ expression

examples
7/ 2 == 13
-7/ 2 == .3
7 /‘2 == -3
-7 /-2 == 3

Divides the first expression by the second using integer division, so 7/2 returns 3, not 3.5. The
remainder has the same sign as the dividend, so truncation is towards zero. Division by zero does not
cause a runtime error {in fact it returns the dividend as its answer, but don't rely on this!)

3.43 modulus or remainder operator.

syntax

" expression % expression

examples
7% 2 == 1
-7 % 2 == -|
7 %-2 == i
-7 %-2 ==z -1

This operator returns the remainder following an integer division of the first expression by the
second. The result has the same sign as the dividend. It is always true that (a/b)*b + a%b == a.

3.44 addition operator,
syntax
expression + expression
examples
2 + -5
array pointer + |
-42 + stringend_pointer
This operator yields the sum of the two expressions. For normal integral operands, it behaves as
would be expected. But a pointer and an integer can be added, and in this case the integer is

multiplied by the size of the object pointed to before the addition. So, if array pointer points at
an array element, then after the addition it points at the next element of the array.

Section 3-44

Page 56 HISOFT C MANUAL version }.2

3.45° subtraction operator.
syntax

expression - expression
examples

2 -5

pointer! - 3

pointer2 - pointerl
This operator yields the difference of the two expressions. An integer can be subtracted from a
pointer and, in common with addition, the integer is first multiplied by the size of the pointed-to
object. The subtraction of two pointers to objects of the same type is quite legal, and yields the
number of objects between. the first and second pointers. That is to say, it yields the number of
bytes divided by the size of the pointed-to type. This is meaningful only if the pointers point to
the same array.
3.46 shift operators.
syntax

expression << expression

expression >> expression

examples

1 << bit_number
n> 3

These operators are best considered as bitwise operators, as their action is to shift the bit pattern
represented by the left-hand expression left (<<)} or right (>>) by the number of bits {binary
digits) specified by the right-hand expression. Shifting left always fills vacated bits with zeros,
while shifting right fills vacated bits with the sign bit if the number is signed, and zero if it is
unsigned. Shifting left is equivalent to multiplying the left-hand expression by two to the power of
the right-hand expression; and shifting right is equivalent to an analogous division. A negative
shift count reverses the direction of the shift.
3.47 relational operators.
syntax

expression < expression

expression > expression

expression <= expression

Section 3-47

HISOFT C MANUAL version 1.2 Page 57

expression >z expression
examples

-5 <3

lower limit <= variable & variable <= upper_limit
These operators return boolean values - TRUE (1) or FALSE (0) depending on whether the first
expression is less than (<), greater than (>), less than or equal to { <z), or greater than or
equal to (*>=') the second. Pointers may be compared using these operators, and the result indicates

which points to a higher memory address. Use unsigned rather than int variables for numerical work on
memory addresses.

3.48 equality operators.

syntax
expression == expression
expression != expression
examples
if (i == 5) puts("i equals five");
while ((c = getchar()) !z EOF) putchar(c);

These operators return boolean values - TRUE (1) or FALSE (0) depending on whether the first
expression is equal to (==) or not equal to (!z) the second. Pointers may be compared using these
operators. Pointers may also be compared to integers representing memory addresses. The integer 0
(NULL) is a special case, which is defined as pointing to nothing.
3.49 bitwise AND.
syntax

expression & expression
examples

status_value & mask

alphabetic_character & Ox5F

This operator performs the bitwise AND of the first operand and the second, setting each bit in the
result only if both the corresponding bits in the two expressions are set.

Section 3-49

Page 58 HISOFT C MANUAL version 1.2

3.50 bitwise exclusive OR.
syntax

expression expression
example
alphabetic_character = 0x40
This operator performs the bitwise XOR (EOR) of the first operand and the second, setting each bit in
the result if either but not both of the operands have a set bit in the corresponding bit position.
3.51 bitwise inclusive OR.
syntax
expression | expression
example
40 | 10 == 4z
This operator performs the bitwise OR of the first operand and the second, setting each bit in the
result if either or both of the operands have a set bit in the corresponding bit position.
3.52 logical AND operator.
syntax
expression && expression
examples
return 0 <= x && x < 10 ;
while (list &% list->head != key) list = list->tail;
This operator returns TRUE (1) only if both expressions are non-zero; otherwise it returns FALSE (0).

Unlike the bitwise AND operator (&) && guarantees a left-to-right evaluation of its operands, and it
will not evaluate its second operand if the first is 0 (FALSE or NULL or zero).

Section 3-52

HISOFT C MANUAL version 1.2 Page 59

3.53 logical OR operator.
syntax

expression |l expression
example

if (we_know_its OK || we _can_prove_it_is()) puts(™its OK");

This operator returns TRUE (1) it either or both of its operands are non-zero. Unlike the bitwise OR
operator (|) Il guarantees a a left-to-right evaluation of its operands, and it will not evaiuate
its second operand if the first is non-zero.

3.3 conditional operator.

syntax

expressionl ? expression2 : expression)
examples

absvalue = number < 0 7 -number : number

return isdigit(c) ? c-'0' : isxdigit{(c) ? 10-*a'stolower(c) : ERROR ;

() { puts(™error™); |

main()

{
in
i i 0;

(0 : 0)2 €() 2?2 €¢) + £()) + C j? £() : puts("OK")) ;
i
i : | ? i ? t() : puts("OK") : () ?2 £() : £() H

]

This operator is the only 'ternary' operator (it has three operands) that C supporis. Its effect is
to evaluate the [irst expression, and if this is non-zero, the result is the value of the second
expression, while if the first expression is zero, the result is the value of the third expression.

. Only one of the second and third expressions is evaluated. If one expression is a pointer and the
other an integer (which must be zero), then the result has the type of the pointer.

3.35 Assignment operators.

syntax
Ivalue = expression
Ivalue +z expression
ivalue -: expression

Section 3-33

Page 60 HISOFT C. MANUAL version 1.2

ivalue *= expression
fvalue /z expression
ivalue %= expression
Ivalue >>= expression
Ivalue <<= expression
Ivalue &= expression

Ivalue “= expression
tvalue |= expression
examples
=5

a[39) [(56%£(5)] «z 3
pointer -= 7
C has the standard assignment operator, 'z', which puts the value of the expression into the lvalue,
and it also supports a host of composite assignment operators formed by concatenating an arithmetic or
bitwise opeiator with the assignment operator. The general action of the idiom can be explained:
Ivalue op= expression
is essentially equivalent to

Ivalue = Ivalue op expression

but the lvalue is evaluated only once. This method therefore provides a more concise and efficient
way of performing common assignment operations, as we can now type

tvalue /= 7;
to divide a variable by 7, rather than the more cumbersome
Ivalue = lvaluve / 7;

In common with simple addmon and subtraction, we can use a pointer type ivalue and an |ntegra|
expression with '-=' and ‘+=', which behave like their non-composne counterparts.

An important point to notice about C assignments is lhat they are themselves expressionsv,'and have a
value equal to the value of the left-hand operand after the assigniment (which may have involved
truncation). Thus, it the standard input is at end-of-file, then the sequence:

int int_varl, int_var3;
char char_var2;

int_varl = char_var2 = int_var} = getchar();

sets int_var3 to -1 (the end of file marker value), char _var2 to 255 (because the value is truncated
to fit the char variable), and int _varl to 255 also.

Section 3-35

HISOFT C MANUAL - version 1.2 Page 61

3.56 - Type coercions and the type of the result of an expression.

Every operator expects its operands to have particular types, and the result of the expression formed
from the operator and its operands will also have a particular type. Thus, a general expression will
have a result type, and unless this is explicitly coerced to another type using the cast operator, it
can be deduced from the coercion rules which C compilers follow. The rules for normal arithmetic are:

- First, any operands of char type are converted to ints.
- Then, if either operand is unsigned, the other is changed to unsigned and the result is unsigned.
- Otherwise, both operands must be ints, so that is the type of the result.

Pointers, where they are allowed, produce slightly different result types which are summarised in the
Table of Operator Precedence and Types above.

3.57 Constant Expressions.

We've looked at constants earlier on, and an expression formed entirely from constants and certain
operators is known as a 'constant expression’. A constant expression always has a particular value,
but it may be more convenient to write it as a composite expression rather than as a single constant.
Nevertheless, a constant expression will be evaluated at the time the program is compiled, therefore
saving on run-time execution speed. Constant expressions are only brought in as a syntactic term to
emphasise those places where they are needed.

3.58 Data Declarations.

Data declarations fall into two categories; identifier declarations and constant definitions. We are
concerned here with the declaration of identifiers, whether they are simple integer variables,
complicated structures and arrays, or functions. Constant definitions are handled by the pre-
processor, so each definition is on a line beginning with the "#define" symbol. These are discussed
elsewhere in the pre-processor sections.

Identifiers in a C program have two important attributes: the data type and the storage class. The
data type defines how the data is to be interpreted and manipulated by the compiler and program. The
storage class defines how the data is stored by the compiler: it may be limited to a function's stack
frame, or it may be available to the whole program throughout the life of the program by being stored
eisewhere.

3.59 The scope of identifiers.

Each identifier declared in a C program has a 'scope’, which determines its validity throughout the
program. An identifier is in scope only following its textual declaration (which may not necessarily
coincide with its definition). If an identifier is in scope at a given time, then it is 'known about'
at that time in the program and can be used with perfect validity.

An identifier declared outside any function is in scope throughout the rest of the program, except

that any identifiers with the same name which are declared within a function take precedence. An

Section 3-39

Page 62 HISOFT C MANUAL version 1.2

identifier declared within a function is in scope throughout the function, and any identifiers of the
same name declared outside the function will be hidden until the end of the function definition. When
an identifier falls out of scope and subsequently falls back in again, its value will not have been
altered. Let us give an illustration of all this:

int i = *i'; /* a global variable initialised with the character 'i' #/
int 1()
{

i= 'f'; /* new value for the global variable */
printf(" %c", i); /* which is printed */

int g()

{
int i; /* a local variable, also called i ¢/
iz 'g'; /* is given a value */

printf(" %", i); /* and the value is printed */

int main() /* this is where execution of the program starts */
printf(" %c", i); /* print the initial value of the global variable */
iz 'mty /* give it a new value */
printf(" %c", i); /* and print that ./
tQ); /* call the function f and see how that affects i */
printf(” %c”, i); /* by printing the value of i after calling f */
g(); /* do the same for the function g */
printf(” %c", i);

} /* and this is where the program stops */

When this program is run it prints out:

imttgt

3.60 Data i'ypes and type_specifiers.

Variables in C programs are each of a particular type, which may be one of the predefined types (eg
int variable), » a user-defined type declared with a typedef declaration (eg FILE *fp), or an
anonymous type (eg int *(*fON]). The C compiler checks that the variables used in an expression are
of compatible types in order to help detect programming errors.

The type checki:g is done by a method known as structural equivalence. This that two variables
have the same type if their declarations have the same structure no matter where they are declared.
This notion is also employed when operators such as * (indirection) and & (address) are applied. So
for example if:

Section 3-60

HISOFT C MANUAL version 1.2 Page 63

int potar[2];

typedef complex[2];
complex z;

int (®*ptr_Cartesian){2];

then polar, z, and *ptr_Cartesian are all of equivalent types. This is different to some other
languages where they need to have the same named type to be equivalent or to be declared at the same
place. Structural type equivalence is more flexible, but can lead to obscure bugs if misused and it
is generally good practice to give a name to complicated types by using typedef.
The type specifiers are: char, int, unsigned, struct, union, typedef. The type specifier, if left
out, defaults to 'int'.
3.60.1 char.
syntax

char declarator_list ;
example

char ¢, another_character, a_string[50];
The char data type is usually used to represent a single character, and for this purpose it can be
considered as an unsigned quantity which can hold any single member of the host computer's character
set. This implies that a char will occupy at most eight bits on Z8C based machines, so a char is
generally equivalent to a byte. It is important to remember that a char is unsigned.
Surprisingly on an 8 bit computer like a Z80, it is actually more efficient to use 2-byte int
variables than I-byte chars; except where there is an array or string of characters.
3.60.2 integer.
syntax

int declarator_list ;
example

int a_number, a_character_variable, a_count, a_truthvalue;
This data type is used to hold integers, which are signed numbers from a given minimum value (often
referred to as 'minint’, but don't take it for granted!) through zero to a maximum value, often called

‘maxint'. In Hisoft C, minint is -32768 and maxint is 32767: because an integer is the usual Z80
two's complement 16-bit integer.

Section 3-60

Page 64 HISOFT C MANUAL version 1.2

The int type is also used to hold character variables, because end-of-file is inarked by a special
value of -1 which will not fit into a single byte. It is also used for truthvalues (TRUE is | and
FALSE is 0).

The integer is the default data type in instances where a data type definition is optional. So a
function will be assumed to return an integer unless specified otherwise. Programs are generally

clearer if the type is defined explicitly everywhere, because there is another convention sometimes
used, which says that "If | don't declare the type, its because | don't use the result”.

3.60.3 unsigned.

syntax
unsigned declarator_list ;
unsigned int declarator_list ;

example
unsigned an_address, a_large number, a bit_pattern;

The two forms of the syntax above are completely interchangeable. An unsigned int is the same size as
an int (ie two bytes), but the number is not considered to be signed two's complement. This means
that an unsigned variable on a Z80 system can hold values between 0 and 63535. Although this range is
co-incidentally the same as that held by a pointer, it does not impily that the two data types are
interchangeable!

3.60.4 pointer.
syntax
* declarator

examples

char *s;
struct tag_name (*t())(];

The pointer is not really a type, and is used as the basis for indirection. It holds a value which,
if considcred as a machine memory address, is the address of a variable of any type. As a pointer can
be seen as a valid machine address, it follows that a pointer is always the same size regardless of
what type of object it points to.On a Z80 system, memory addresses are unsigned I6-bit numbers from 0
to 65333, but it is unusual and not very sensible to use explicitly the address held in a pointer.

One would normally get to an object through a pointer by taking advantage of the indirection
facilities offered by the C language. Note also that there is nothing unusual in having a pointer
point to another pointer, which may point to another pointer, and so on. Pointers may point to any
other type of object, and this is explored in more detail below under the heading "Building up Data
Types". In the examples above “s* is a pointer to a char; while "f* is a function which returns a

Section 3-60

HISOFT C MANUAL version 1.2 Page 65

pointer to an array of structures. A pointer has the type 'pointer to ...", where '...' is the type
of the object pointed to.

3.61 Aggregate data types.

A language would not be complete if it could not store related daia grouped together in a sensible
fashion. Almost all languages support arrays for just this purpose; C also provides structures and
unions.

3.61.1 Arrays.,
syntax

declarator []

declarator [constant_expression]
examples

char s{50};
int t{10] [20];
struct tag name a[42];

An array is a sequence of individual items, each of the same data type, which can be accessed by an
index from a base. This is called subscripting, and the index into the array is called the subscript.

If the elements of an array are stored contiguously in memory, which they are in C, then the name of
the array is equivalent to its base address. As C arrays start at subscript zero, it follows that
this address is also the address of the first element of the array.

When a subscript is applied to an array, it is multiplied by the size of the data item and added to
the base, thus giving the address of the required element. However, subscripting also implies
indirection, so the data object accessed in this way is actually the value of that member of the array
rather than its address.

C arrays can be based on any type, including further arrays, so it follows that arrays can have more
than one dimension. Although the name of an array equates te its base address, this name is actually a
constant at compilation time, The significance of this will be made clear when we discuss 'lvalues'.

An array is specified by following the identifier concerned with '[' square brackets containing the
array dimension: For example "char s{50}" declares "s" as being an array of 50 characters (from index
0 to index 49) and “int t{10] [20]" declares 't' as a two-dimensional array (consisting of ten arrays
of an array of 20 integers). "a" is an array of forty-two structures.

Section 3-6%

Page 66 HISOFT C MANUAL version 1.2

3.61.2 Structures and Unions.
syntax

struct { struct_decl list }

struct tag name [struct_decl_list |
struct tag_name

union | struct_decl list }

union tag_name | struct_decl_list |}
union tag_name

struct_decl _list:
type_declaration LIST

examples

struct s_tag | /= 1 */
char s3
char *t;
int i
struct s_tag *sp;
s

struct list | /* 2
int head;
struct list *tail;
}

a_list_item, *a_list_pointer;

struct s tag | /I 3 +/
char s;
char *t;
int i
struct s_tag *sp;
b
/* some other declarations */
struct s _tag item, shelf[20], *this item;
static struct s_tag v; -

Arrays are all well and good, but they have the limitation that each member of the array must be of
the same type. So, although we can have an array of arrays, we cannot have an array holding a
character, an integer AND a pointer. The Pascal language overcomes this by implementing a 'record’
data type; in C, the equivalent of a record is the structure.

A structure can hold any number of items of any variety of types, including further structures,
arrays, and arrays of structures. They do share some of the limitations of arrays, in that the only
manipulation we can perform on a structure as a whole is to take its address. In much the same way
that an array name is a constant, a structure name is also a constant. Like arrays, we can maintain a
pointer to a structure and thus facilitate our data manipulations.

Section 3-6!

HISOFT C MANUAL version }.2 Page 67

Each item in a structure is called amember, and to access a member we need to specify the member name
as well as the structure name (or pointer). We must stress that each member can be of any type, and
that structures can themselves be the elements of an array.

Structure and union declarations are slightly different to the previous kinds, as a structure is an
arbitrary aggregate item. A structure "template” can be declared without any identifiers. taking on
this type as in the first example above. This associates the “"structure tag" ("s_tag" in this
example) with the structure format given. No identifiers are defined and no storage space is
allocated, but the structure tag can subsequently be used in declarations. Our example above
associates s_tag with a structure type containing a character member s, a character pointer member t,
an integer T and a pointer to a structure sp. Notice that in this example, the structure pointer sp
also points to an s_tag type structure so we can form chains or lists of structures.

We may declare identifiers at the same time as the template as in the second example where we have
declared a type of structure called a "list". We then go on immediately to declare one of these
structures, and also a pointer to this structure type.

We can make a list of numbers using this structure. The list pointer points to one of the structures
which is at the front of the list. The first member of this structure is its "head" which is the
first number in our list. The second member of the structure is its "tail” and this points at the
next structure in the list, which in turn contains the second number in the list an¢ so on. The
process comes to an end when we find a structure whose "tail" is zero (NULL); this marks the end of
the chain,

Or we may declare the necessary identifiers sometime after the template definition, as in the third
example. In this case we have declared "item" as being a single structure of type s_tay, "shelf" as
an array of 20 structures of this type, and “this_item" as a pointer to an s_tag type structure. "v"
is a static structure of type s_tag.

Note that the structure tag is entirely optional, but it does not make sense to declare a template
alone without a tag, as we would be unabie to use the thus-defined template in any declarations.

A union is the "do anything" data type of C, and its purpose is to hold any given data type. It can
hold one data type only at a given time, but we may specify which data type it is by referring to the
member of the union which is of that type. Unions are declared in exactly analogous ways to
structures, with the "struct" keyword being replaced by "union".

3.61.3 Pointers to functions,

Functions themselves are typed, meaning that we declare what data type the result of a ‘unction will
be when we write it. Functions can return all the types we have discussed, but aggregate types can
only be returned whole as pointers; the value of an individual non-aggregate member can be- returned
under all conditions. More importantly, a pointer ‘to a function is.a subset of the pointer type, which
means that we can create arrays, structures and so on of pointers to functions. This is not quite the
same as the (impossible) creation of an array (etc.) of functions.

Section 3-62

Page 68 HISOFT C MANUAL version 1.2

3.62 Storage Classes.
syntax

auto type_specifier OPT declarator_list ;
static type_ specmcr OPT declarator list ;
extern type specmer OPT declarator_ _list
register type_: specnher OPT declarator list ;
typedef type_specnher__OPT declarator__hst H

examples

auto local_variable;

static int permanent local_variable;
extern char *strcpy();

register char another_local_variable;
typedef int *int_ptr;

The storage class of an item of data determines both how the compiler will store that item and for how
long it wiil be stored. The storage class specifiers available are: auto, static, extern, and
register. We will examine each class in more detail below,

The storage class defaults depend upon the location of the declaration. 1f the declaration is inside a
function and the storage class specifier is left out, it will default to "auto", which introduces an
automatic variable. If the declaration is outside of any function, the storage class defaults to
“external",

3.62,1 automatic.

This class is the equivalent of most other languages' “local variable®, as an automatic variable is
created at the point of invocation of the function containing it, and it is "killed" when the function
terminates. An automatic variable lives on the function's stack frame, which means that it is not
accessible to any other function- directly. Naturally, a variable's value {or even its address) can be
passed to another function using C's parameter passing faciities.

This storage class is the default within functions, as it is assumed if no other storage class is
specified. Also, automatic variables can exist only within functions. A variable can be declared
explicitly as automatic by preceding its declaration with the "auto" keyword, but this is only
necessary if the type-specifier is omitted.

An automatic variable can of course be of any type, but if an aggregate data type variable, such as an
array, is declared within a function and returned as the result of the function, the result will be
meaningless as the variable will no longer exist. Individual element values may be returned, but to
return a pointer to an array, structure or union which was declared as automatic is an error.

Section 3-62

HISOFT C MANUAL version 1.2 Page 69

3.62.2 static.

Data which is declared as static exists for the duration of a program, but may be local to a function
or available to the whole program, depending upon the location of its declaration in the source
program. 1f it occurs within the body of a function, then it is local to that function. The fact that
a static variable exists throughout the life of a program also means that it holds its value between
manipulations. This means that a variable may be local to a function, but its value or address, even
if it is an aggregate data type, may be returned to the calling function and safely be used.

As static variables are allocated permanent storage, the compiler will always know the address of each
one, while it will know only the offset from a function's stack frame of an automatic variable. This
means that static variables can be accessed and manipulated with greater speed and fewer bytes of code
than automatic variables, as no indexed addressing is involved.

3.62.3 external.

In Hisoft C the "extern" keyword has a restricted use as the entire program is compiled as one unit.

It is used to declare a function which has a non-integer type so that other functions which use the
function before its definition know what type it is. The extern keyword simply declares a non-integer
function to the rest of a program in much the same way that FORWARD is used in Pascal.

3.62.4 register.

A register variable normally instructs a C compiler to use a machine register for the designated
variable, but there are not enough registers free on the Z80 to implement this. The keyword "register"
is therefore ignored.

3.62.5 typedef.

typedef is syntactically identical to a storage class specifier, but it does not cause a declaration
to allocate any storage. It is used to equate a given identifier with a data type, allowing user-
defined types, and associates the identifier with the given type name for the duration of that
identifier's scope. We could equate the identifier ‘int_ptr' with the type 'pointer to integer' as
above and subsequently -use ‘int ptr' as a type specifier in. further declarations.

int_ptr a,b;
static int_ptr *c = NULL;

which declares 'a' and ‘'b' as being pointers to integers, and 'c' as being a static puinter to a

pointer to an integer with an initial value of NULL (0). The names which are defined with typedef can
also be used as arguments to "sizeof" and "cast" in expressions.

Section 3-63

Page 70 HISOFT C MANUAL version 1.2

3.63 Initialisation
syntax

declarator = constant_expression

declarator = { initializer_list }
declarator = { initializer_list , }

initializer_list:
constant_expression
initializer_list , initializer list
{ initializer_list]

examples
static int §i = 3;
char ¢ = 'S', t;
char arri[]} = {'A','r','r",'a','y'};
char arr2[] = "Array";

static char arr3{6) = {'A',*r','r','a','y','\0'};

We can declare a variable and give it a starting value at the same time: this is called “initialising"
the variable (or in American “initializing"). Only static and external variables may be initialised,
and this is done by putting an “initializer list" after the identifier in the declaration.

The first declaration above declares 'i' as a static integer and gives it the initial value of three;
the second declaration declares 'c' and 't' as external character variables and initialises ¢ to the
character constant

When initialising an aggregate, the initialiser list must be enclosed in braces as in the third
example above. Notice also that we omitted the array bound from between the square brackets. The
compiler works this out by counting the number of elements (in this case 5), The compiler will
allocate just enough space (and therefore just enough elements) to hold each character in the list.

Character array initialisation can be regarded as a special case, as string expressions and constants
in C are nothing more than character arrays terminated with a "\0', so the character array “arr2"
above is actually given SIX elements, all of which are initialised. This means that arr2 and arr3
above are initialised with the same contents, while arr] is one element shorter.

If there are fewer items in the initialiser list than elements in the aggregate, the final elements
are filled with zeros. 1f there are more initialisers than elements, an error is generated.

3.64 The Compiler Preprocessor
This section gives detaiis of the preprocessor part of the Hisoft C compiler. A preprocessor cominand

is one which is preceded by a '#' sign and they are used to provide a way of controlling compiler
options (such as whether a listing is displayed) and also to define constants in programs.

Section 3-64

HISOFT C MANUAL version 1.2 Page 71

Historically, the C preprocessor was a separate program which was run before the
compiler to add extra facilities; but now, in HiSoft C, the preprocessor is just another
part of the compiler. The separate history of the preprocessor means that the
preprocessor inteface is not as clearly defined as the language itself. as different systems
have different requirements. The commands supported in HiSoft C are as follows:

3.65 Constants and Macros

syntax

#define <identifier> <macro>

examples

#define EOF -1
#define MAXIMUM 1000

This command allows for limited "macro expansion“, and is the means by which
constants are defined in C programs. The text following the #define command is
normally a name which we would choose to use in place of a number or expression, such
as EOF rather than -1. This is the <identifer> part of the command. The <mQcCro> part is
the text with which the identifier is to be replaced whenever it is used in the main
program. If we had the example preprocesssor commands at the head of a program then
whenever we used EOF or MAXIMUM in the program they would be replaced by -1 and 1000
respectively.

Remember that the whole of the text following the #define <identifier> is used in the
replacement, so the very commom error of putting a semi-colon after the <macro> part
should be taken particular notice of. If we had typed

#define EOF -1;

then every occurence of EOF would be replaced by -1; which is not normally what is
required.

3.66 Error Message Sacrifice

syntax and example

#error

This command effects a once-only removal of compiler error messages. releasing the
space taken up by these messages to the compiler. This would normally only be used if a
program were particularly large. Subsequent error detection will result in only the error
number being reported rather than the full text.

Section 3

Page 72 HISOFT C MANUAL version 1.2

3.67 listing Control

syntax and examples
#list-
#list+

This command is followed by either a '+ or a '-' sign and switches the compiler listing
on or off as appropriate. These commands may of course be nested, so that the common
practice of having a #list- at the start of a header or library file and a #list+ at the end of it
has the desired effect.

HiSeR-C
CPC SPECIFIC

3.68 Direct Execution

syntax and examples
#direct+

#direct-

There is an additional feature in the Amstrad CPC version of HiSoft C that permits the
direct execution of statements compiled by the compiler. This is sometimes called
immediate execution and is similar to typing a command in BASIC without a line
number.

The direct execution mode is almost certainly unique to the HiSoft C compiler and
allows programs and functions to be tested as they are written. Once a #direct+
command has been issued functions can be invoked, variables can be assigned to, loops
can be run and any other statement can be executed. By typing a function name followed
by any parameters and a semi-colon the function will be executed. Normally this will
only be useful when the function prints its result:

#direct+
printf("%u in hex is %x\n",3000,3000);
3000 in hex is BBS8

will print out the decimal and hex equivalents of 3000 onto the screen.
Remember that an attempt to invoke a non-existent function results in a jump to a

random location, which almost certainly means that the machine will crash and the
compiler will have to be reloaded.

Section 3

HISOFT C MANUAL version 1.2 Page 73

HiSesR=-C
CP MSPECIFIC

3.69 Using The Data Origin Directive

syntax
#data number

example
#data 0x3000

#data nnnn causes the of the global/static fixed data area to be placed at location nnnn. It
is mainly used to produce programs to run on CP/M systems with differing memory
sizes as described in Chapler 4. It enables programs to run unchanged on any size of
TPA which is big enough! The compiler suggests a value for use with this directive at the
end of every compilation. The suggested value is the possible, and it is better during
program development to use a larger value so that the program will still compile
successfully as changes are made.

CPC SPECIFIC

3.70 CPC File inclusion

syntax
#include 1
#include “flename" /*2°
#include <filenome>
#include filename
#include ?filename? /*3°/

This command is probably most usefully seen as a command to initiate compilation,
although its more precise effect is to include a specified file in the compilation of
another. It has three major forms, as above.

#include

This compliles the program held as source text in the integral editor's memory space.
This program may itself contain further #include directives, but they will not be of this
type.

Section 3

Page 74 HISOFT C MANUAL version 1.2

#include filename or
#include "filename"” or
#include <filename>

This command causes the named file to be included in the current compilation, which
may mean that the named file alone is compiled if it is issued as a stand-alone command.
If the command forms part of another file then the named file will be included in the
compilation of the calling file. A flle included in the compilation of ancther may not itself
contain further #include directives. All three forms given above are equivalent.

#include ?filename?

This variation of the command allows for library file inclusion. In many respects it also
gives the user a conditional comptlation capability, as it only compiles those functions in
the named file which have been used somewhere in the main file. The command would
normally be the last instruction in a file, and its effect is to scan through the named
library file looking for previously-invoked functions. When one is found it is compiled
into the current program. This means that if one were using the standard library to
provide certain functions for a program, it would not be necessary to separate all the
functions used into a separate file and include that as would otherwise be necessary.

However, as the compiler only includes those functions which have been invoked but
not defined, care must be taken to ensure that any library functions which make use of
of other library functions are present in the library flle before the subsidiary ones.
Otherwise it will be necessary to search the library again. In other words if a program
uses a function fQ and this function calls a further function g0, in which both fQ and g0
are in the lbrary, then the definition of fO must occur before that of g0. The standard
library supplied with HiSoft C is constructed in this way so no problems should occur in
its use. :

You must type End-Of-File after compiling everything. Gelting Started in Chapter 1 tells
you how. .

HiSsR=-C
CP MSPECIFIC

3.71 CP/M File Inclusion

syntax

#include “filename” Jal Y
#include <flename> #include filename

#include 2Miencme? /°2°*

This command causes a specified file to be compiled within the compilation of another.
It has two major forms, as above.

Section 3

HISOFT C MANUAL version 1.2 Page 74a

The first form causes the named flle to be included in the current compilation, which
may mean that the named file alone is compiled if it is issued as a stand-alone command.
If the command forms part of another file then the named file will be included in the
compilation of the calling file. All three variations given above are equivalent. A file
included in the compilation of another may itself contain further #include directives.
The level of nesting is limited by the storage allocated to the input-output system: this is
detailed in Chapter 4.

#include ?filename?

The second form of the command allows for library file inclusion. In many respects it
also gives the user a conditional compilation capability, as it only compiles functions in
the named file which have been used somewhere in the main flle. The command would
normally be the last instruction in a file, and its effect is to scan through the named
library file looking for previously-invoked functions. When one is found it is compiled
into the current program. This means that if one were using the standard library io
provide certain functions for a program, it would not be necessary to separate all the
functions used into a separate file and include that as would otherwise be necessary.

However, as the compiler only includes those functions which have been invoked but not
defined. care must be taken to ensure that any library functions which make use of of
other library functions are present in the library file before the subsidiary ones.
Otherwise it will be necessary to search the library again. In other words if a program
uses a function fO and this function calls a further function gQ. in which both fO and g0
are in the library, then the definition of fO must occur before that of g). The standard
library supplied with HiSoft C is constructed in this way so no problems should occur in
its use.

HiSefe-C
CPC SPECIFIC

3.72 CPC Stand-Alone Programs

syntax
#transiate object_file_name

The compiler normally compiles a program and expects it to be executed with the
compiler stili resident in memory. But it also caters for programs which are intended as
stand-alone programs which are loaded and run without the necessity to load the
compiler first. #translate allows for this, instructing the comptler to save the program
and all the required runtime routines to cassette, disc or microdrive with the given flle
name. #fransiate can only be used at the start of a program.

In normal operation the compiler stays in memory along with the object code which it is
producing. In most applications this will be quite acceptable, but there are instances
when it would preferable if the program could run by itself without the need to load the
compiler and comptile the program before using it. If, for example, one were producing a
product intended for commercial sale, it would not be very useful unless it had the
ability to run by itself. #transiate gives it this power, and the resultant file is a machine
code program which can be loaded and run from BASIC as described in Chapter).

Section 3

Page 74b HISOFT C MANUAL version 1.2

This command would normally only be given once a program has been fully tested, as
there is little point in having a non-working stand-alone program! The facility is also
useful for large programs with much external data where these cannot fit in the memory
at the same time as the compiler.

HiSeR-C
CP MSPECIFIC

3.73 CP/M Object Program Names

syntax
#translate object_file_name

The compiler normally compiles the object program with the same name as the first (or
only} source file on the command line. The filetype (ie the filename extension) is
changed to .COM. But it also caters for programs which need a different name and
#translate instructs the compiler to save the program with the given filename. #translate
can only be used at the start of a program.

3.74 Conclusion

That brings us to the end of our survey of HiSoft C. We hope that it serves as an easy-to-
use, complete, and accurate guide to the language. You will keep making new discoveries
about C every time you refer to it.

Section 3

HiSoft C

Fast Interactive K&R C Compiler

 ——

Chapter 4
The Expert's Guide

HiS6ft

High Quality Software

HISOFT C MANUAL version 1.2 Page 75

4. THE EXPERT'S GUIDE.

He that commands the C is at great liberty,
and may take as much and as little of the war as he will,

Francis Bacon

This chapter aims to provide a detailed reference for the experienced C user; both those who know C
already and those who learn it with this compiler.

4.1 Differences from Kernighan & Ritchie.
Note the following overriding restriction not otherwise mentioned :

- Floating point is not yet implemented, which means that use of types float and double will cause
the compiler error 'RESTRICTION : floats not implemented' to be produced and compilation will
terminate.

1. Introduction

Hisoft C is designed to be very close to the language described in the book 'The C Programming
Language' by Kernighan and Ritchie. That book is THE reference work on C and we recommend that ali
users of Hisoft C should have a copy of it. Because it is close to that definition of C, Hisoft C is
also close to other dialects of C that exist which are also based on it. Other possible reference
works are listed in the Bibliography in Chapter I.

Most parts of the Kernighan and Ritchie book apply directly to Hisoft C and we do not repeat the full
description here. This chapter describes the differences between Hisoft C and the language described
in the 'C Reference Manual' which is Appendix A of Kernighan and Ritchie. That Appendix is a concise
definition of the language and this chapter is a concise definition of the differences. More
explanation of some aspects is given elsewhere in the manual.

This chapter is given section numbers in just the same way as the 'C Reference Manual' so that the
comments here apply to the corresponding section in that book. Where the section heading is given
with no comments Hisoft C is just as described in the book. We start now with the comments on section
...

Hisoft C is implemented on the Sinclair ZX Spectrum, and the Amstrad CPC464 and CPC664 computers.
2. Lexical Conventions

2.1 Comments

2.2 ldentifiers (Names)

External identifiers are used only for forward declaration of the type of a function in Hisoft C,
otherwise identifiers are just as described.

Section 4-1

Page 76 HISOFT C MANUAL version 1.2

2.3 Keywords

No differences. Note that keywords MUST be lower case.

2.4 Constants
2.4.1 [Integer constants

No ditferences, but note that long is the same as int (see 2.6).

2.4.2 Explicit long constants

As for 2.4.1.

2.4.3 Character constants

2.4.4 Floating constants

2.5 Strings
2.6 Hardware characteristics
Z30
ASCII
char 8 bits =1 byte
int 16 2
short 16 2
long 16 2
float
double
range
3. Syntax notation
4. What's in a name?

There are two differences in the storage classes. The first is that register variables are always
treated just like automatic variables because there are not enough registers available to allocate any
to variables! The keyword 'register’' is accepted but ignored so there is actually no difference in
the language which the Hisoft compiler accepts. The second difference is that all local variables
must be declared at the head of a function body and may not be declared at the head of nested compound
statements. This is not a serious restriction in practice and can be defended on the grounds of ease
of understanding of programs - but it also helps keep the compiler small!

All the fundamental types are provided, but as noted above short is the same as int, as is long. It
is hoped that a future version may include 8 bit short variables and 32 bit long variables.

Section 4-1

HISOFT C MANUAL version 1.2 Page 77

5. Objects and ivalues

6. Conversions

6.1 Characters and integers

- Sign extension is not performed when converting characters to integers, so characters appear as
integers in the range 0..255.

6.2 Float and double

Floating point numbers are not yet available so this section has no relevance.

6.3 Floating and integral

6.4 Pointers and integers

6.5 Unsigned

6.6 Arithmetic conversions

7. E xpressions

The compiler generally computes expressions from the inside-out and from left to right but, as stated
in the reference manual, this should not be relied upon as it may change between releases of the
compiler. Integer overflows are ignored as are attempts to divide by zero.

7.1 Primary expressions

Function arguments are evaluated in left to right order and are pushed on the stack as they are

evaluated. As the reference manual says, this order should not be relied upon. See the notes for
section 7,

7.2 Unary operators

The syntax of the type-conversion operator is different to that described in the reference manual, in
~order to simplify the compiler (and make the programs more readable). The operator has a name -
"cast" - and must be given a predefined type or a "typedef-name" as argument; it will not accept an
anonymous "type-name" such as (int **()). To move an existing C program to this compiler, give the
type a name in a typedef declaration and add the word "cast" before the parentheses. To compile a
program using this syntax with another compiler define the word "cast" to mean nothing thus:

#define cast
The sizeof operator has a similar syntax and only accepts a predefined type or a "typedef-name". It

will not accept an anonymous type or an expression. These differences do not restrict the programs
that can be written, but simply require them to be written in a particular style.

Section 4-1

Page 78 HISOFT C MANUAL version 1.2

7.3 Multiplicative operators

This compiler is like those described in the reference manual in that the remainder of a division
operation has the same sign as the dividend. Thus truncation is towards zero,

7.4 Additive operators

7.5 Shift cperators

An arithme fic shift is performed when an int is right-shifted, so that the result has the same sign as
the original. A logical (zero-fill) shift is performed when an unsigned is right-shifted. A negative

shift count CAN be used, for those occasions when it is not possible to know in advance which
direction of shift is needed.

7.6 Relational operators
7.7 Equality operators
Just like most other compilers, the nil pointer (or null pointer) is actually as well as conceptually

zero and in consequence pointers which may point at location zero in memory cannot be easily tested
against NULL.

7.8 Bitwise AND operator

7.9 Bitwise exclusive OR operator

7.10 Bitwise inclusive OR operator

7.11 Logical AND operator

7.12 Logical OR operator

7.13 Conditional operator

7.14 Assignment operators

The compiler does not allow the assignment of pointers to integers or vice-versa except for the
assignment of 0 (zero) to pointers as NULL. This restriction is designed to make it less likely that
the wrong value will be assigned to a pointer (eg missing * or & operator) and thus less likely that

the store is overwritten in consequence. An explicit type conversion can be used to make pointers
point at particular areas of memory:

£()

{
typedef int *location ;
location ptr ;

: ptr = cast{location) 0xBCOO ;

Section 4-1

HISOFT C MANUAL version!.2 Page 79

7.15 - Comma operator

The comma operator is not implemented.

8. Declarations

In accordance with normal C programming styl-, any storage class specifier in a declaration must come
before any type specifier(s).

8.1 Storage class specifiers

The 'extern' specifier has a restricted useé since there are no separate files. [t is used in the
special case of library functions of non-int type. These functions have not been defined when they
are used in a program, because they will be defined when the library file is searched at the end of
the program (see section 12.2). However, their type must be declared before they are used otherwise
they will be implicitly declared as function-returning-int. So an extern declaration must be made at
the start of the program. This declaration is made in the library header file for the standard
library functions. This declaration does not cause the function to be loaded from the library, only
actual use of the function does that.

The register specifier is accepted but ignored since the compiler has no registers available for
variables.

8.2 Type specifiers

The specifiers long and short are accepted but ignored. A long int and a short int are the same as an
int (ie 16 bits).

8.3 Declarators

8.4 Meaning of declarators

8.5 Structure and union declarations

Fields, often called bitfields, are not implemented. It is necessary to use bitwise operators and
shifts to access particular bits in a byte.

The names of structure tags and members share the same name-space as ordinary variables so a structure
cannot have the same name as an integer, for example.

8.6 Initialisation

Initializers are provided for static and exterpal variables but not for automatic variables. The
initialisation of automatic scalar variables should just be replaced by an assignment statement. The

initialisation of automatic aggregates (ie stack-based local arrays and structures) is not permitted
in C; but HISOFT - C provides "bit()' in the function library, and this can be used to initialise a

Section §-1

Page 80 HISOFT C MANUAL - version 1.2

local array or structure by copying the contents of a static array. Note that a static variable is
preferable to an automatic one unless the function is recursive or space allocation dictates an
automatic. A structure initializer is a series of constants which generate bytes like “inline" (see
9.14). They are not aligned on field boundaries. Initialisation is performed each time the complete
program is run. It is not performed in direct mode.

8.7 Type names

The only type names permitted are those of the predefined types, and those declared in a typedef
declaration. Abstract declarators are not allowed. They can be replaced by a typedef declaration
where they occur in existing programs, with a resulting increase in clarity and type security.

8.8 Typedef

9. Statements

9.1 Exression statement

9.2 Compound statement

Declarations are only permitted at the head of a function body, and are not allowed in other compound
statements.

9.3 Conditional statement

9.4 While statement

9.5 Do statement

9.6 For statement

9.7 Switch statement

There can be no declarations at the head of the enclosed statement.

9.8 Break statement
9.9 Continue statement
9.10 Return statement
9.11 Goto statement
9.12 Labelled statement

9.13 Null statement

Section 4-1

HISOFT C MANUAL version 1.2 Page 81

9.14 Inline Statement (NEW SECTION)

HiSoft C provides the ability to incorporate machine code into C programs. A new type of
statement (inlinetkl, k2. k3.)) 1s used and it is fully described in the Language

Summary.

10. External definitions

10.1 Extemnal function definitions
There is an addition to the syntax of function definitions which provides a way of

defining functions which take a variable number of actual arguments (these are called
"variadic” functions). This is fully described in the Language Summary.

10.2 External data definitions

11. Scope rules

In HiSoft C an entire program is compiled at once so that there is no linkage of
precompiled routines. A source library facility is provided instead and this is described
in secfion 12.2.

11.1 Lexical scope

Identifiers associated with ordinary variables and those associated with structure and
union members and tags are not disjoint.

11.2 Scope of externals

12. Compiler control lines

12.1 Token replacement

Macro definition is limited to simple token replacement and no arguments are
permitted.

#undef control lines are not implemented.

12.2 File inclusion

Files may be included. The named file is searched for on the current device, so the two
forms are identical. The ™" or <> brackets may be omitted. So the following control lines
are all equivalent: ’)

#include ‘“filename”

#include <filename>

#include filename

In addition a library search facility is provided. A control line:

Section 4

Page 82 HISOFT C MANUAL version 1.2

#include ?filename?

causes the named file to be read and searched.

HiSeR-C
CPC SPECIFIC

Another variation, without a filename, is used to compile source that has been prepared
with the editor and is now in its memory text buffer:

#include

Full details of both these variations are given in the Language Summary.

#includes can only be nested once. because of limited file buffer space. So from direct
entry le-el it is possible to #include a program in the editor's RAM which in turn uses
#include filename for a header file or for functions, but these flles may not use #include.
Please see Chapter |1 for details of the maximum nesting of includes.

12.3 Conditional compilation

Conditional compilation control lines are not implemented. The library search facility
provides a way to achieve conditional compilation.

12.4 Line control

#line control lines are not implemented.

12.5 Listing Control (NEW SECTION)

There is an additional facility in HiSoft C to control the production of a listing by the
compliler. The compiler will normally produce a listing but:

#ist-
will turn it off. To turn it back on use:
#iist+

These commands nest, so that as long as an included file has an equal number of #ist+
and #list- lines it will not affect the listing of the program that includes it.

12.6 Error Message Sacrifice (NEW SECTION)

The compiler produces explanatory error messages when it detects an error in the
program. These messages are held in memory. Larger programs can be compiled if this
memory is released to the compiler, and there is a comptiler control line to do this:

#eorror
After this, errors will produce only the error number until the compiler is reloaded.

Section 4

HISOFT C MANUAL version 1.2 Page 83

HiSeR-C
CPC SPECIFIC

12.7 Direct Execution (NEW SECTION)

There is an additional feature in CPC HiSoft C that permits the direct execution of
statements compiled by the compiler. This is sometimes called immediate execution
and is similar to typing a command in BASIC without a line number. A preprocessor
control line is used to enable this feature:

#direct+

and to disable it:

#direct-

When in direct mode a sequence of statements is compiled, instead of the normal
sequence of external definitions. Note also that global variables will not be initialised to
zero. Full details are in the Language Summary.

CPC SPECIFIC

12.7 Stand-Alone Programs (NEW SECTION)

The compiler normally compiles a program and expects it to be executed with the
compiler still resident in memory. But it also caters for programs which are intended as
"stand-alone” programs which are loaded and run without the necessity to load the
compiler first. See the Language Summary for more details.

13. Implicit declarations

14. Types revisited

14.1 Structures and unions

14.2 Functions

14.3 Amrays, pointers, and subscripting
14.4 Explicit pointer conversions

Pointers are 16-bit Z80 memory addresses and can be converted to integers which are
also 16-bit. There are no alignment restrictions since the Z80 is a true byte addressed
machine. Pointers are stored in the normal Z80 way with the least significant byte at the

lower address.

Section 4

Page 84 HISOFT C MANUAL version 1.2

15. Constant expressions

The HiSoft C compiler evaluates expressions at compile-time rather than at run-time
when it recognises them to be constant. It recognises individual constant operands and
it recognises that the result of an operator is constant when all its operands are. But it
does not rearrange expressions so that while it will partially evaluate (1 + 2.+ i) at
compile-time, leaving (3 + i) to be calculated at run-time, it will not evaluate any of
(i+ 1+ 2)butwillcalculate ((i + 1) + 2) atrun-time.

The compiler accepts as a case constant, or as an array bound, or as an inline, or as an
initializer any expression which it recognises as a constant expression.

16. Portability considerations

Function arguments are evaluated left to right. Character constants can only be a single
character. The characters in a string are allocated in order of increasing memory
address, as are the elements of an array. You are urged not to rely on these features
except where absolutely necessary. Details of many implementation considerations are
given to Increase understanding and for those uses where it is essential. But that is not
an invitation to rely on them. For example it is stated above that function arguments are
evaluated left to right: they may not be in the next version of the compiler.

17. Anachronisms

The compiler does not support these anachronisms.

4.2 Low-lLevel Interface

This section gives some details of the code produced by the compiler, with particular
reference to the store layout and use of the machine. It is intended to help you interface
other programs to C programs and in particular to help you make use of the inline
statement.

4.2.1 Source Format

C source is basically just a string of ASCII characters, divided into lines by NEWLINE
characters (10, often known as LINE-FEED). There are no CARRIAGE-RETURN characters
(13), although these will be accepted in a source flle by the compiler, so other editors
and even other computers can be used as tools with which to produce HiSoft C
programs.

4.2.2 7X Spectrum File Format
Files are provided at the character level (ie fopen, getc, putc, fclose).

On cassette, flles are stored as a sequence of data blocks which follows a header block.

The header block is a normal Spectrum header. The data blocks are each 514 bytes

long, comprised of a character count in the first two bytes and up to 512 characters in

g;e ;emalmndet{l of the block. The top bit of the character count is set to indicate the last
ock in the file.

Section 4

HISOFT C MANUAL version 1.2 Page 85

Normal Spectrum CODE files are used on Microdrive, except that a start address and
length of O are used. This means that most of the extended cataloguing programs
available for the ZX Spectrum microdrives will return a file length of zero.

The compiler, and compiled programs, can open any type of Microdrive file for reading.
This is done automatically.

HiSeR-C
CPC SPECIFIC

4.2.3 Amstrad Cassette and AMSDOS File Format

Normal Amstrad file formats are used throughout. This section applies to cassette files
and to disc files written under AMSDOS; details of the CP/M version will be given in the
next section.

Source files produced using the editor are unprotected ASCII files, as are files written by
C programs. An object file written by the #translate command is an unprotected binary
file.

The compiler, and compiled programs, can open any cassette or AMSDOS file for
reading. This is done automatically.

HiSeR-C
CP/MSPECIFIC

4.2.4 CP/M File Format

Normal CP/M file formats are used throughout. Both text and binary access to files is
allowed as described in Chapter 1 and in Chapter 5. Random access file handling is
provided by seekQ and tellQ which are described in Chapter 5.

4.2.5 Function Linkage and the Stack
The Z80 processor stack (SP) is used for function linkage and local variables.

The caller evaluates each argument in left-to-right order and pushes them on the stack
in turn before calling a function (so the last argument is on the top of the stack). There
must be exactly as many arguments as the function expects. The caller then enters the
function with a CALL instruction to the start of the function.

The called function then takes over and it first pushes the IX register on the stack and
loads IX with the current value of the stack pointer (SP). Space is then allocated for any
automatic local variables by decrementing SP. The function now executes, using IX to
access the arguments and its locals. Finally it recovers the previous value of IX (for the
caller), salvages the return link, and discards the local variables, linkage. and arguments,
from the stack. '

The result of the function is returned in HL, and also in BC.

Section 4

Page 86 HISOFT C MANUAL version 1.2

There is a variation on this mechanism which is used for varfadic functions (le those that
take a variable number of arguments). In this case, after pushing all the arguments on
the stack, the caller pushes the total number of bytes of arguments including two bytes
for the total itself. This total appears as the last argument to the called function. The
called function can use the total to access its other arguments and must use it to discard
the arguments from the stack before returning.

4.2.6 Register Usage

Neither the compiler nor the compiled code use the alternate register set, the IY
register, or the I or R registers. At least some of these registers are used by the ROM
firmware on many computers. The alternate register set is used by the Amstrad and the
Spectrum; and on the Spectrum the IY register must always point at ERR_NR.

The compiler and the compiled code run with interrupts enabled.

The stack. pointer (SP) is used normally and stack discipline should be observed. The IX
register is used as a frame pointer as described above. The HL register is used to return
the value of expressions and particularly function results. The BC, DE, A and F registers
are used as general working registers.

4.2.7 Data Storage
There are three kinds of data storage: constant, fixed-address, and stack-based.

Storage for constants is allocated inline with the generated code: this includes numbers,
characters, and strings.

Fixed-address storage is used for global (external) variables and for all static variables.
This storage is allocated starting at the top of memory at RAMTOP and working
downwards. The stack is below the fixed-address storage, and is moved down when
necessary to keep it so. Fixed-address storage is accessed directly by addresses in the
compiled instructions.

Stack-based storage is used for automatic local variables, arguments and function
linkage. and temporary working store. It is allocated on the processor stack and
accessed using SP and IX.

Storage for individual variables is allocated in the same way, regardless of whether
stack-based or fixed-address storage is used. The allocation is shown below, firstly
storage for the basic types, then for derived types:

char 1 byte.

nt 2 bytes, least significant byte at lower address.

unsigned 2 bytes, least significant byte at lower address.

pointer 2 bytes, least significant byte at lower address. Contains address of

pointed-to object.

array n * s bytes, where n is the array bound and s is the size of each element.
The first element (a[0]) is at the lowest address. A multi-dimensional
array such as a[m] [n] is treated as an array with bound m of arrays with
bound n of the elements. So in the case of a character array element
a[i}[j] isataddressa + i*n + j.

Section 4

HISOFT C MANUAL version 1.2 Page 87

structure s bytes, where s is the sum of the sizes of all the members of the
structure. The first member of the structure to be declared is at the
lowest address (as described in Kernighan & Ritchie).

union s bytes, where s is the maximum of the sizes of all the members of the
union. All members will be aligned at the lowest address (ie any spare
space for a particular member will be at the high end of the union).

4.2.8 Spectrum Memory Layout

The compiler and stand-alone programs translated using the compiler all load at 25200

and are entered there also. This address leaves space below the compiler for two

Microdrive channels, or one Microdrive channel and a cassette pseudo-channel. There
is also room for a very small BASIC program.

The compiler will use store up to RAMTOP, and it moves RAMTOP down beneath itself for
protection. This means that it is necessary to CLEAR to a larger value if you want to use
the Spectrum for BASIC again after leaving the compiler.

Translated programs use the memory between 25200 and the RAMTOP value which was

set before using the compiler to translate the program. However, these programs do not
move RAMTOP themselves.

HiSeR-C
CPC SPECIFIC

4.2.9 Amstrad Memory Layout

The compiler and translated programs load at the bottom of memory. Amsoft and
Locomotive recommend that ROMs and RSXs do not use the option of taking low
memory workspace, so this should not cause any conflicts.

The compiler obtains its high memory limit from the firmware by calling
KL_CHOKE_OFF followed by KL_ROM_WALK.

HiSefR-C
CP MSPECIFIC

4.2.10 CP/M Memory Layout

The compiler and translated programs are normal CP/M transient programs. The
compiler assumes a conventional CP/M system where the transient program area (TPA)
begins at location Ox100. The compiler and all compiled programs start at this location.
There is a runtime library at the base of the compiled code. This contains such things as
16-bit multiply and divide, printf and scanf, and support for input-output to files and
other devices.

After this comes the compiled Z80 machine code of your program.

Section 4

Page 88 HISOFT C MANUAL version 1.2

Next is initialisation data (if you have used initializers). This is stored in the .COM object
file and loaded with the program. It is used once as the program starts up and the
memory may then be used for other purposes (eg for heap or global data). The program
cannot be rerun except by reloading from disc if the initialisation data area has been
reused.

The area above this is used for the global variables, the stack, and the heap (ie alloc and
free). The way in which it is used depends on whether or not a #data directive was used

in the program.

If no #data directive was used then the compiler has to make an assumption about the
location of the global variables. It assumes that the program will be run on the same
system with the same size of TPA (so don't try to single step it with MON8O or DDT
because they reduce the TPA sizell). The globals are placed at the top of the TPA, and
the runtime stack starts just below the globals and grows down towards the code and
intializer data.

The top f the TPA is read from location 6 at compile time by the compiler and is also
used as the top of its own workspace. It is necessary for the compliler to know the
address of the top of the global data area when it starts compiling. This is a consequence
of the compiler's internal organisation, and partly accounts for the speed of both the
compiler and the compiled code. But it can cause difficulty when trying to compile a
program for debug using a monitor such as MON80. and when trying to compile to run
on as many CP/M systems as possible. In both these cases it is important that the
program uses as little memory as possible, leaving high memory free.

The way to achieve this is to use #data, which is a compiler directive to set the top of
available memory explicitly. First compile the program without bothering about this
problem and then recompile it using #data. The required address can be found by using
the information shown in the memory usage report which is produced by the first
complilation. It will not be necessary to repeat the double compilation very often because
the address will not usually change very much.

The compiled program is still able to make use of the whole of the memory in the TPA
automatically (whether it is an unknown system or a TPA reduced by a monitor in high
memory).

If a #data directive {s used then the runtime memory is organised a little differently.
The global variables are placed where directed as explained above; and the compiler
causes the runtime stack to be placed above this area rather than underneath it. It does
this because the globals will have been placed as low as possible and whatever area of
memory remains is now between the top of the globals and the top of the TPA
(wherever that may be on the target system). The program determines the actual size of
the TPA available to it on each occasion that it is run (by looking in location 6) and sets
the stack to that address.

The memory layout both with and without a #data directive are illustrated in Chapter 1.

Section 4

HISOFT C MANUAL version 1.2 Page 88a

HiSeft-C
CP MSPECIFIC

4.3 CP/M input-Output System Buffers

The input-output system used with the CP/M version of the compiler requires an area of
store for use as file buffers and control blocks. The area is allocated at the base of the
stack just as the compiler or compiled program is starting up. The size of this area of
store depends upon the number of streams (files or CP/M devices) which are opened by
the comptiler and/or the compiled program.

It 1s possible to alter the size of this area by patching the binary object file and
instructions for doing this are presented after we explain how to calculate the size.
Storage should be allowed for each stream as follows:

disc files (eg #include) 580 bytes
TRM: line buffered keyboard input (eg stdin) 160 bytes
other CP/M device (eg stdout, stderr) 30 bytes

Storage is allocated when a file is opened and is only reclaimed when files are closed in
the reverse order to that in which they were opened. The compiler does this and most
programs can be arranged to do so. For example the left hand sequence below needs i/o
space of 1160 bytes whilst that on the right requires 1740 bytes.

f = fopen("FILEl", "r"):; f = fopen("FILE1l", "r");
g = fopen("FILE2", "w"); g = fopen("FILE2", "w"):;
copy_file(f, g): copy_file(f, g):
fclose(g): fclose(f):

fclose(f); fclose(qg):

h = fopen("FILE3", "a"); h = fopen("FILE3", "a"):;

The compller is supplied with a default file area of 1960 (0x7A8) bytes calculated as:

stdin + stdout + sterr + 3 levels of include file nesting
160+ 30 + 30 + 3 *580

This size is stored in the compiler at location Ox133, but as a negative number -1960
(OxF858) and the size allocated as I/O space can be altered just by patching this number
with a different value. HiSoft MONSO is a very useful program to perform this patch or a
combination of the CP/M commands DDT and SAVE can be used.

The default size of 1960 bytes also applies to compiled programs so that by default they

will be able to open 3 disc flles simultaneously as well as the default console streams
stdin, stdout, and stderr.

Section 4

HiSoft C

Fast Interactive K&R C Compiler

Chapter 5

Standard Function
Library

HiSHf

High Quality Software

HISOFT C MANUAL version 1.2 Page 89

5. THE HISOFT C STANDARD FUNCTION LIBRARY.

To a most dangerous C; the beauteous scanf

Shakespeare

This chapter of the Hisoft C Reference Manual describes the functions that are provided with the
compiler,

The f{unction library provided with a C compiler is very important since it adds to the power of the
language. This library, like those of most other compilers, is patterned after that of the Unix C
compiler. Many of the functions are also described in Kernighan & Ritchie (some in great detail).

The library also serves to illustrate some of the features of the language, and of course includes
many functions which take advantage of the graphics and sound capabilities of your computer.

The descriptions of related functions are grouped together and there is also an index of all
functions. The library comes in several parts: the built-ins, the header, the standard library, and
the BASIC library.

The built-ins are functions which are in the run-time package for efficiency and are therefore always
contained in your program and can simply be called. The most important built-in is "printf" - for
formatted output.

The header is a C source file called "stdio.h" provided on tape or disc. It contains constant and
type definitions for the library and also contains the "min" and "max" functions. It should be
included (#include "stdio.h") at the start of all programns which use the library.

The standard library is also supplied as C source in the file "stdio.lib" on tape or disc. It
contains the source of most of the machine-independent library functions. These functions are all
patterned after the Unix function library. This file should be selectively included at the end of
each program which uses the library by means of a library-search controt line (#include ?stdio.lib?).

The function library for the HISOFT-C compiler will continue to grow and become more powerful with
time. One of the best ways for the library to grow is by new functions created by the people who use
the compiler. 1f you write functions that you think will be useful to other people then send them to
us. We will collect these functions and distribute them on low-priced library- cassettes so that they
can be made widely available. Some of these library functions may also be distributed in "stdio.lib"
with the compiler. An up-to-date copy of the library will be sent to everybody whose functions are
included in the library. [f you wish to contribute to the library, please send a cassette containing
the C source of your functions and the documentation for them (because we don't have enough time to
type it all in!). Ideally, send a printed copy as well. Put your name into the documentation and as
acomment in the source. You can put your address as well if you are happy to get comments from other
users.

Section 3-0

Page 90 HISOFT C MANUAL version 1.2

Arithmetic functions

5.1 intmax(n,) auto

Returns the value of the greatest of its integer arguments. The function takes any number of
arguments (it is "variadic") as indicated by the word "auto".

5.2 int min(n,) auto
Returns the value of the smallest of its integer arguments. The function takes any number of

arguments (it is "variadic").

NB - min and max are in "stdio.h" because they take any number of arguments; and so need to be
declared BEFORE they are used. If you include "stdio.h" these functions will always be compiled into
your program. You should make a version of "stdio.h” without them (by using the editor) if you want
to compile a lot of code and don't need them.

5.3 int abs{n)

Returns the absolute value of its argument.

5.4 int sign(n)

Returns -1 if the argument is less than zero, 0 if the argument is zero, and | if the argument is
greater than zero.

An Illustration of How to Grub Around

peek and poke are provided to show how to access absolute locations in store from C programs. It is
often possible to write specific functions for a particular program which are more efficient and
easier to use. See the example "dump” function in chapter 1 for instance. A useful technique is to
define a C structure which represents the layout of the piece of store being used and then assign the
address of the store area to a pointer to the structure. These routines do this for the simple case of
a single byte.

Section 5-5

HISOFT C MANUAL version .2 Page 91
5.5 char peek(address)

Returns the value of the byte of store at location "address".

5.6 void poke(address, value)

Puts the low eight bits of "value" into store at location "address". Note that the function has no
result, which is denoted by the "void" type.

Simple input and output to ports is also provided. Note that the Z80 instructions "in r,(cy' and "out
(c),r" are used so that full 16 bit port addresses can be used on those machines which require them.

5.7 int inp(port_number)

Returns the 8 bit input value from the i/o port specified by the 16 bit “port_number".

5.8 int out(data, port_number)

Sends the bottom eight bits of "data" to the i/o port specified by the 16 bit "port_number".

Format conversion routine - ASCII to binary integer

5.9 int atois)

char *s;
Scans the string "s" and returns the binary value of the ASCII number in it. The function first scans
over any whitespace (space, tab, or newline characters) and then converts the number. The conversion

stops when it finds the first non-digit character. The value 0 is returned if no number is found.
The number may have a '+' or a '-' sign in front of it.

Sorting function - a Shell sort

5.10 void gsort(list, num_items, size, cmp_func)
char *list;

int num_items, size;
int (*cmp_funcX);

Section 5-10

Page 92 HISOFT C MANUAL version 1.2

Sorts a list of items into ascending order using a Shell sort. (The function is called gsort because
the Unix original used Hoare's quicksort). The items are all the same size - "size" bytes long. There
are "num items” of them. They appear one after the other starting at "list". "cmp_func" is a pointer
to a function which will compare two items in the list. For example the standard function "strcmp™ can
be used if the items are strings. The function should take two pointer arguments so a call looks like:
(*cmp_func)x,y);
and the function should return an integer:
0 if *x< *y
0 if *x =z %y
20 it x> *y
A common structure for the list is a two-dimensional array, num_items long and size bytes wide:
char list [num_items] [size};

The function is described in detail in Kernighan & Ritchie.

String Handling Functions

Remember that strings in C are arrays of characters which "end" at the first zero byte. The array may
well have more physical store after the end. Equally, if the array is not big enough then whatever
follows the array in memory wiil be overwritten. YOU HAVE BEEN WARNED.
5.11 char *strcat{base, add)

char *base, *add;
Inserts a copy of the string "add" at the end of string "base". This is a physical copying and it is
your responsibility to make sure -that there are enough bytes at the end of "base" to take the copy of
"add"; otherwise whatever is next will be overwritten!! The function returns a pointer to the start of
the "base" string as its result.
5.12 char *suncat(base, add, number)

char *base, *add;
int number;

Behaves like strcat except that it copies at most "number” characters. The'resulting string is null-
terminated.

Section 5-13

HISOFT C MANUAL version 1.2 Page 93

5.13 int strcmp(s, t)

char *s, *t;
Compares two strings, byte for byte, and returns 0 if the two are ideatical. [t returns a value >0 if
s>t and a value <0 if s<t. A string is greater if the first character that differs is later in ASCIl
code sequence.
5.14 int stroncmp(s, t, n)

char *s, *t;
int n;

Behaves like strcmp except that it checks at most the first "n" characters of the strings. It stops
earlier if either of the strings are shorter.
5.15 char *strcpy(dest, source)

char *dest, *source;

Makes a physical copy of the "source" string in the "dest" string.

5.16 char *stencpy(dest, source, number)

char *dest, *source;
int number;

Copies exactly "number" characters into "dest". If "source" contains less than "number”" characters,
then it is copied in its entirety to the beginning of "dest", and the remaining characters are filled
with nulls (ie zero). If "source" contains "number" or more characters, then the first "number" are
copied to "dest”, and "dest" is NOT null-terminated (ie its not really a string anymore, just a
character array).

5.17 unsigned strlen(s)

char *s;

Returns the length of a string. That is the number of characters before the terminating zero.

5.18 char *strchr(string, ch)
char *string, ch;
Returns a pointer to the first occurrence of the character “ch” in the "string" or NULL (zero) if the

character does not occur. You can get a pointer to the end of a string by looking for the NULL
character:

Section 3-18

Page % HISOFT C MANUAL version 1.2

pointer_to_end = strchr(string, 0%

You can use this function in many situations where you would use the SET type in Pascal. For instance
to loop round whilst hexadecimal digits are input we might write:

C
while (strchr("0123456789abcdefABCDEF", (character = getchar())))
do_something_with_charac ter() 3
Pascal
while input” in ['0'..'9", ‘a‘..'f', 'A'..'F'] do
begin
DoSomething WithCharacter ;
get(input)
end ;

Of course C provides a much neater way of solving this particular problem.

while (isxdigit(character = getchar()))
do_something_with_charac ter() ;

5.19 char *strrchr(string, ch)
char *string, ch;
Behaves like strchr except that it returns the last occurrence of “ch" in “string" rather than the
first.
5.20 char *strpbri(sl, s2)
char *sl, *s2;

Returns a pointer to the first occurrence in string "si” of any character from string "s2", or NULL if
no character from "s2" exists in "si”. For instance:
strpbrk("the quick brown fox jumps over the lazy dog", "wolf");

Will return a pointer to the place marked with a '""'.

Section 3-21

HISOFT C MANUAL - version 1.2 Page 95

5.21 int strspa(si, s2)
char *sl, *s2;

Returns the length of the initial segment of string. "s1™ which consists entirely of characters from
string “s2".

3.22 int strcspa(sl, s2)
char *sl, *s2;

Returns the length of the initial segment of string "si” which consists entirely of characters NOT
from string “s2",

Character Test and Manipulate Functions

5.23 int isalnum(c)
char c;
Returns TRUE (ie 1) if the character is an alphanumeric (ie a letter or a digit) and returns FALSE (ie

0) if it is not. ;

5.2¢ int isalpha(c)
char c;

Returns TRUE if the character is a letter and’FALSE if it is not. This function is built-in,

5.25 int isascii{c)
char c;
Returns TRUE if the character is ASCIl (ie” less. than 0x80)

5.26 int iscntric)
char c;

Returns TRUE if the character is a con!(ol character.

Section 5-27

Page 9% HISOFT C MANUAL version 1.2

3.27 imt isdigitlc)
charc;
Returns TRUE if the character is a digit. This function is built-in,

3.28 int isgraphic)
char ¢;
Returns TRUE if the character is a graphic printing character (greater than space and less than Ox7F).

3.29 int istewer(c)
char c;

Returns TRUE if the character is a lower-case letter ("a’ - *2°). This function is built-in.

3.30 int isprinsic)
char ¢;

Returns TRUE if the character is a printing one.

5.31 st ispuncelc)
char ¢;
Returns TRUE if the character is punctuation (ie printable and not a letter or a digit).

5.32 int isspace(c)

char ¢;
Returns TRUE if the character is whitespace. That is, if it is the space character, the newline
character or the tab character. This function is built-in.

3.33 int isupper(c)
char c;
Returns TRUE if the character is an upper-case letter ("A* - *Z') This function is built-in.

Section 3-3%

HISOFT C MANUAL version 1.2 Page 97

5.34 int isxdigit(c)
charc;

Returns TRUE if the character is a hexadecilha_l digit (*'0' - '9’ or 'a' - 'f* or 'A’ - 'F')

5.35 char tolower(c)

char c;
If the character is an upper-case letter then it returns its lower-case equivalent, and otherwise it
returns the character unchanged. This function is built-in.
5.36 char toupper{(c)

char ¢;
If the character is a lower-case letter then it returns its upper-case equivalent, otherwise it
returns the character unchanged. This function is built-in.
5.37 char toascii(c)

char c;

Forces the character into the range 0x00 to Ox7F by "and"-ing 1t with Ox7F.

Storage Allocation and Freeing (Heap Management)

These functions are explained in detail in Kernighan & Ritchie. Note that there is a small control
region allocated in “stdio.h" for use by these functions (it is the head of the free-store chain).
5.38 char *calloc(n, size)

unsigned n, size;

Allocate space for "n" items of "size" bytes each. It returns a pointer to the start of the space or
else it returns NULL if there is no space. For example:

p = calloc(100, sizeof(int));
allocates 200 bytes, enough for an array of 100 integers. There are actually some more bytes hidden

before the block which are used by "free” when the block is finished with. These hidden bytes must
not be changed. The function corresponds to "new" in Pascal.

Section 3-39

Page 98 HISOFT C MANUAL version 1.2

5.39 void free(block)
char *block;

Return a block of store to the free-store chain for re-allocation later by "calloc". You must return
(a copy of) the pointer supplied by "alloc” when the storage was obtained, and the hidden bytes must
be intact. The function corresponds to “dispose" in Pascal.

5.40 char *sbrk(n)
unsigned n;

This is another function associated with storage allocation, and the reasons for its existence are a
little obscure. What it does is to allocate n bytes of physical memory for use by calloc(). It is
not normally called from anywhere else. Why is this extra function necessary, when calloc could do it
directly? Well, it allows YOU to decide which area of memory should be used to provide the space for
the heap. On Unix and many other larger systems sbrk calls the operating system which makes memory
available by moving things around or by taking it from another user {etc etc). On smaller computers
it is up to you to decide on a safe area of memory to be used. There are several possible places to
get the memory, and we have included an sbrk() function which uses the safest of these. You can
rewrite it if you want to use one of the other places.

Miscellaneous Functions

5.41 void swaplp, q, length)

char *p, *q
unsigned length;

This function swaps the contents of two areas of store each "length” bytes long and pointed to by "p"
and "q". 1t is used by "“gsort" in particular. This function is built-in.

5.82 void bit{dest, source, length)

char *dest, *source;
unsigned length;

This function moves the contents of the area of store starting at "source" into the area starting at
"dest”. It moves "length" bytes. The copy is done in the non-destructive direction if the areas of
store overlap (ie starting at the low end if dest is below source and the high end if dest is above
source). The strange name of the function stands for "BLock Transfer”; it arises from Unix history.
This operation is similar to “strcpy” but it always copies the given number of bytes including any
zero bytes it finds. This function is also faster because it is built-in.

INPUT - OUTPUT FUNCTIONS

Section 3-42

HISOFT C MANUAL version 1.2 Page 99

INPUT - OUTPUT FUNCTIONS

These functions implement C/UNIX type flle input-output. They aré all similar to those
described in Kernighan & Ritchie, and thus that is a good place to find more details.

There are three main groups of functions: the character-level functions, the complex-
level functions and the raw-level functions. The character-level functions are those most
used In C programs, they provide buffered input and output of single characters. The
complex-level functions use the character-level functions to provide more facilities
ranging from output of a string (puts) to flexble formatted printing (printf). The raw-level
functions provide a direct interface to the facilities available in the computer.

Input-output in C is done via "flles” which is a fairly general concept. Files are "just a
stream of bytes" which can be read using getc or written using putc. There are three
standard files which all C programs have: these are the standard input stdin, the standard
output stdout, and the error output stderr. stdin is usually the keyboard and the two output
files are the screen. A program can also open other files on cassette, disc, microdrive
etc as available. All the flles can only be accessed one character at a time (serial access).

Character-level Input-Output Functions

HiSeR-C
CPC SPECIFIC

5.43 FILE * fopen(name, mode)
char *name, *mode;

Opens a file for character-level input-output. The string name is the name of the file to
be opened and the string mode tells whether the flle {s to be read or written. The file
will be opened for reading if the string is r" and it will be opened. for writing if the
string is ‘w'. It is not possible to append to an existing file, and if you open an existing
disc or Microdrive flle for writing it will first be erased. Be careful - mode is a string not
a character. fopen returns a file-pointer for use with the other functions to tell them
which file to write to or read from. The file-pointer will be NULL {ie 0) if there is any
error. An example of the use of this function can be found in the editor example section
at the end of Chapter 2. This function is built-in.

HiSeR-C
CPC SPECIFIC

5.44 int fclose(fp)
FILE *fp;

Close the file indicated by the file-pointer fp. If the flle is being written to this ensures
that the last block of data is written. If the file is being read there is no action on the
device. In both cases the control and buffer storage becomes available to open another
file. An example of the use of this function can be found in the editor example session at
the end of Chapter 2. This function is built-in.

Section 5

Page 100 HISOFT C MANUAL version 1.2

CP MSPECIFIC

5.43 FILE * fopen(name, mode)
char *name, *‘mode:

Opens a file (or a device) for input and/or output. It returns a flle-pointer for use with
the other functions to tell them which file to write to or read from. The file-pointer will
be NULL (ie O) if there is any error.

The name string is the name of the file to be opened. It can be the name of a real file or
one of the predefined device names listed in Chapter 1.

The mod 2 string specifies the kind of access required to the flle. Be careful - mode is
always a string, not a character. The mode string is made up of a sequence of characters
as follows. The first character in the string must be one of:

t' open for reading.

‘W' create a new file for writing.

‘a’ append (ie open for writing at the end of a flle or create a new file).

The next character may be a ‘b’ which specifies that the file should be opened for binary
access rather than text access which is the default. Finally, a '+' character may be the last
character in the string, which allows both read and write access to the file.

If you open a file for writing with ‘w", "wb®, ‘'w+", or "'wb+" any existing file with that

name will first be erased. Be careful when using append; refer to Chapter 1.7. This
function is built-in.

HiSeR-C
CP.MSPECIFIC

5.44 int fclose(fp)

FILE *fp;
Close the flle indicated by the file-pointer fp. If the file is being written to this ensures
that the last block of data is written. If the file is being read there is no action on the
device. This function is built-in
5.45 int getc(fp)

FILE *fp;
The basic character-level input function. It reads the next character using the file-
pointer fp. It returns EOF (-1) if the end of the file has been reached. Note that it returns
an integer, not a character. If the result is assigned to a character variable EOF will never

gc ul?een because the top byte is thrown away, leaving +255 instead of -111 This function is
t-in.

Section 5

HISOFT C MANUAL version 1.2 Page 100a

5.46 int ungetc(c, fp)
int c
FILE *fp:

This function puts the character ¢ back onto the file fp, so that it is the next character
to be read with getcQ (or getchar()). There are a couple of points to note about the use
of ungetc: you can only put one character back at a time on each file; and scanf uses
ungetc so you cannot use ungefc after scanf without an intervening call to getc. This
function is built-in.

5.47 int putc(c, Ip)
nt C
FiLE *fp:

The basic character-level output function. Sends the character ¢ using the file-pointer
fo. It returns the character as its result also. This function is built-in.

5.48 int getchar()

Get a character from the standard input - stdin. This function does buffered input from
the keyboard. Incoming characters are collected into a line buffer until {ENTER] s
pressed. The [DELETE] key can be used to edit the characters as they are typed. A cursor

is displayed and characters are echoed on the display as they are typed. This function is
built-in.

5.49 int putchar(c)
intc;

Put a character to the standard output - stdout. The character is displayed on the screen.
The function returns the character as its result also. This function is built-in,

Complex-level [-O Functions

This section continues on page 101.

Section 5

Page 100b HISOFT C MANUAL version 1.2

This page is intentionailly left blank.

Section 5

HISOFT C MANUAL version .2 Page 101
5.50 voidexit(n)

This function is a mixture of I-O function and system function. It closes all files which the program
has open and then exits from the program by calling "_exit" (see below). The parameter "n" is passed
out as the result of the program and it is used to indicate whether or not the program was successful.
A return value of 0 means success, other values indicate an error on the Spectrum by causing the
corresponding Spectrum error report to be displayed. On the Amstrad computers, a message is displayed
and the compiler or translated program is restarted.
5.51 char *fgets(s, n, fp)

char *s;

int n;

FILE *ip;
Read string "s" from file-pointer "fp". The reading will stop when a NEWLINE character is read or when
"n"-1 characters have been read, whichever occurs first. (So "n" is the size of "s"). The string wiil
be terminated by a '\0' character which is added after the newline character. The return value is
normaily "s" but if the end of file has already been reached when "fgets" is called then the return
value is NULL (0).
5.52 void fputs(s, fp)

char *s;
FILE *ip;

Outputs the string "s" to the file-pointer "fp".

5.53 char *gets(s)
char *s;

Reads string "s" from the standard input (the keyboard). It is similar to fgets except that it has no
maximum character count, and also the newline character is OVERWRITTEN by the terminating '\0'.

5.54 void puts(s)
char *s;

Outputs the string "s" to the standard output (the display) and appends a newline character to it.

Section 5-53

Page 102 HISOFT C MANUAL version 1.2

5.55 voidprinti{control, argi, arg2, ...)
char *control;

This is the most important output function, as it is used for almost all kinds of printing - text,
numbers, characters, strings etc. "printf" converts, formats, and prints its arguments on the
standard output “"stdout" under control of the string "control". It behaves as described in Kernighan
& Ritchie. The control string is printed as it stands except that all conversion-specifications in it
are used to print the other arguments.

A conversion specification starts with a '%' character, then follow some optional modifiers and
finally the conversion character. All the conversion specifications are supported (except the
floating point ones):

d signed decimal number.

unsigned octal number.

unsigned hexadecimal number.

unsigned decimal number (eg store address).
a single character.

a string terminated by a \0' character.

»wOe xo

The character specification modifiers are also all supported:
- left justify tield (default is right justify).
0 (a leading zero on following field) use '0' instead of ' ' for padding.
999 (a digit string) minimum tieid width.
.999 the precision - max number of characters from a string.
L long data - has no effect.

Note that a % character is printed by putting %% in the control string. This function is built-in.

5.56 void fprintf{fp, control, argl, arg2 ...)

FILE *fp;
char *control;

Behaves like "printf" except that output is performed using the file-pointer "fp" instead of "stdout".
This function is built-in.
5.57 void sprintf(s, control, argl, arg2 ...)

char *s;
char *control;

Behaves like "printf" except that output is placed in the string "s" instead of being sent to

"stdout". The character array pointed to by "s" must be large enough to receive the output or store
will be overwritten. This function is built-in.

Section 5-57

HISOFT C MANUAL version 1.2 Page 103

5.58 int scanf(control, argl, arg2 ...)

char *control;
ALLOTHER argsMUST BE POINTERS;

This function is the input analogue of printf, providing many of the same conversion facilities in the
opposite direction. 1t reads characters from the standard input, interprets them according to the
format specified in control and stores the results in the remaining arguments WHICH MUST ALL BE
POINTERS!!! The control string usually contains conversion specifications which are used to direct
interpretation of input sequences. It may contain:

- Blanks ("white space") which are matched by any amount of white space in the equivalent position
in the input stream. Any amount is from zero to an indefinite maximum.

- Ordinary characters (not %) which hust match the next input character,

- Conversion specifications consisting of the character %, an optional assignment suppression
character *, an optional number specifying a maximum field width, and a conversion character.

A conversion specification determines how the next input field is interpreted. Normally the result is
placed in the variable POINTED TO by the corresponding argument. This means that the argument usually
starts with an & operator. If assignment suppression is selected by the * character then the input
field is simply skipped and no assignment is made. An input field is defined as a string of non-white
space characters; it extends either to the next white space character or until the field width, if
specified, is exhausted. Hence, [ENTER], the [TAB] character or {[SPACE] can be used to separate input
fields to scanf.

Note however that unlike the scanf described in Kernighan & Ritchie, white space in the input field
witl only be accepted when it matches a white space character in the control string. This is so that
a control string, say "alpha", will not match an input string with embedded space, say "al pha".

This was an oversight which made the original scanf act rather unintelligently in certain
circumstances, but later versions of Unix C follow the same form as we have here. The conversion
character indicates the interpretation of the input field and the corresponding argument must be a
pointer to satisfy the ‘call by value' rules of C. The following are the legal conversion characters:

d A decimal integer is expected; the corresponding argument should be an integer pointer.

[An octal integer, with or without the leading zero, is expected; the corresponding argument
should be an integer pointer.

x A hexadecimal integer, with or without the leading Ox, is expected; the corresponding
argument should be an integer pointer.

h A short integer is expected; in this implementation the corresponding argument should be an
integer pointer.

c A single character is expected; this reads the next input character regardiess of whether it
is white space or not and assigns it to the char variable pointed to by the corresponding
argument.

Section 5-58

Page 104 HISOFT C MANUAL version 1.2

s A character string is expected; the corresponding argument should be a pointer to a
character array large enough to hold the string and the terminating \O which will be added.

The conversion characters d, o and x may be preceded by 'l', which in compilers supporting long
integers would mean that the argument points to a long integer rather than a normal integer. Here it
is ignored. The function returns when the control string is exhausted or when some input does not
match the control specification. It returns as its value the number of successfully assigned input
items, or EOF if end of file was reached first. A short example of scanf is shown here:

int n;
char s[20}
scanf(" %d , %19s", &n, s)k

This will read an integer into n (&n POINTS to n) and a string (which must not be longer than the
array s) into s. The two fields must be separated by a comma (and maybe some white space). Note the
use of the maximum width |9 to protect against an overlong input string. Note that there was no
ampersand (&) preceding 's' in the scanf call as s is already a pointer to the array. Alsc note the
leading space in the control string which will match (and discard) white space on the input if there
is any. This is particularly important to match the [ENTER] on the end of previous input to scanf.

5.59 int fscanf(fp, control, argl, arg2 ...)

FILE *fp;
char *control;

This function behaves just like 'scanf' except that its input is obtained from the file attached to fp
rather than stdin.
5.60 int sscanis, control, argl, arg2 ...)

char *s;
char *control;

This function behaves just like 'scanf' except that it uses the string pointed to by s as its source
of input.

Raw-Level 1/O Functions

5.61 int rawin()

Inputs a character directly from the keyboard, with no conversion of character codes. There is no
cursor and nothing is echoed to the display. This function is intended for special applications such
as games. It is built-in.

On the Spectrum it waits for bit 5 of the FLAGS system variable to be set, then reads LAST_K and
resets the flag. -

Section 3-61

HISOFT C MANUAL version 1.2 Page 105
On the Amstrad machines it uses KM_WAIT_CHAR.
5.62 int keyhit()

Tells whether a key has been pressed on the keyboard, returning TRUE (1) if so and FALSE (0) if not.
The function does not read the key, and if it returns TRUE then you must read the keyboard (using
rawin() perhaps) to get the key and reset the keyboard before you try to use keyhit() again. If you
do not, it will continue to return TRUE every time. This function is built-in.

On the Spectrum it uses the ROM KEY_SCAN routine.

On the Amstrad computers it uses KM_READ_CHAR foliowed by KM_CHAR_RETURN.

3.63 void rawout{(c)
char c;

Outputs the character directly to the screen, with no conversion of character codes. It is designed
to allow full control over the display screen. This function is built-in.

System Interface

5.64 void _exit(n)

This function immediately exits from the program and returns to the system. On the Spectrum the
argument is printed as the corresponding BASIC report (eg _exit(0) is OK and _exit(4) is Out of
memory). On the Amstrad a message is printed.

Some Functions for 32 bit number arithmetic

These functions are not intended to provide full facilities for long arithmetic but are here because
they are needed by the random number generator, They can provide a base if 32 bit numbers are needec
The numbers are represented by an array of four characters (or a pointer to such an array). The least
significant eight bits are held in array{0] and so on to the most significant eight bits in array[3}

The numbers are unsigned (this oniy affects the multiplication routine).

5.65 void long_multiply(c, a, b)
char *a, *b, *c;

Multiply two 32 bit numbers. ¢ =a * b;

Section 3-63

Page 106 HISOFT C MANUAL version §.2

5.66 void long_add(c, a, b)
char *a, *b, *c;

Add two 32 bit numbers. c=a+b;

3.67 void long_init(a, ni, n0)

char *a;
unsigned nl,n0;

Initialise a 32 oit number. nl provides the most significant 16 bits and n0 provides the least
significant 16 bits. So for example after:

long_init(a, O0x1234, 0x3678); "a" has the value 0x12343678

5.68 void long_set(a, n, d}

char *a;
unsigned n, d;

Initialise a 32 bit number. n provides 16 bits to initialise and d tells where to place them in the
number. For example after:

long_set(a, 0x1234, i) "a" has the value 0x00123400,
and long_set(a, 0x3678, 3% gives "a" the value 0x73000000

5.69 void long_copy(c, a)
char *a, “c;

Copy one 32 bit value to another place. Equivalent to ¢ = a;

Pseudo-Random Number Generator

This generator is adapted from "Learning to Program in C" by Thomas Plum. It generates 16 bit numbers
with a period of 2°32. So it generates a sequence of numbers which repeats itself after every 2°32
calls. Note that the same numbers will occur again and again in the sequence. No guarantees are
given about the distribution of the random numbers, so don't be disappointed.

5.70 int rand()

Returns a 16-bit pseudo-random number.

Section 3-70

HISOFT ‘C MANUAL versfon 1.2 Page 107

5.71 void srand(n)

"Seeds” the generator. Used at the start of a program to begin at a different place in the
sequence each time. This makes the program’s behaviour change in different runs. if the
same seed n is used then the sequence will be exactly the same as the previous time -
this can be useful in some statistics programs.

CP . MSPECIFIC

Auxiliary Input-Output Functions

Although these functions are UNIX compatible it is necessary to be aware of the
underlying operating system and the consequent implementation issues to derive
maximum benefit in all circumstances. Well it's certainly easier to use them {f you
understand what's happening, so here goes!

5.72 General Points to Remember About CP/M Input-Output

The CP/M I-O structure provides several particular problems for an implementation of
the UNIX-like C I-O. The short word-length and addressing range of the Z80 processor
provide additional difficulties, similar to those found in some PDP-11 versions of UNIX.

Firstly, it has been necessary to differentiate between text access and binary access to a
file, because of the difference between CP/M line and file end markers and those in
UNIX. This is explained in Chapter 1.

Secondly, we are using a system of 16 bit numbers (-32768 to +32767 or O to 65535}
and it is possible that file sizes can be bigger than this. This could cause a conflict
between compatibility with UNIX and practicality under CP/M, particularly for the
random access functions seek and teil. The solution we have adopted is to provide one
basic built-in function for each and then to construct additional functions in the C source
library. These are compatible with their UNIX counterparts having the same name. We
have invented different names for extra functions needed to write practical programs in
a Z80 CP/M environment. This approach also means thati it is very easy for the user to
customise a particular function to suit her own needs.

5.73 int read(stream, buffer, bytes)

FILE * stream;
char * buffer.
unsigned bytes;

This is a standard UNIX function. It reads the specified number of bytes from the given
stream into the buffer whose address is supplied; and returns the number of bytes
actually read. This will normmnally be the number of bytes requested but may be less if the
End-Of-File is encountered first (or even zero if the stream had already reached the
End-Of-File). The return value will be -1 (== ERROR == EOF) if an error occurred. Note
that the stream parameter would be a file_descriptor and not a file_pointer on UNIX
systems which make the distinction. This function is the building block used in fread().
The function is built-in.

Section 5

Page 108 - HISOFT C MANUAL version 1.2

5.74 int fread(bufler, item_size, num_items, stream)

char * buffer;
unsigned item_sze. num_items;
FILE * stream;

This is a standard UNIX function. It reads the specified number of items, each of the
given size, from the given stream into the buffer whose address is supplied. The number
of items actually read is returned unless an error occurred in which case NULL (0) is
returned. This function is not much different from read and is supplied mainly for
compatibility.

5.75 int write(stream, buffer, bytes)

FILE ¢ stream;
char * buffer;
usigned bytes:

This is a standard UNIX function. It writes the specified number of bytes to the given
stream from the buffer whose address is supplied: and returns the number of bytes
actually written. This will normally be the number of bytes requested but will be -1 (==
ERROR == EOF) if an error occurred. Note that the stream parameter would be a
file_descriptor and not a file_pointer on UNIX systems which make the distinction. This
function is the building block used in fwrite(. The function is built-in.

5.76 int fwrite(buffer, item_size, num_items, stream)

char * buffer;
unsigned item_size, num_items;
FILE * stream;

This is a standard UNIX function. It writes the specified number of items each of the
given size, to the given stream from the buffer whose address is supplied. The number of
items actually written is returned unless an error occurred in which case NULL (0) is
returned. This function is not much different from write and is supplied mainly for
compatibility.

5.77 int fflush(stream)
FILE * stream;

This is a standard UNIX funection. It is used en an output stream to cause the buffer
associated with the stream to be flushed. Flushing is used with disc files and means that
the contents of the buffer are written to the disc immediately instead of waiting until
the buffer is full. This is only necessary where it is important to guarantee the data
against some catastrophe such as power faflure, or where record locking is being used
on a multiple access flle. Sparing use of fflush() is recommended since the extra I-O
makes a significant difference to the speed of a program. The use of fflushQ does not
affect the current position in the file, and the same data will be written to the file again
when the buffer is filled. The function is built-in. -

Section 5

HISOFT C MANUAL versfon 1.2 Page 108a

5.7% int _seek(stream, hi_offset, lo_offset, mode).

FILE * stream;
int hi_offset, lo_offset, mode;

This function provides random access to a file. [t moves the current position in the disc file
associated with the given stream, according to the offset and mode parameters. This function is
designed to allow immediate access to the facilities of the runtime system. The offset should be
considered as a single signed 32 bit number, although it is presented as two 6 bit integers. The
most significant 16 bits of the offset are given in hi_offset and the least significant 16 bits are in
lo _offset. The file is repositioned in a way that depends on the value of mode.

mode
4] The current position is set offset bytes from the beginning of the file. So for exampie
_seek(stream, 0,0, 0);
will put a stream back to the start of the file.

i The position is moved offset bytes from the existing position. Remember that offset is a
signed number so thatmode | can be used to re-examine the most recent part of an input file
or to re-write some of an output file, The first example below ignores the next 10 bytes in
a file, and the second one rewinds the file by one byte (approximately like ungetc).

_seek(stream, 0,10, 1);
_seek(stream, OxFFFF,OxFFFF, 1);
2 The olfset is measured from the end of the fiie, and should be negative or zero (an offset

of zero allows appending to a file assuming writing to the file is permitted).
_seek(stream, 0,0, 2);

Seeking from the end of file ismuchmore tricky under CP /M than it is under UNEX because of
the inadequacy of the CP/M file system. In practice seeks relative to the end of fiie
should only be made on well-behaved text files. The usuai techniques used with binary files
under UNIX and other real operating systems do not work under CP/M 2; and it will be
necessary to keep a manual track of the exact file length if this is required. The comments
made in section 7 of chapter | are particularly relevant here.

One final, but very important point - the byte position within the file is the physical CP/M byte
number and so does not relate immediately to the count of characters seen by a C program using text
mode access (because of the end-of-line handling). In UNIX parlance “the number returned from ftell
is a Magic Cookie useful only for handing to fseek”. So now we ali know and are one step closer to
the arcane mysteries! The function is built-in,

Section 5

Page 108b HISOFT C MANUAL version 1.2

3.79 int seek{stream, offset, mode).

FILE * stream;
int offset, mode;

This function also allows a file to be repositioned by use of an offset and mode (see _seek above).

This is a UNIX function which was supplied with pre-version 7 UNIX systems. It is useful to us
because the PDP-11 on which these systems ran also had a limited word length. The solution which was
adopted works equally well here. In addition to modes 0,1, and 2 which work as described above;
another three modes are supplied which work in the same way except that offset is multiplied by 3i2
first (the length of a PDP-11 disc block!). This enables offset to be a simple 16 bit value and yet
still be able to seek the full length of any CP/M file. Modes 3,4, and 5 correspond to modes 0, I, 2
respectively. So to seek backwards 16384 bytes from the current position in a file we can use:

seek(stream, -16384/512, 4);

5.80 int fseek{stream, offset, mode).

FILE * stream;
long offset;
int mode;

This is a standard UNIX function which is provided mainly for compatibility. It performs a seek (see
_seek above) with modes 0, 1, or 2 and a long effset. It works exactly as it should, but is not able
1o seek the full length of a very large file because the offset is a signed 16 bit number (since long
is sixteen bits),

5.81 int _teli(stream).
FILE * stream;

This function provides random access to a file. It returns the current position in the disc file
associated with the given stream. This function provides immediate access to the facilities of the
runtime system. The current position is returned as a 32 bit physical byte number in the de and hl
registers, with the most significant 16 bits in de and the least significant 16 bits in hl. .The value
in de cannot be accessed in normal use, while hl contains the return value of the function. But the
contents of de can be accessed by inline code immediately after a call to _tell; and this is done by
functions below. The function is built-in.

5.82 long ftelKstream).
FILE * stream;
This is a standard UNIX function. It returns the current position in the disc file associated with

the given stream. Because longs are 16 bits, the value returned is only useful for files of size less
than 65536 bytes. Use tell32 (below) on larger files. This function uses _tell {qv)

Section 5

HISOFT C MANUAL version 1.2 Page 108c

5.8 void tell32(stream, pos_ptr).

FILE * stream;
char * pos_ptr;

This function returns the current position in the disc file associated with the given stream. The
position is written into the four byte area addressed by pos_ptr and should be considered as a single
signed 32 bit number. It is compatible with the format used by long_add etc and by regardmg it as
two 16 bit m(egers can be passed back to _seek. This is shown in the exampie below. Once again note
that the position is a physical byte number and not a count of characters in text mode.

/* example of 32 bit file position manipulation */

typedef union |
char pos_bytes{4];

struct |
int pos_lo;
int pos_hi;
) _word;
I

file_pos;

main{)
t
tile pos p, q, r;

FILE * §;

f - fopen("fiiename”, "rb"); /* open a binary file

do_some reading from({); /* part of the file is processed
teit32(1, p); /* find out where we are in the file
long_lnnl(q, 0x003B,0x5A71); /* q = Ox3B3A71; its a big file!
long_add(r, p, q); /* v = p + q; skip through the file
seek(f, r. word.pos hi,r. word.pos_to, 0);

do_some _reading_from{1); “/* and resume processing later

I

/* in this case we could actually avoid the calls to tell32, long_init,
/* and long_add by using mode | in the call to _seek as follows:
main()
{
FILE * f;
f = topen("filename™, "rb"); /* open a binary file
do_some_reading_ lrom(t), /* part of the file is processed
seek(f, 0x003B,0x5A7t, 1); /* skip through the BIG file
do_some_readmg_lrom(l /* and resume processing later

Section 5

*/
*/
*/
*/

*/

*
~~

Page 108d HISOFT C MANUAL version 1.2

5.8 int tname(stream, buffer).

FILE * stream;
char buffer[i5)

This function returns the name of the file which is associated with a stream. For example, it can be
used to detect the actual destination of standard output which has been redirected. The name is
copied into an actual buffer supplied by the user. It is your responsibility to ensure that butfer is
indeed the address of an array of at least 15 characters. The buffer js filled with a normal C zero-
terminated string representing the name of the file in the usual CP/M way as drive:filename.extension.
A physical device name will be returned if appropriate (eg "CON:"). The function is built-in,

5.85 freopen{filename, mode string, stream).

char *filename, mode_string;
FILE * stream;

This is a standard UNIX function which is used to redirect the input or output on an existing stream.
It is commonly used to redirect the standard streams stdin, stdout and stderr. An example of its use
can be found in the 1/O redirection facilities implemented in the cpm_cmd_line library function. The
function is built-in.

5.86 int getw(stream).

FILE ® stream;
Returus a 16 bit integer read from the file associated with stream. The integer is made up from the
next two bytes read from the stream with getc. The first byte read provides the low order 8 bits of
the integer. This function is usually appropriate only to a binary file opened in "rb" mode and
particularly to a file written using putw below.
5.87 void putw(w, stream).

int w3
FILE ®* stream;
Writes the 16 bit integer w 1o the file associated with stream. The integer is written as two

successive bytes using putc. The low order 8 bits are written first. This function is usually
appropriate only to a binary file opened in "wb" mode.

Section 5

HiSoft C

Fast Interactive K&R C Compiler

Chapter 6
The CPM.LIB Library

HiSeft-C
CP/MSPECIFIC

HISOFT C MANUAL version 1.2 Page 113
6. THE CPM.LIB LIBRARY FOR CP/M COMPUTERS.

You never enjoy the world aright,

till the C itself floweth in your veins,
till you are clothed with the heavens,
and crowned with the stars.

Thomas Traherne

The CPM.LIB library file provides access to the facilities of a computer running CP/M-80 or CP/M-Pius
(also known as CP/M 3). it also contains soine useful machine-independent functions for handling files
and strings which are not found on UNIX systems. These supplement stdio.lib which contains machine-
independent functions usually supplied with C compilers on UNIX systeims.

6.1 int cpm_bdos(func, param).
int func, param;

func is the BDOS function number required; param is the parameier required by BDOS (or use 0 if none
required); and the return value is that returned by BDOS (or garbage).

This function simply calls the CP/M BDOS via the jump at location 5. 1t is the recommended way of
using CP/M functions, if it is possible to do what you need by using it. In particular, some of the
other ways of doing things (eg directly reading and writing the iobyte or disc number) may not work on
some CP/M look-alikes or on CP/M Plus; but then not atl BDOS calls are implemented on some so-called
CP/M look-alikes either!

As an added convenience many of the BDOS functions arg also supplied as specific C functions. This
also allows easy reworking of individual functions where necessary on "not-quite-CP/M" systems.

The BDOS function supplied makes some assumplions about your version of CP/M. The implications and
consequeaces of these assumptions if you are not running CP/M 2.2 or CP/M-Plus are listed below. 1t
is assumed that your CP/M:

I. Has a jump vector at location 5 (this had better be true!). If the jump isn't there, then where
is your stack pointer being loaded from? You may need to do a lot of poking into the runtimes!

2. Takes the function number in the C register. This is almost always true, and just needs
attering if it should be different.

3. Takes any argument in the DE register pair, This is almost always true, and just needs altering
if it should be different.

4. Returns any result in the HL register pair. This is true for CP/M 2.2, CP/M-Plus, and MP /M; but
wot for certain other systems. The most common difference is that singie-byte results might be
returned just in the A register, and not in the HL registers as well. 1f this should be so
uncomment the LD_A_into instruction and use the global variable reg_a in the specific calls that
are affected.

Section 6-1

Page 114 HISOFT C MANUAL version 1.2

5. Preserves SP and PC but may destroy any other register. The only register we care about is IX
which is used as our stack frame pointer so we take care to preserve this.

6.2 int cpm22 bios(func, bc_param, de_param).
int func, bc_param, de_param;

This function provides access to the CP/M 2.2 BIOS. You are recommended not to use the BIOS entry
points {or low-store addresses such as the IOBYTE supported (or not) by the BIOS). You should use the
corresponrding feature in the BDOS wherever possible. Note in particular that the BDOS and the BIOS
may each hold information about the current disc position, and they may get confused and cease working
if both BDOS and BIOS functions are used to access discs.

The cpm22_bios function takes a function number func (from 0 to 17), a main parameter bc am which
is foaded into the bc register, and an auxiliary parame ter de_param which is loaded into (used only
for SECTRAN), it returns an int result, normally from the a register but from hl in the case of the
SELDSK and SECTRAN functions. Note that the auxiliary (de) parameter MUST be present for all calls;
use a value of zero for calls where it is not used.

A summary tabie of the BIOS functions and the registers used is shown below:

FUNC NAME INPUT OuUTPUT
00 BOOT -- .-
vl wBOOT -- --
02 CONST -- A
03 CONIN -- A
04 CONOUT C --
05 LIST C --
06 PUNCH C --
08 READER -- A
09 HOME -- --
10 SELDSK C HL
1l SETTRK BC --
12 SETSEC BC --
13 SETDMA BC --
i4 READ -- A
13 WITE ~= A
16 LISTST -- A
17 SECTRAN BC,DE HL

Section 6-2

HISOFT C MANUAL version 1.2 Page 115

6.3 int cpm3_bios(func, a_param, bc_param, de_param, hl_param).
int func, a_param, bc_param, de_param, hl_paran;;

This function provides access to the CP/M 3 BIOS. You are recommended not to use the BIOS entry
puints (or low-store addresses such as the IOBYTE supported (or not) by the BK)S). You should use the
corresponding feature in the BDOS wherever possible. Note in particular that the BDOS and the BIOS
may each hold information about the current disc position, and they may get confused and cease working
if both BDOS and BIOS functions are used to access discs.

The cpm3_bios function takes a tunction number func and parameters for each of the registers A, BC,
DE, and HL: a_param, bcrpnnm. de_param, and hl_param. It builds the required BIOS-parameter-block
and calls CP/M 3 BDOS function 50 to access the BIOS. It returns the result of this call.

6.4 Command Line Support and 1/O Redirection for Compiled Programs.

Command line handling is provided by HiSoft C, but there are certain differences from UNIX command
line handling as described in Kernighan & Ritchie. We have however (ried to retain as much
compatibility as possible.

The compiled program can access a series of arguments supplied on the command line; and the standard
input (stdin) and standard output (stdout) are automatically redirected by command lines such as:

Adprogram argl <input arg2 arg3 >>append argh

Full details of what is allowed on a command line are given below. The main difference from UNIX is
that programs must call a library function cpm cmd line(). This is because the facility takes a
significant amount of memory. Those programs that don't use command line handling need not cail the
function, and avoid wasting this space.

The second difference is that CP/M does not provige access to the command name (ie the name of the
program which is running). This name is normally available as argv[0] and to retain UNIX
compatibility we return the string "HiSoft" as the naine - this can be altered in "cpm_cmd line()'.

The user program declares argc and argv in the usual way as parameters. It also declares an area of
buffer space which is used to hold the argument vector and the text of the command line arguments.
The constant MAXARGS is used to determine the maximum number of arguments which can be handled, and
132 bytes are allowed for the text (the maximumCP/M line length).

It calls cpn_cmd_line() before it uses argc or argv - usually first thing in the program. The call
always lias the same arguments.

We have provided an example of command line handling below. [t is a modified version of the echo
program given on page 111 of Kernighan & Ritchie. The modifications cause it to print out the first
argument argv{0] to reinforce the point that under CP/M this cannot be the command name. Note that
CP/M also forces the entire command line to upper case. [Thats why the compiler accepts directives in
upper case as well']

Argument. cais be enclosed in double quotes if they need to contain spaces.

Sectrion 6-4

Page 116 HISOFT C MANUAL version 1.2

[* % e nn COMMAND LI NE EXAMPLE LA
/*
Example of Command Line Handling - a modified "echo" program which
simply displays its command line arguments on the standard output,

source file: echo.c
first comes the part common to all programs which use the command line
«/
#include stdio.h
main(argc,argv)

int argce;
char *argvil;

FAST char argv__bu((er[M\XARGS =2 4+ 132}
cpm_cmd_line(&karge, &argv, argv_buffer);

/* now for the example program */
while (argc--) printf(arge > 0 7 ™®Bs " : "®s\n", "argves+);
}

#include ?cpm.lib?
#include ?stdio.lib?

,.QQ..I END OF EXAMPLE QIIII./
The compilation, running, and output from this program looks like this:

A>hc echo.c
HiSoft C Compiler V1.3. Copyright (C) 1985
Line File

VEMORY MAP Start End

Runtimes 0100 1IFF
Code 1200 1633
Initialisers 1636 1639
Fixed Data C247 C306

Smallest #data 0x]702
A>echo hello, world
HiSoft HELLO WORLD

A>echo Y junk now send " the output " to a file
A>echo and send some more >>junk

A>type junk

HiSoft NOW SEND THE OUTPUT TO A FILE

HiSoft AND SEND SOME MORE

Section 6-%

HISOFT C MANUAL version 1.2 Page 117

6.5 cpm_dir(drive, user, afn, sp, fp, width).

int drive, user, width;
char *afn, *sp;
FILE *fp;

cpm_dir produces a directory listing of a disc. It just produces a list of filenames so headings can
be added as required by programs; this also makes it easier for application programs which intend to
manipulate the directory in some way. For similar reasons, its arguments specify which files on which
disk are to be listed. The application program shouid obtain this information via its user interface.

The directory is produced of files on drive (0 for drive A through to 13 for drive P) in user area
user (0 to 15) which match the ambiguous file specification afn (normal CP/M style - such as
“ed?tor*.com” or the usual "*.*"), If the file-pointer parameter fp is not NULL then the output is
sent to the file. If the string pointer parameter sp is not NULL then output is sent to the string
“sp". Other combinations result in either both types of output or none at all. Output is formatted
across width columns.

You must reset the DMA address after calling this function if you intend doing any direct access to
discs. This is because CP/M provides no way of discovering the current DMA address so this function
cannot reset it. The runtime system resets the DMA address for subsequent normal file accesses.

6.6 int cpm_drive(new_drive).

int new_drive;
The CP /M operations of selecting a drive and interrogating the current drive number are combined in
the function “cpm_drive". The current drive number is ascertained and returned after selecting the
new drive passed as argument. Passing -1 as argument suppresses the selection and just returns the

current drive number. The function can be used to select a drive temporarily and then restore the
original drive (see "cpm_dir()').

6.7 cpm_pfcb{fch, atn).

char tco[36], *afn;
This function corstructs a 36 byte CP/M file-control-block fcb from the ambiguous-file-name ain. fcb
must be the address of a 36 byte area. The function takes a nuli-terminated C string which represents
a CP/M filename in the usual way as a disk, filename, and extension. The wildcard characters '?' and

'*' may be used, Bxample filenames are:

"A:FULLNAME .EXT" "hc.*" “a-file" "P:ED*.COM" "*.,*" “DATA??97.DAT"

Section 6-8

Page 118 HISOFT C MANUAL version 1.2

6.8 Int cpm_user(new_user).
int new_user
This function both sets a new_user number and returns the previous user number. This allows the old
user number to be re-established later.
6.9 char *instr(main_string, sub_string)
char *main_string, *sub_string;
Find ocurrence of one string inside another. This function returns a pointer to the first occurrence

of sub_string within main_string. [t returns NULL if there is no such occurrence. This function must
be declared before use as "extern char *instr();". Special purpose versions are easily written for

greater speed.
6.10 itob(n, string, precision)
char *string;
Convert a number to a binary string. n is the number to be converted. string is the string to place
the result in and must be a character array of length precision+1 or bigger. precision is the number

of binary digits to place in the string.

ey itob(10, string, 7) gives string the value "0001010".

6.11 read_file(filename, address)

char *filename, *address;
Read a named file into a block of store. Takes a string containing the filename to be used for the
input file, the address of the start of a block of memory. It returns ERROR (-1) if the file could
not be opened and TRUE (+1) if everything went OK.
6.12 char *strlower(string)

char *string;
Transform each upper case letter in a string to its lower case equivalent. Takes a string s and

‘transforms it in place (the string is permanently changed - use strcpy first if necessary). Returns a
pointer to the string. This function must be declared before use as: extern char *striower();

Section 6-13

HISOFT C MANUAL version 1.2 Page 119

6.13 char *strupper(string)

char *string;
Transform each lower case letter in a string to its upper case equivalent. Takes a string s and
transforms it in place (the string is permanently changed - use strcpy first if necessary). Returns a
pointer to the string. This function must be declared before use as: extern char *strupper();
6.14 write_file(filename, address, length)

char *filename, *address;
unsigned length;

Write a block of store to a named file. Takes a string containing the filename to be used for the

output file, the address of the start of a block of memory, and the length (in bytes) of the block.
it returns ERROR (-1} if the file could not be opened and TRUE (+1) if everything went OK.

Section 6-14

Page 120 HISOFT C MANUAL version 1.2

Section 6- 16

HiSoft C

Fast Interactive K&R C Compiler

Chapter 6
The BASIC.LIB Library

HiSeft-C
CPC SPECIFIC

HISOFT C MANUAL version 1.2 Page 109

6. THE BASIC.LIB FUNCTION LIBRARY FOR AMSTRAD COMPUTERS.

You never enjoy the world aright,

till the C itself floweth in your veins,
till you are clothed with the heavens,
and crowned with the stars.

Thomas Traherne

The BASIC.LIB library file provides access to the features of the Amstrad computers in a way which is
intended to be familiar to the BASIC programmer. It supplements stdio.lib which contains machine-
independent functions usually supplied with C compilers. The library is actually supplied as two
files (BASIC1.L1B and BASIC2.L1B) so that each part can be loaded into the editor as required.

Another library called "firmware.lib" is also available which provides direct access to all the
jumpblock entries. This can be bought direct from Hisoft.

Some of the BASIC commands provide facilities in a way which is completely different to C - for
example string handling is normally done in a different style using pointers and the many library
functions. This means that some of the examples given here are a little contrived, but they do at
least give some idea of how to achieve a particular result using C.

This chapter of the manual is organised into two sections. The first lists all the Locmotive BASIC
keywords in alphabetic order, and gives the name of the C function which corresponds to it, or shows
how to achieve the same result if there is no directly corresponding function. The second section
gives descriptions of ali the functions actually contained in the "BASIC.LIB" files, so that they can
be used properly.

6.1 BASIC Keywords And Their C Equivalents,

ABS is abs() in stdio.lib.

AFTER is after() in basicl.lib.

ASC is just *string_name.
€g

string = "Hello";
printf("9%d", *string);
72

ATN is not available (floating point).

Section 6-1

Page 110 HISOFT C MANUAL version 1.2
AUTO is the editor command 'i'.
BINS is itob() in basicl.lib.
BORDER is border() in basicl.lib.
CALL is just inline(OxCD, address);
#define CALL 0xCD
inline(CALL, 0xBD19);
CAT i+ atalog() in basicl.lib or is done by getting a non-existent file using the editor.

CHAIN and Cv. A1 MERGE are not available.

CHRS is not needed at all.
eg

PRINT CHR$(72); becomes
PRINT CHRS$(13); becomes

putchar() is normally used to output a single character but rawout() is available for
characters which are otherwise not directly output by the C input-output functions.

CINT is not needed (floating point).
CLEAR is automatic when you recompile.

CLG is G_clear_window() in basic2.lib (and firmware.lib).

CLOSEIN is fclose() built-in.

CLOSEOUT is fclose() built-in.

CLS is cls() in basicl.lib (which is rawout('\f');).

CONT is not needed (see STOP).

Section 6-1

HISOFT C

Cos

CREAL

DATA

DECS$

DEF FN

MANUAL version 1.2 Page 111

is not available (floating point).
is not needed (floating point).
are initializers.
is done by a call to sprintf.

e sprintf(string, "%d", 27);

puts(string);
27

is just a function defintion,

DEFINT and DEFSTR and DEFREAL are not used in C; ail variabies are declared.

DEG

DELETE

Dt

DIM

DRAW

DRAWR

is not available (floating point).
is the editor "d" command.

is event_disable() in basicl.lib. A more severe disabling of interrupts can be done by:
inline(OxF3)

but this will prevent keyboard scanning, stop timers, etc and must be reversed by a later:
inline(OxFB);

See also the discussion of events.

is just a normal array declaration.

€g
char string_variable[3761};

is G_line_absolute() in basic2.lib (and firmware.lib). Colour is set separately with

G_set_pen().

is G_line_relative() in basic2.lib (and firmware.lib), Colour is set separately with
G_set_pen(),

Section 6-1

Page 112 HISOFT C MANUAL version 1.2

EDIT is the editor "e" command.

El is event_enable() in basicl.lib. See also DI

END is just the end of the "main" function.

ENT is s_tone_env() in basicl.lib.

ENV is s_ampl_env() in basicl.lib.

EOF is done by testing each input character against constant EOF (-1).
eg

/* display each character in a cassette file */
while (next_char = getc(cassette)) != EOF)
putchar(next_char);

ERASE is done by allocating the array with "calloc()' and then reclaiming the memory with
“free()'.

ERR and ERL are not needed because C has no errors which cause program termination apart from "stack
overflow™ which is a disaster.

ERROR is not needed. See ERR.

EVERY is every() in basicl.lib.

EXP is not available (floating point).

FIX is not needed (floating point).

FOR is just a particular case of C's for statement.

for(simple variable = start;
simple_variable <z end;
simple_variable += step_size)
controlled_statement ;

Section 6-1

HISOFT C

FRE

GOsuUB

GOTO

HEXS$

HIMEM

INK

INKEY

INKEYS

MANUAL version 1.2 Page 113
is not available, but see the editor's 'V' command.

is just a function call

gsort(list, length, size, func);

is just a goto statement.

goto label_name;

is done by a call to printf, or sprintf.
€g
printf("%x", 65534);
FFFE

sprintf(string, "%x %04x", 42, 42);
puts(string);
2A 002A

the top of memory is O0xBOFF in a raw CPC#464%, and OxABFC with DD discs or on a CPC664.

is just an if statement.
€g
if (expression_is_non_zero)
then_execute this statement;
else -7
execute_another_statement;

is ink() in basicl.lib.
is inkey() in basicl.lib.

is a combination of keyhit() and rawin(). Both are built in.
€g

rawout(12);
do {
printf("Are you clever (y or n) ?;
while (! keyhit()) ; /* loop until a key press */
¢ = toupper(rawin());
if (¢ == 'N printf("You must have been to buy me!");
if (¢ == 'Y printf("You're too modest!!i");
}
while (c 1= 'y! && [I= 'N');

Section 6-1

Page il4 HISOFT C MANUAL version 1.2

INP is inp() in stdio.lib.
INPUT is fscanf() which is built in.
INSTR is instr() in basicl.lib. Note that it returns a pointer to the substring (it corresponds
more closely to a hypothetical INSTRS). An offset can be calculated if required.
eg:
puts(instr("BANANAS"+2, "AN"));
ANAS

s = "There are many ways of writing special versions";
printf("OFFSET IS %d", instr(s, "special") - s);
OFFSET IS 31

INT is not needed (floating point).
Joy is joy() in basicl.lib.
KEY is key_function(} in basicl.lib.

eg
key_function(139,"c\n#include\n");

sets up the small [ENTER lkey (without [CTRLD to compile the C program held inRAM by the
editor by just one keystroke.

KEY DEF is key_translation() in basicl.lib.

LEFTS is strncpy() in stdio.lib.
eg:
printf("%2s", strncpy(s,"HISOFT",2));
HI
LEN is strlen() in stdio.lib.
LET is an assignment statement.

LINE INPUT is fgets() in stdio.lib.

Section 6-1

HISOFT C MANUAL version 1.2

LIST

LOAD

LOCATE

LOG

LOG10

LOWERS

MAX

MEMORY

MERGE

MID$

MIN

is the editor "I" command.

Source is read into the editor's text buffer with the "G" command.

can read a complete file into memory using read_file() in basicl.lib.

is just
rawout(31l)
rawout(x);
rawout(y);

where x is the column number
and y is the row number
rawout() is built in

is not available (floating point).
is not available (floating point).
is strlower() in basicl.lib.

is max() in stdio.h.

is not needed.

is not available.

is done by strcpy() or strncpy() or by print format control as required.

eg
s = "High Quality Software";
printf("%.2s%. 4si", s, s+13)
HiSoft!

strocpy(t, s+5, 7%
t[7] = 0;
puts(t);
Quality

is min() in stdio.h,

Page 115

it can be compiled
directly from disc or tape using the "#include filename" compiler directive. Your programs

Section

6-1

Page 116 HISOFT C MANUAL version 1.2

MODE is just
rawout(4);
rawout(new_mode 0 |_or_2)

MOVE is G_move_absolute() in basic2.lib (and firmware.lib).
MOVER is G_move_relative() in basic2.lib (and firmware.lib).
NEW is roughly the same as d1,32767 in the editor.

NEXT is not required (see FOR).

ON GOSUB and ON GOTO are just a switch statement.

€g
switch (day) {
case 0: printf("Monday - back to the grindstone");

break;

case 4: printf("Friday - tomorrow's the weekend!");
break;

case 5:

case 6: printf("weekend - don't wake me early");
break;

case 1:

case 2:

case 3: printf("boring");
break;

default: printf("%d is not a day of the week!!!", day);

ON BREAK GOSUB and ON BREAK STOP are achieved by using K_arm_break() in basicl.lib (and firmware.lib).
ON ERROR GOTO has no equivalent (because there are no errors!),

ON SQGOSUB is replaced by the sound handling facilities.

OPENIN is fopen(filename,"r"); which is built in.

OPENOUT is fopen(filename,"w"); which is built in.

Section 6-1

HISOFT C MANUAL version 1.2 Page 117

ORIGIN is G_set origin() in basic2.lib (and firmware.lib). Window size is set separately by
G_win_width() and G_win_height().

ouT is out() in stdio.lib,
PAPER is
rawout(l4);
rawout(ink);
PEEK is peek() in stdio.lib, see also dump() in the examples in the manual.
PEN is
rawout(15);
rawout(ink);
PI is not available (floating point).
PLOT is G_plot_absolute() in basic2.lib (and firmware.lib).
PLOTR is G_plot_relative() in basic2.lib (and firmware.lib).
POKE is poke() in stdio.lib but also often can just be done with pointers.
POS is T_get_cursor() in basic2.lib (and firmware.lib).
PRINT is normally printf() but fprintf(), sprintf(), puts(), putchar(), putc() rawout() etc are

also available.

RAD is not available,

RANDOMIZE is srand() in stdio.lib,

READ is like an initializer.
€|
char *s[] =
{*Adam", “Dave", "Mabel", "Mark", "Richard"};

Section 6-1

Page 118

RELEASE

REM

REMAIN

RENUM

RESTORE

RESUME

RETURN

RIGHTS

RND

ROUND

RUN

SAVE

HISOFT C MANUAL version 1.2
is S_release() in basicl.lib (and firmware.lib)
is /* acomment like this */,

is not needed when using the event facilities of BASIC.LIB. The required time can be read
directly from the tick block.

is the editor's N command.

is not needed in C programs (because we have arrays of strings etc).
eg
int times, word;
char *s[] =
{ "initialized", "data", "is", "accessible" };

for(times=0; times<3000; ++times)
for(word=0; word<#; ++word) puts(s{ wordD;

is not needed (see ON ERROR GOTO).

is done automatically at the end of a function but the return statement can also return a
value.

is just an addition.
€|
puts("Hello world" + 6);
world

is rand() in stdio.lib.
is not needed (floating point).

The BASIC RUN command is used to run a translated program. After a normal compilation press
[CTRL}Z and then Y to run a program.

Source is saved using the editor's P command. #translate automatically saves a binary
program. You can save an area of store with write_file() in basicl.lib,
eg
write_{ile("SCREEN", 0xC000, 0x4000);

Section 6-1

HISOFT C MANUAL version 1.2 Page 119

SGN is sign() in stdio.lib.
SIN is not available (floating point).
SOUND is part of the sound facilities.

SPACES is done with blt() which is built in.
eg
#fdefine LENGTH 190
char who_uses_this[LENGTH + 1}

*who_uses_this = ' ';
bli(who_uses_this + 1, who_uses_this, LENGTH - 1)
who_uses_thisl]LENGTH] = 0;

SPEED INK is flash_speed() in basicl.lib.
SPEED KEY is key_speed() in basici.lib.

SPEED WRITE is cass_speed() in basicl.lib.

SQ is sound_check() in basicl.lib.
SQR is not available (floating point),
STOP is done by:

print{("At debugging point 3 variable is %d", variable);
rawin(); /* wait for a key press */

STRS is done with sprintf() which is built-in.
€
char s{20];
sprintf(s, "%d", 0x766);
puts(s)h
1894

STRINGS is done with blt() exactly like SPACES.

Section 6-1

Page 120

SYMBOL

HISOFT C MANUAL version 1.2

is symbol() in basicl.lib, Note that C does not set any default user symbol area, so you
must always use symbol_after before using symbol.
€g
#define ARROW 94

char circumilex{] =
{o, 24, 60, 102, 102, O, 0, O};
char bytes{(256 - ARROW) * 38];

#directs+

symbol after(ARROW, bytes);
symbol{(ARROW, circumilex);

Redefines the up arrow key on the keyboard to display as a circumfiex.

SYMBOL AFTER is symbol_after() in basicl.lib.

TAG

TAGOFF

TAN

TEST

TESTR

TIME

is T_set_graphic() in basic2.lib (and firmware.lib).

is T_set_graphic() in basic2.lib (and firmware.lib).
is not available (floating point).

is G_test_absolute() in basic2.lib (and firmware.lib).
is G_test_relative() in basic2.lib (and firmware.lib).

is time() in basicl.lib.

TRON and TROFF are normally achieved by using putchar() to print a character at significant places in

UNT

UPPERS$

VAL

Section 6-1

the program, or printf to print a message and perhaps the value of some variables. See
STOP.

is not needed. Its all done automatically by C,

is strupper() in basicl.lib.

is done with sscanf() which is built-in. See the entry for scanf in the Library chapter of
the Manual.

HISOFT C MANUAL version 1.2 Page 121

VPOS

WAIT

WEND

WHILE

WIDTH

WINDOW

is T_get cursor() in basic2.lib (and firmware.lib).

is just:
do ; while ((inp(port_number) * inversion) & mask) ;

You can escape from the loop just by pressing [ESC] twice.
is not needed (see WHILE).

is a while or do loop.
€8
square root = 1;
while unare_root * square_root < square)
++square_root;
or i
do ¢ = getchar(); while (c=='" |l ¢ == "\n')

is not available. Control of printing format is very flexible using fprintf() and you can
normally rely on your printer to wrap round to the next line automatically if you don't send
it the right formatting information.

is T_win_enable() in basic2.lib (and firmware.lib).

WINDOW SWAP is T_swap_streams() in basic2.lib (and firmware.lib).

WRITE

XPOS

YPOS

ZONE

is done by using printf(), but its normally better in C to write a list of values without
commas because they are easier to read back in again.

is G_ask_cursor() in basic2.lib (and firmware.lib).
is G_ask_cursor() in basic2.lib (and firmware.lib).

is not needed.

Section 6-1

Page 122 HISOFT C MANUAL version 1.2

6.2 Events and C.

The firmware operating system in ROM on the Amstrad computers provides a wide variety of event
processing facilities which let the user perform many tasks at once. The most general access to these
features is provided by means of direct calls to the ROM software using the functions in firmware.lib.
These calls are not really suitable for the normal requirements because they involve much work in
setting up parameters and can have disastrous consequences if incorrectly set up. So several
functions are provided in basicl.lib which aliow commonly used patterns of event handling to be set up
easily,

The functions provided are similar to those found in Locomotive BASIC but they do differ in some areas
to fit in more easily with the C style. In particular, for those who are interested, asynchronous
events are used rather than synchronous ones; and extra data are placed on the end of all event
blocks.

The most important thing to remember when using these events is that either all display printing
should be done by the event functions, or it should be done by the normal program, but not by a
mixture. The reason for this is because event functions can interrupt the firmware whilst it is
running and the firmware is not re-entrant, So take the decision that one or the other set of
functions (event functions or normal program functions) will do all the output to avoid accidentally
re-entering the firmware. Event functions do not interrupt each other, so it doesn't matter how many
of them use the firmware.

The event blocks used by C are larger than those used by the firmware in order that arrays of events
can be constructed. The layout is as follows:

byte contents

0,1 event chain

2 event count

3 event class - asynchronous (0x80)
4,5 pointer to byte 7

6 ROM select - all RAM (OxFF)

7 PUSH_HL (OxE5)

8 CALL (0xCD)

9,10 event function address

11 RET (0xC9)

12+ onwards available for user fields

Thus each event block is 12 bytes long, of which the first seven are a normal firmware event block.
The event routine address is always set to point at byte 7 of the block; which contains a short

Section 6-2

HISOFT C MANUAL version 1.2 Page 123

machine code program. This program pushes HL onto the stack, calls the real event function whose
address is contained in bytes 9 and 10, and returns afterwards. HL has been loaded by the firmware
with a pointer to the event block, and it is placed on the stack so that the event function can access
it as a parameter. This enables the event function to access the block, in case it is necessary to
alter any of the fields, or to use data contained in the optional user fields.

The sound functions in the library illustrates the techniques. Note that HL points to byte 4 of the
event block; NOT as variously described in the firmware specification either byte 5 or byte 7 ("the
address of the user fields"). Note also that these asynchronous event functions are at "far"
addresses, and NOT at "near" addresses as suggested in the firmware manual. This is because the
function could be in the lowest 16K of RAM; and the lower ROM is always switched in for a near
address.

The functions used as event functions are normal C functions but they are subject to the restriction
that they should have exactly one parameter which is the address of byte 4 of the event block as
discussed above. The function can ignore this parameter if it has no use for it, but it must still be
declared.

6.3 Sounds of the C.

BASIC.LIB contains a group of functions providing a simple but very flexible interface to the
extensive sound facilities of the AMSTRAD. A typical use of the routines is shown below.

#include stdio.h

main() /* try this out */
{

char *string;

string = "T\170 O\3 F. G. A'. Bb'. C'\8.";

setup_sound();

play(string, 1);

play("T\360 O\4 C'\2.W\2.G\2.W\1.G\1.A'.G\2.W\6.B'\2.W\2.C'\8.", 1);
}

#include ?basicl.lib?

The function setup sound() must be called before using the main function play(). play() has two
parameters. The first is of type pointer-to-char and is the string fo be played and the second is a
char and indicates (among other things) which channel the string is to be played on. It is identical
in all respects with the Channel Status parameter to the BASIC command SOUND.

The string used in the play statements consists of a sequence of notes and sound primitives that are
obeyed in turn. There are seven controlling primitives each of which should be followed by a
parameter byte (using the backslash character to put bytes into strings as in standard C. Remember
that the byte is written as OCTAL NOT DECIMAL).

The meaning of the parameters to follow mirror exactly those for the BASIC command SOUND.

Section 6-3

Page 124 HISOFT C MANUAL version 1.2

S\x The parameter (\x) sets the status byte. This change lasts for one note only after which
the top five bits will be reset to 0 for subsequent notes on the same channel. Any attempt
to change the channel number (ie the bottom 3 bits) will be ignored. The channel that the
string is played on is decided at the start by the status parameter given when play() is
called and lasts for the whole string. (The action of the status parameter is to insert an
S command at the beginning of the string)

The next 6 commands all apply on the specified channel until subsequent commands of the same type are
issued on that channel.

Vix Set the volume. The range is 0 to 15 with default 12.
N\x Set the amount of noise with each note. The range is 0 to 31 with defauit 0.

Y\x Specify which volume envelope to use. The range is 0 to 15 with default 0. Volume envelope
0 leaves the volume constant for 2 seconds.

Z\x Specify which tone envelope to use. The range is 0 to 15 with default 0. Tone envelope 0
does not modulate the tone.

O\x Set the base octave. The range is O to 8 with default 3 (which is the octave containing
middie C on the piano).

T\x Set the tempo. The range is 0 to 255 with default 60. This parameter is used exactly as in
amusic score. For example a tempo of 60 means one beat per second or a tempo of 120 means
two beats per second.

Any character other than those above is taken to be the start of a note specifier as detailed below.

A note consists of a certain pitch and a certain duration (both of which are relative to the O and T
commands above). The pitch of a note is specified simply by its name - a letter between A and G
(capitals only). Sharp signs (#) or flat signs (b) following the note will raise or lower the
pitch of the note by a semitone, Apostrophes (') preceding the note will each lower the note by one
octave and apostrophes following will each raise the note by one octave. Following apostrophes should
be placed after and '#' or 'b' signs. Apart from the letters A t0 G, a W (standing for Wait) may be
used to produce silence. As in the example above it may be followed by a duration byte (see below)
and must be played like any other note (by use of a full-stop as below).

The duration of the note may be set by placing a byte of value less than \40 (32 decimal) after all of
the pitch specifiers. If this is omitted a value of \% is used (which in combination with the default
tempo of 60 gives the note a duration of one second). Remember that bytes after the backslash are
OCTAL inC (eg \16 = 14 decimal).

Finally, a full-stop (.) will play the last note to have been set up (including a W for silence).
If this is omitted, the note will be ignored.

If the note is preceded by any character other than those detailed above (eg spaces or underlines)
then these are taken to be separators and are ignored.

I you are in doubt about the meaning or use of any of the parameters, consult the BASIC command SOUND
(or the firmware routine SOUND_QUEUE) as SOUND.LIB is designed to emulate the effect of these.

Section 6-3

HISOFT C MANUAL version 1.2 Page 125

NOTE TO CPC46% USERS as opposed to CPC664 users.

Owing to a bug in the firmware of the 464 (corrected in the 664) concerning asynchronous sound events,
the program as supplied will not work correctly. A very small change is required in the routine
init_event() as follows.

reg_bc = Ox30FF; should become
reg bc = 0x02FF;

For those "in the know" about events, this makes the routine _sound event() into a synchronous event
(rather than asynchronous). This is then kicked by a routine in the compiler which itself is an
asynchronous event called 10 times per second. Thus a transiated program using these routines will
not work at all on the 464 without other code, which is also supplied as "fix_464 sound interrupts()*
in BASIC2.LIB. The change to init_event() applies only for use with play(). In other circumstances,
the bug in the firmware may well not be visible and the change need not be made.

6.4 Graphics and C.

Various functions are provided to access the graphics on the computers. In general these mirror the
way that BASIC uses the firmware, but in addition this library provides a function "draw" which
displays complex line graphics. The drawing is specified by a control string (like printf) which is
similar to the Unix GPS or the MSX GML.

A string to be drawn consists of a sequence of graphical primitives which each consist of a single
character, possibly followed by parameters. The string is more properly thought of as a character
array, since it is likely to contain \0' characters in co-ordinate values etc. It is terminated by a
"\0' which is not part of a parameter, since "draw" can recognise this, but watch out when trying to
use normal string manipulation functions.

The most common sort of parameter is a four byte sequence containing a binary x-y relative co-ordinate
pair (dx, dy) in the form:

low byte of x-increase
high byte of x-increase
low byte of y-increase
high byte of y-increase

The graphical primitives are all relative to the current graphics cursor position. (except 0).

char name bytes description.
0 zero 0 move graphics cursor to absolute position (0,0) (bottom left).
m move 4 move graphics cursor from current position by (dx, dy).
p plot 4 as move then plot at point in current pen ink,
1l line 4 draw line from current position (x,y} to (x+dx, y+dy).

Section 6-4

Page 126 HISOFT C MANUAL - version i.2
t text n print text from string starting at current position. Text is terminated by a
newline character \n'. :

¢ colour 2 if next character is 'f' then change pen ink to next byte else [next byte is 'b']
change paper ink to next byte.

s scale & change horizontal and vertical scaling to dx and dy respectively. The scales are
shifted by DRAW_SCALE (2) so a unity scale is represented by 4.

r rotate 0 rotate axes 90 degrees clock wise.
FUNCTIONS IN BASIC1.LIB (GENERAL AND SOUND).

6.5 after(delay_in_ticks, control_block, function_name)
int delay_in_ticks;
char *control_block{18};
it (*function_name)();
Invoke a function after a g'iven time period has elapsed. See the section on "Events and C" above.
delay_in_ticks indicates the time in units of 0.02 sec {50 make one second).
control_block is the address of an 18 byte area for system use.
function_name is the name of the function to call.
6.6 every(period_in_ticks, control_block, function_name)
int period_in_ticks;
char *control block[18};
int (*function_name)();
Invoke a function at regular intervals. See the section on "Events and C" above.
period_in_ticks indicates the repetition interval in units of 0.02 sec.
controt_block is the address of an 18 byte area for system use.
function_name is the name of the function to cail.
6.7 add_ticker(ctrl block, initial time delay, recharge delay, function_name).
char *ctrl_block{18}
int initial_time_delay, recharge_delay;

int (*function_nameX);

Add a new block to the 1/50th second ticker queue. This function is provided for use by after() and
every() but can also be called by the confident user. See the section on "Events and C" above.

ctrl_block is the address of an I8 byte area for system use.

Section 6-7

HISOFT C MANUAL version 1.2 Page 127

initial_time_delay indicates the time to first run in units of 0.02 sec.
recharge delay indicates the repetition interval in units of 0.02 sec.
function_name is the name of the function to call.

6.8 init_event(evem_block, lunction_name)

char *event block{12};
int (*function_name)X);

Initialise an event block. This function initialises a particular kind of event block, specialised
for use in C programs. See the section on "Events and C" above.

event block is the address of a 12 byte area for system use.

function_name is the name of the event routine.

6.9 cass_speed(speed)

Set the speed at which data is written to the cassette. Use 0 for 1000 baud (approx) or 1 for 2000
baud (approx) like BASIC.

6.10 border{colourl, colour2)

Change the colour of the border on the screen. Two colours must always be supplied, but they may be
the same to avoid flashing. :

6.11 catalog()

Produce a catalogue of a cassette tape.

6.12 cis()

Clear the Current Text Window.

6.13 event_disable()

Disable Synchronous Events ("interrupts"). This does not find as much use in C as it does in BASIC,
since asynchronous events are used rather than synchronous ones.

6.14 event_enable()

Enable Synchronous Events ("interrupts") This does not find as much use in C as it does in BASIC,
since asynchronous events are used rather than synchronous ones.

Section 6-14

Page 128 HISOFT C MANUAL version 1.2

6.15 flash speed(timel, time2)

Set up the rate at which flashing inks flash. Takes two times, each measured in frame flyback
periods, (ie a time of 50 is one second in the UK and other 50Hz areas, and a time of 60 is one
second in the USA and other 60Hz areas). The inks are displayed in their first colour for timel and
in their second colour for time2.

6.16 nk(ink_to_setup, colourl, colour2)

Associate colours with an ink. There must always be two colours, but they may be the same to avoid
flashing.

6.17 int inkey(key number)

See whether a particular key is pressed, and maybe [SHIFT] or [CTRL]L The return value is just the
same as BASIC:

KEY [SHIFT] [CTRL]
-1 up ? ?
0 DOWN UP up
32 DOWN DOWN up
128 DOWN UP DOWN
160 DOWN DOWN - DOWN
6.18 char *instr(main_string, sub_string)
char *main_string, *sub_string;
Find ocurrence of one string inside another. This function returns a pointer to the first occurrence
of sub_string within main_string. . It returns NULL if there is no such occurrence. This function must
be declared before use as "extern char *instr(};". Special purpose versions are easily written for
greater speed.
6.19 itob(n, string, precision)
char *string;
Convert a number to a binary string.
n is the number to be converted.
string is the string to place the result in.

precision is the number of binary digits to place in the string.

eg itob(10, string, 7) gives string the value "0001010". "string" must be a character array of length
precision+] or bigger.

Section 6-19

HISOFT C MANUAL version 1.2 Page 129

6.20 joy(joystick_number)

Fetch the curreht state of the joysticks. Returns the state of joystick 0 or 1, depending on the
value of joystick_number. The return value is the sum of individual bits just as in BASIC.

bit. meaning decimal

0 up 1
1 down 2
2 left 4
3 right 8
4 fire 2 16
5 fire | 32

6.21 int key_function(translated key number, expansion_string)

char * expansion_string;
Set up a new function key definition. Accepts a translated key number (an expansion token) and an
expansion_string. Returns TRUE (1) if the expansion was set up OK or FALSE (C) if there was a
problem.
6.22 key_speed(start up_delay, time_between_repeats)
Set the speed at which keys repeat. Set the start_up_delay which is the time a key must be held down
before it starts to repeat, and the time_between repeats. Both times are measured in keyboard scans.
The keyboard is normally scanned every 1/50th of a second.

6.23 key_translation(key number, translated_key_number)

Set a new translated value for a given key number.

6.24 play(string, channel)

char *string;
int channel;

This sound function plays a series of notes described in "string" on the channel specified. The
channel number is bit significant, so should be 1, 2, or 4. See the "Sounds of the C" section above.
6.25 read file(filename, address)

char *filename, *address;
Read a named file into a block of store. Takes a string containing the filename to be used for the

input file, the address of the start of a block of memory. It returns ERROR (-1) if the file could

Section 6-25

Page 130 HISOFT C MANUAL version 1.2
not be opened and TRUE (+1)} if everything went OK.

6.26 S_release(channel_bits)

Release all sounds that have been held up by S_hold, and those held by hold status bits on the
channels specified.

6.27 S_ampi_envelope(number, envelope)

Set up an amplitude envelope. The envelope parameter will normally be the address of (or a pointer
to) a structure like that below.

typedef union {
struct f
char count, size, pause_time;
} software section;
struct { -
char shape;
unsigned period;
| hardware_section;
} section;

typedef struct |
char count of sections;
section the sections{5]};
} sound_enveliope;

6.28 S_tone_envelope(number, envelope)

Set up a tone envelope. The envelope parameter will normally be the address of a structure as above.

6.29 S_hold()

Suspend all sounds immediately.

6.30 S_continue()

Resume sounds that have been suspended by S_hold.
6.31 setup sound()

Initialises the C sound mechanism. Must be called before play() is used. See "Sounds of the C"
above,

Section 6-31

HISOFT C MANUAL version 1.2 Page 131

6.32 sound_check(channel)

Check the state of a sound queue. The result is bit significant just like SQ in BASIC.

6.33 char *strlower(string)

char *string;
Transform each upper case letter in a string to its lower case equivalent. Takes a string s and
transforms it in place (the string is permanently changed - use strcpy first if necessary). Returns a
pointer to the string. This function must be declared before use as: extern char *strlower();
6.34 char *strupper(string)

char *string;
Transform each lower case letter in a string to its upper case equivalent. Takes a string s and
transforms it in place (the string is permanently changed - use strcpy first if necessary). Returns a
pointer to the string. This function must be declared before use as: extern char *strupper();
6.35 symbol{character_number, matrix)

char matrix{8};
Set up a user-defined symbol. Takes the number of the symbol to be redefined (call symbol after
first), and an eight-character array containing the new matrix.
6.36 symbol_after(number, table_memory)

int number;
char table_memory[];

Allocate an area for user defined symbols. Takes a number of periissible user symbols, together with
an area of memory to hold the table of their matrices. The area of memory must be at least (256 -
number) * 8 bytes long. In C you are given a choice of where to put this area by appropriate
declaration of table_memory, or by a call to calloc().

6.37 time(array)
int array[2}

Report the elapsed time. The elapsed time is reset at switch-on and by KL_CHOKE_OFF which is called
when the [ESC]} key is used to abort a listing, compilation, or program. The time is returned in a
four byte array which is compatible with those used by long_add() etc in the standard library. The
array would normally be deciared as "char time array[#}' then the most significant byte is in
time_array[3] and the least significant byte in time_array[0]

Section 6-37

Page 132 HISOET C MANUAL version 1.2

6.38 write_file(filename, address, length)

char #filename, *address;
unsigned length;

Write a block of store to a named file. Takes a string containing the filename to be used for the

output file, the address of the start of a block of memory, and the length (in bytes) of the block.
It returns ERROR (-1) if the file could not be opened and TRUE (+1) if everything went OK.

FUNCTIONS IN BASIC2.LIB (GRAPHICS).

6.39 draw{control_string)

char *control_string;
See the section "Graphics and C" above.
6.40 * T_set_graphic(on)

Turn on or off the graphics VDU write character option. The parameter should be TRUE(1) to turn the
option on or FALSE(0) to turn it off.

6.41 T_win_enable(xl,x2,yl,y2)
Set the size of the current text window.
6.42 T_swap_streams{stream_number, another_stream_number)
Swap the states of two streams.
6.43 T_get_cursor(px_column, py_row, p_roli_count)
int *px_column, 'py_r;)w, *p_roll_count;
Get current cursor position.
6.44 G_ask_cursor{pdx, pdy)
int *pdx, *pdy;
Get the current graphics position.
6.45 G_set_origin(x,y)

Set the origin of the user co-ordinates.

Section 6-46

HISOFT C MANUAL version 1.2 Page 133

6.46 G_win_width(x1,x2)

Set the left and right edges of the graphics window.
6.47 G_win_height{yl,y2)

Set the top and bottom edges of the graphics window.
6.48 G_clear_window()

Clear the graphics window,

6.49 G_set_pen{ink)

Set the graphics plotting ink.

6.50 G_set paper(ink)

Set the graphics background ink.

6.51 G_wr_char(c)

Put a character on the screen at the current graphics position.
6.52 G_move_absolute(x,y)

Move to an absolute graphics position.

6.53 G_move_relative(dx, dy)

M;we relative to current graphics position.

6.54 G_plot_absolute(x, y)

Plot a point at an absolute position,

6.55 G_plot_relative(dx, dy)

Plot a point relative to the current position.

6.5 int G_test_absolute(x, y)

Test which ink is at an absolute position.

6.57 int G_test_relative(dx, dy)

Test which ink is at a position relative to the current one.

Section 6-38

Page 134 HISOFT C MANUAL version 1.2

6.58 G_line_absolute(x, y}

Draw a line to an absolute position.

6.59 G_line_relative(dx, dy)

Draw a line relative to the current position.
EXTERNAL COMMANDS FROM C PROGRAMS.

The file EXTCMD.H appears after stdio.lib on cassette and contains two functions which let you use
external commands from inside your C programs; giving you similar facilities to the vertical stroke
»|» command in the editor and BASIC.As external commands have varying numbers of parameters the main
function is variadic and so must be defined before it is used. This file also needs some of the
#define statements in stdio.h so you should use #include extcmd.h after #include stdio.h .

6.60 extcmd({string, args) auto
char *string;

This takes a variable number of parameters. The first is a string (the name of the external command)
and any more are arguments to be passed to the external commands. Integer arguments are passed
directly, but string arguments should be passed using makestr (see below). eg.

char d[3], el3];

extcmd("dir");

extemd{"user", 1);

extcmd("era”™, makestr("*.bak", d));

extcmd("ren", makestr("newfile", d), makestr("oldfile", e));

6.61 int makestr(string, descriptor)

char *string, descriptor{3};
makestr is needed because the firmware requires the string parameters to external commands to be
passed as a three byte string discriptor. The first parameter of makestr is an ordinary string and
the second is the name of a three character array for the descriptor. The value returned is the

address of the descriptor so that makestr can be used as an argument to extcmd as in the exampies
above.

Section 6-61

HiSoft C

Fast Interactive K&R C Compiler

Chapter 7

Errors

HiS6ft

High Quality Software

———

HISOFT C MANUAL version 1.2 Page 135

7. ERRORS.

O hear us when we cry 1o Thee
For those in peril on the C.

William Whiting

Errors are an important and all but inevitable subject when writing programs. In this chapter of the
manual we discuss errors in general, then provide a detailed list of the error messages that can be
produced by the compiler and what they mean. Finally we discuss some common errors in C programs, and
their conse quences.

7.1 Introduction.

When you ask the compiler to compile your program, it will scan through your program recognizing the
various constructs that you have used and generating appropriate code for them. Whilst doing this it
may find an error in your program. if the compiler does find an error it will display an error message
like this:

ERROR nn
error message text

There are three parts to the error message. First the word ERROR just iets you know that this is ap
error message, Secondly, the error number "nn" tells what the compiler thinks is wrong and lets you
find more information about the error in the next section of this manual. Thirdly is the error message
text, which is a brief indication of the cause of the error. In many cases it will be all that you
need to work out what is wrong and how to correct it.

After displaying the error message, the compiler will wait for you to press any key and will then
return to its sign-on message, unless you choose to do an automatic edit of the line (see the Editor
Chapter).

The error message texts take up a significant portion of the computer memory (approx 2 kilobytes) and
there is a facility to reclaim this. The control line: .

#error

will cause the compiler to discard the error messages and put the memory to general use so that you
can write larger programs. After the compiler has done this an error message looks like this:

ERROR nn

The only way to get the error messages back is to reload the compiler. You can always look up the
error numbers in this chapter, of course. Some error messages result from a mistake in the sequence
of characters that you have typed (eg a missing semi-colon). These are often called SYNTAX errors.

Another kind of error results from an inappropriate use of the language and these are called SEMANTIC
errors (eg trying to assign a value to an array identifier). The compiler makes no distinction between

Section 7-1

Page 136 HISOFT C MANUAL version 1.2

these two kinds of errors.

A third kind of error message occurs when your program is too large for the compiler to handle. These
are compiler LIMITS and are identified by the word LIMIT at the start of the error message text. They
have been chosen so that the great majority of programs will compile without reaching the limit. If
you do encounter a limit then try to break up the part of the program concerned. More detailed
suggestions are given for each individual limit.

A fourth kind of error message occurs if you write a program which includes a legal C construct that
is not implemented by this compiler. This is called a RESTRICTION and is indicated by the word
RESTRICTION at the start of the error message text. Details of restrictions are given in the Expert's
Guide. Some restrictions may be lifted in future versions of the compiler.

A fifth kind of error is a COMPILER ERROR. We hope that these will be rare but include advice here in
case you find one. 1t may be indicated by an error message starting with the word COMPILER or with a
number not in the list below. No details of these messages are given since they may vary from time to
time. They result from internal checks in the compiler. Of course a compiler error may not be so well
behaved as to produce an error message but may cause the compiler to crash or loop etc. If you think
that this has happened, first try again after reloading the compiler from tape in case it has been
corrupted. 1f the problem persists then please contact HISOFT - we will be pleased to help you. It
will be easier to help you if you have clear details.

There is also a sixth kind of error - a RUNTIME error. This is an error which occurs whilst your
program is actually running. The overall philosophy of C is not to produce these errors, and so avoid
the need for code to test for them! Thus, for example, arithmetic overflow is not an error, and
neither is going beyond the bounds of an array. There is just one error condition which is actually
checked for at runtime in Hisoft-C, and that is a stack overflow (see below).

The List of Error Messages

7.2 stack overflow (runtime error).

This is the only error message which can occur at runtime. It means that the stack used by the
program has grown until it has filled all the available space. This may simply be because the program
and its data are too large, but it might be because of an infinite recursion or some such.

7.3 ERROR - 0 - missing 'x'.

This is a slightly special message, because the 'x' character can vary. The message says that the
compiler believes that the 'x' character shouid come next in the program, and it doesn't. Examples are
missing *;' at the end of a statement or a missing ')’ in a function call. Some care is needed to
understand the message properly. The compiler is reading the program from the beginning and cannot see
the rest of the program beyond the place that it has reached, so it has to decide what error message
to produce on the basis of what it has seen so far. This limitation, together with our desire to keep
the compiler as small as possible, means that to people looking at the whole program the message may
seem strange. -

Section 7-3

HISOFT C MANUAL version 1.2 Page 137

For example, if you write f(a b); then the compiler will say "missing ')" after the "a". The
explanation is lengthy but straightforward: the- compiler knows it is compiling a function argument
list, and starts compiling the first argument expression "a". It then reads the next token "b" and
decides that the first argument has now finished because two variables cannot be adjacent in an
expression (they must have a '+' or some other operator between them). Now if there are more arguments
in the list then there ought to be a comma next and clearly there isn't so the compiler decides that
it must have reached the end of the argument list. At the end of the argument list there must be a ')
- but instead there is a "b". The compiler generates the “missing ') message.

7.4 ERROR - 1 -RESTRICTION : floats not implemented.

Sorry!

7.5 ERROR - 2 - bad character constant.

The compiler didn't find the closing '. Check the syntax in the "Language Summary" chapter.

7.6 ERROR - 3 - not a preprocessor command.

This line looks like a preprocessor command (it starts with a #) but it isn't one that the compiler
recognises. Check in the "Language Reference” chapter.

7.7 ERROR - 4 - LIMIT: macro buffer full.

The intention is that this limit won't be reached in normal use. The compiler has a buffer where it
remembers the definitions from #define lines which are currently being expanded. This buffer is now
full. Try to simplify the macro definitions. Note that a circular macro definition can cause this
error.

7.8 ERROR - 35 - can only define identifiers as macros.

Check what is allowed on a #define line in Kernighan & Ritchie.

7.9 ERROR - 6 - RESTRICTION: macros may not have parameters,

The compiler can only handle macros which don't have parameters (i those which are a straight token
replacement). Alternatively you may be trying to use bracketted replacement text and have left out the
necessary space:

#define FIFTH_ELEMENT(array+4) /* is not C */
#define SIXTH_ELEMENT (array+5) /* is C - the parenthesis can be useful */

Section 7-10

Page 138 HISOFT C MANUAL version 1.2

7.10 ERROR - 7 - cannot open file.

The compiler cannot find an inciude file.

7.11 ERROR - 8 - RESTRICTION: cannot nest includes.
The compiler permits one level of #include for the main program and a further level for header files
and functions and libraries. These files cannot have a further level included in them.
7.12 ERROR - 9 - missing ‘while'.
At the end of a "do" statement there must be the word "while" :
do statement while (expression) ;

The compiler is looking for that "while" and hasn’t found it.

7.13 ERROR - 10 - not in loop or switch.

A "break" statement is used to exit from a "switch" statement or from a loop such as a "do" or a
“while" or a "for". This "break” isn't inside one.

7.14 ERROR - 1} - not in loop.

A “continue" statement is used to go back to the top of a loop such as a "do" or a "while" or a "for".
This "continue" isn't inside one.

7.15 ERROR - 12 - not in switch.

“case" and "default" introduce the action for particular values in a "switch" statement. They can't be
used outside a "switch".

7.16 ERROR - 13 - LIMIT : too many case statements.
There is a limit of 50 "case" statements active at once. A "case" is active from when it occurs until

the end of the "switch” enclosing it. Several switch statements in succession provide a way round this
limit, Eg: switch(c) { case 'a':..; case 'b'..jl switch(c) { case 'd'...; }

7.17 ERROR - 14 - multipie default statements.

Each "switch" statement can only have one "default" statement inside it.

Section 7-18

HISOFT C MANUAL version 1.2 Page 139

7.18 ERROR - 15 - goto needs a label.

Every "goto" statement must have a corresponding labeiled statement somewhere in the same function
body.

7.19 ERROR - 16 - multiple use of identifier.

An identifier that is used to label a statement, or as the label in a "goto" statement, cannot be used
as a variable name (either global or local to the same function as the label) as well. The converse is
also true.

7.20 ERROR - 17 - direct execution not possible when translating.

When you are translating a program for stand-alone execution it is not possible to use #direct.

7.21 ERROR - 18 - LIMIT : name table full.

The compiler has a table which holds the name of every active variable, macro, and label in the
program. This table is now full. Global variables and macros (ie #define names) take space from their
declaration to the end of the program but local names only take space whilst their function is being
compiled. So reducing the number of global names will save space and so will breaking up large
functions into two or more smaller ones which don't have as many variables each.

7.22 ERROR - 19 - LIMIT : too many types.

The compiler has a table of all the types used in the program, and this table is now full. These are
all types (eg int ****ptr) and not just named types. Reducing the number of types is the only way to
save space, perhaps by using the type-cast operator to break up more complex pointer chains and so on.

7.23 ERROR - 20 - duplicate declaration - type mismatch.,

This usually means that the name has been declared twice. Choose another name for one of the
variables, It may be an intentional double declaration such as using a function before it is defined;
in which case the type rules have been broken. For example a function used before it is defined is
implicitly declared to return an int, and the subsequent definition must confirm this.

7.24 ERROR - 21 - duplicate declaration - storage class mismatch.

This usually just means that the variable name has been declared twice. Choose another name for one of
the variables. Remember that in C a name can be declared twice sometimes (eg when a function is used
before it is defined, or when the same name is used for members of two different structures) and in
that case the second part of the message is important. It means that in this case the conditions
required (eg that the members have the same offset in the structures) have not been met.

Section 7-24

Page 140 HISOFT C MANUAL version i.2

7.25 ERROR - 22 - LIMIT : global symbol table full.

The compiler has a table which holds details of each global variable in the program. The only way to
save space in this table is to reduce the number of global variables.

7.26 ERROR - 23 - LIMIT : too much global data.

There is not enough space in memory for everything that has to fit, and more space is needed for
global variables. Reducing the size of the global variables, or the size of the generated code (by not
compiling as much) or the size of the in-memory source program (by #include) will all help to give
more room. In addition, using the #error control line to sacrifice error messages will give more room.

7.27 ERROR - 2% - duplicate declaration.

This name has been declared twice in this function as a local variable or a parameter. Choose another
name for one of the variables.

7.28 ERROR - 25 - LIMIT : local symbol table full.

The compiler has a table which holds details of each local variable and label in a function. This
table is full. Space can be saved by reducing the number of local variables in the function which
caused the problem, perhaps by splitting the function into parts which use fewer variables, or by
using fewer "goto" labels (nonell) by rewriting using loops and conditionals.

7.29 ERROR - 26 - this variable was not in parameter list.

Only those variables which were in the parameter list between the () of a function definition can
appear again in the declarations before the start of the function body.

7.30 ERROR - 27 - undefined variable(s).

At the end of compiling a program, the compiler checks that all the variables used in the program have
been properly defined and it lists any which have not. These are usually functions and if they are all
library functions they can now be conditionally included by using a library search. This error does
NOT restart the compiler. You can carry on and type more input to the compiler afterwards (such as
#include ?stdio.lib?).

7.31 ERROR - 28 - bad function return type.

There are some iestrictions in C on the types which a function may return as its value, The details

are given in section 8.4 ("The Meaning of Declarators") of "the C Reference Manual" in Kernighan &
Ritchie.

Section 7-32

HISOFT C MANUAL version 1.2 Page 141

7.32 ERROR - 29 - no arrays of functions.

But it is possible to have arrays of pointers to functions. Perhaps that is what is needed.

7.33 ERROR - 30 - LIMIT : expression too complicated - too many arguments.

The intention is that this limit won't be reached in normal use. If it is break up the expression by
an intermediate assignment or rearrange it with fewer parentheses.

7.34 ERROR - 31 - LIMIT : expression too complicated - too many operators.

The intention is that this limit won't be reached in normal use. If it is break up the expression by
an intermediate assignment or rearrange it with fewer parentheses.

7.35 ERROR - 32 - bad type combination.

There are rules for each operator in an expression about what types of operands it can take and
somewhere in this expression those rules have been broken. The compiler displays the error message as
soon as it can but it has to evaluate the operands before it knows their types and can check them.
Details of the combinations which are allowed are in section 7 ("Expressions") in the C Reference
Manual. This message refers to a binary or ternary operator (eg + or ?:).

7.36 ERROR - 33 - bad operand type.

Similar to the previous error, but this refers to the operand of a unary operator such as * & ! etc.

7.37 ERROR - 3% - need an lvalue.

Some operators can only take arguments which are Ivalues (eg = ++ -~ &). The rules about when an
operator needs an lvalue and what an lvalue is are given in the C Reference Manual, but roughly
speaking an lvalue is a memory address which can be stored into. Remember in particular that an array
name and a function name are NOT lvalues.

7.38 ERROR - 35 - not a defined member of a structure.

Only structure (or union) member names can appear on the right of a -> or a . operator.

7.39 ERROR - 36 - expecting a primary here.

The compiler is looking for a primary (such as a variable name) in an expression. This is another
error that can be confusing because it Is really a negative statement. The compiler believes it is in
a function body (so expressions are allowed) and has decided that the current input is not a
declaration or a specific statement (eg "while" or "if") so it must be an expression. It has further
decided that the current input is not an operator and so it must be a primary! One particularly

Section 7-39

Page 142 HISOFT C MANUAL version 1.2

obscure case which can cause this message sometimes is an unclosed comment (|f you think through it
when it happens you can probably understand why).

7.40 ERROR - 37 - undefined variable.

The name of an undefined variable has been used in an expression. Define it as a global or at the top
of the function.

7.41 ERROR - 38 - need a type name.

The "sizeof" and the "cast" operators will only work on the name of a type, either one of the basic
types (eg unsigned int) or one declared using typedef. They won't accept an "anonymous type" such as
tint **(*(*()[])(}* and the "sizeof" operator won't accept a variable name (because you can write the
program with named types more clearly and help keep the compiler small).

7.42 ERROR - 39 - need a constant expression.

The compiler will accept and evaluate any constant expression here, but it has just encountered
something which isn't constant.

7.43 ERROR - 40 - can only call functions.

A left parenthesis '(' after a variable name looks like an attempt to call that variable as a
function, and to do that the variable must be declared as a function returning something. Maybe there
is a missing '+' or somesuch between the variable and the parenthesis or a missing indirection '*' in
front of the variable.

7.44 ERROR - 4] - : does not follow a ? properly.

The compiler has found a colon where it shouldn't be. A 't' can appear after a label name or after a
"case" expression, or it can appear in an expression as part of the el ? e2 : e3 conditional
expression. This one seems to be part of an expression, but doesn't match a '?'. Check the precedence
of the expression if you think it does match a '?' !! The simplest way is to put extra parentheses in
to make sure. Remember that conditional expressions group right-to-left if they are nested.

7.45 ERROR - 42 - Destination of an assignment must be an lvalue,
A special case error message to let you know as soon as possible that the left-hand side of this
assignment expression is not an Ivalue. The rules about what an lvaiue is are given in the C Reference

Manual, but roughly speaking an lvalue is a memory address which can be stored into. Remember in
particuiar that an array name and a function name are NOT lvalues.

Section 7-46

HISOFT C MANUAL version 1.2 Page 143

7.46 ERROR - 43 - need a : to follow a ? - check bracketting.

The compiler expected to find a colon as part of an el ? e2 : e3 conditional statement and it hasn't
done so. Remember in particular that e2 cannot be an assignment expression unless it is bracketted and
that conditional expressions group right-to-left if they are nested.

7.47 ERROR - 4§ - need a pointer.

In order to use indirection on an expression, it must be a pointer-to something. The indirection may
be an explicit '*' operator, but it could also be implicit in a '->' operator or an array element
reference el [e2 1 Note that the Hisoft-C compiler does NOT permit an integer before a '->' as
discussed in section 14.1 of the C Reference Manual. If you want to access a structure at an absolute
store address, use a "cast" to write the expression:

typedef char *char_ptr;
(cast{char_ptr) 0x005C) -> fcb_filename [0] = 'A%

The idea is to help prevent mistakes which can corrupt memory, and to make it easier to transfer
programs from one type of machine to another.

7.48 ERROR - 45 - illegal parameter type.
There are certain types which cannot be used as parameters to functions. These types are structures,

unions, and other functions. You CAN pass a pointer to any of these types.

7.49 ERROR - 46 - RESTRICTION: Floating Point not implemented.

Sorry!

7.50 ERROR - 47 - cannot use this operator with float arguments.

This message will not occur as long as the previous one does.

7.51 ERROR - 48 - bad declaration.

Check what is allowed in a declaration,

7.52 ERROR - 49 - storage class not valid in this context.

In particular, there are no register or automatic gbbals.

Section 7-33

Page 144 HISOFT C MANUAL version 1.2

7.53 ERROR - 50.

There is no error 30.

7.5¢ ERROR - 5] - duplicate declaration of structure tag.

The same identifier has been used twice as a structure tag.

7.55 ERROR - 352 - use a predeclared structure for parameters.
Instead of declaring the contents of a stucture in the parameter list, declare the structure first and

give it a name (either a tag or by using typedef). Then use the name to declare the parameters. You
will need the structure again to supply the actual arguments to the function, in any case.

7.5% ERROR - 33 - structure cannot contain itself.

You can include one kind of structure directly inside another, but to build a list using structures
use pointers to structures, such as:

struct list
{

int value;
struct list * next;

7.57 ERROR - 5% - bad declarator.

Check the syntax of a declarator in The C Reference Manual.

7.58 ERROR - 55 - missing ')' in function declaration.

A function declaration - as opposed to a function definition - must have a "(y' after the name and may
not have a parameter list. A function declaration just says that a particular identifier is of type
function-returning-something, whilst a definition contains the body of the function as well. Functions
can only be defined at the outermost level of a program whereas a function declaration can occur as a
member of a structure or a parameter etc.

7.59 ERROR - 36 - bad formal parameter list.

The formal parameter list of a function is just a list of identifiers. Additional type information is
given in a separate declaration afterwards, just before the body of the function.

Section 7-60

HISOFT C MANUAL version|.2 Page 145

7.6 ERROR - 57 - type should be function.

The compiler believes that this is a function definition, and has discovered that the function name is
not of function-returning-something type. Check what is allowed in the C Reference Manual.

7.61 ERROR - 38.

There is no error 58.

7.62 ERROR - 59.

There is no error 59.

7.63 ERROR - 60 - LIMIT: no more memory.

The compiler uses the free space between the top of itself and the end of free memory (RAMTOP) to keep
many things. The editor's text is kept here, and the compiled machine code of your program, and the
text of the error messages, and workspace for the compiler. This space is now all full. You can make
some room in several ways:

- use the flerror control line to discard the error messages

- save your program to tape/microdrive/etc and use #include file

- compile the entire program and run it, rather than using #direct+

- simplify your program
7.64 ERROR - 61 - RESTRICTION: use assignment or blt() to initialise automatics.
The compiler does not support initialisation of automatic local variables. You should simply use an
assignment statement instead. Please note that you CAN initialise static local variables and these
should normally be used in preference to automatics except where the function is recursive or re-
entrant, To initialise large objects like arrays you can also set up a static array with the required
data and then use the built-in blt() function to copy the data into the automatic variable. Note that
you cannot initialise automatic arrays or structures within C and this is not a "RESTRICTION".

7.65 ERROR - 62 - Cannot initialise this (disallowed storage class).

You cannot initialise names of types, structures etc as opposed to variables of these types.

7.66 ERROR - 63 - Cannot initialise this (disallowed type).

It is not permitted to initialise variables which are unions, functions etc.

Section 7-67

Page 146 HISOFT C MANUAL version 1.2

7.67 ERROR - 64 - too much initialisation data.

There are more constants in the initializer-list than are needed to initialise the variable.

7.68 ERROR - 65 - bad initializer (need a '{').

Initializers for structures and for arrays must be enclosed in curly braces, even if they are only a

single constant.

7.69 Common Mistakes in C Programs.

C is intended to be a systems programming language and is designed first and foremost to provide power

to the user without runtime overheads. Because of this there are numerous ways to make mistakes in C

programs and these can have startling effects, particularly if you are used to the protection of

languages like Pascal. Debugging C is more like debugging assembler - save your source text before

running a compiled program! This section lists some likely causes of programs that don't work,

concentrating on those that won't show up immediately as error messages when the program is compiled.

First the disasters, crashes and what to look for:

1. Using an array index with a bad subscript and so storing into an arbitrary location. Note thatC
does not have subscript checking.

2. Assigning a bad value to a pointer and then using it to store a value; or incrementing a pointer
past the region it should point to. Very similar to the array errors. Hisoft-C tries to prevent
some errors by insisting on the types being correct.

3. Passing the wrong number of arguments to a function when it is called. This may cause a crash by
using the value of an argument that wasn't there or by unbalancing the stack when the function
returns. C doesn't check the number of arguments,

4. Calling a pointer-to-function variable (eg int (*ptr_to_funcX)) which has a bad value, or
hasn't been initialised. This is just a random jump.

5. Calling a function which hasn't been defined in direct mode.

Of course the bad values in these cases may not be obvious: they might be caused by any of the errors
listed below.

Now for a general list of likely problems:
I. Capital letters are different to lower-case letters in identifiers.
2. Check that all comments are terminated.
3. Check that all string constants are terminated.
4, Check that all variables are initialised, particularly that a pointer points where it should

before using it to store through (ie don't write *ptr = x; before writing ptr = y;).

Section 7-69

HISOFT C MANUAL version 1.2 Page 147

.

. Check CAREFULLY that "==" is used for equality tests, and "=" only for assignment.

L

Remember that all arrays start from index 0. An array declared as a[N] has just N elements going
from index 0 to index N-1.

N

An array name evaluates to a pointer to the array, and in particular does not cause a copy of
the array to be passed to a function.

8. There are no complete array or structure assignments. 1t must be done element-by-element (or by
the built-in library function "move"). In particular the test (a == b) where "a" and "b" are
arrays just tests whether they have the same base address, not the same contents. The test (s ==
"text") is almost certainly an error.

9. Remember that local variables and arguments of functions are allocated on the stack and are
thrown away as soon as the function finishes executing.

10. All arguments to functions are passed by value. An explicit pointer must be used to pass a
variable parameter.

11. Check the number and types of arguments supplied to functions, as no checking is performed.
Check also that the arguments are in the right order.

12. Check that pointers are supplied where required (so that the argument can be changed by the
function). An "&" operator may be required, In particular, an "&" is atways required when
passing the name of a structure as an argument to a function.

13, Even if a function has no arguments it must have “()' after it's name to call it. This will
normally be caught as a type error, but the statement:

func_with_no_args ;

just causes the address of the function to be evaluated and thrown away. To call the function
it is necessary to write:

func_with_no_argsi);

14. Remember that function return types may be changed automatically by the rules of C. In
particular int may be truncated to char.

15. Remember that the end-of-file value EOF is -1 and cannot be tested against a char variable, int
must be used for the result of getchar, getc etc.

16. Check whether —i or i— is appropriate, In particular note that a normal loop of N times goes
from 0 to N-1 and is written as:

for (i=0; i(N; ++i) do_something();
17. Remember that incrementing a pointer causes its binary value to be increased by the size qf the
object that it points to so that it points to the next object in an array. In particular

remember that pointers to "int" increase by two bytes at a time. Remember also that any value
added to a pointer wili be multiplied by the size of the object first.

Section 7-69

Page 148 HISOFT C MANUAL version 1.2

18,

19.

20,

21,

22,

23.

24,

25.

26.

27.

28.

30.

Arithmetic overflow is not an error, and is not tested for. This can be useful sometimes but
means that you must include explicit checks if you need them. :

A string is a pointer to an array of char (ie an address). You cannot use Pascal-like tests of
equality on strings. In particular beware of typing "x" when you mean 'x'. The first is the
address of a two byte array, the second is the ASCII value of a character.

A string has a zero byte on the end. Remember that when calculating array lengths, and remember
to put one there if your program makes strings.

The precedence of operators can be surprising at times. Check the relational operations (== <
etc) and remember that shift operators are of lower precedence than addition so that (hi<<8 +
lo) doesn't mean what it seems to.

The order of evaluation of an expression is NOT specified and must NEVER be relied on.

An "else” belongs to the immediately preceding "if".

Execution flows through case statements into the next one. A "break" is needed to exit from the
"switch" statement.

If a "switch" variable does not match any of the "case" expressions, then the statement is just
bypassed.

There is no semicolon between a control statement (while, if, for) and the statement that it
controls. Otherwise the empty statement is controlled.

It is normally wrong for a #define line to finish with a semicoion.

All arguments to scanf must be pointers. That is, they must be the ADDRESS of the variable
where the result is to be stored.

There is no %u conversion for scant; %d is used for both cases, Using one by mistake can
produce obscure symptoms; because scanf tries to match against a 'u' character, fails and gives
up early, which leaves junk in the remainder of the input variables.

Most scanf control strings should start with a space character. This is because it is likely
that the previous input to scanf was terminated by pressing [ENTER] (because getchar() is
buffered) and the newline character is still sitting in the input buffer.

Don't put the space at the end of the control string because then scanf will carry on scanning
until it finds something which isn't white space, before you have prompted for the next input.

Section 7-69

HiSoft GSX Graphics

Regional

ﬁ\\\\\\\\\\\\\\\\

S80S 053 g oaeseo

ANalysis

19886 figures.

008’s ot units.

\ .

v

ROREt

g

3

Y

.

/77

7

HiSoft C with GSX Graphics Copyright © HiSoft 1986
HiSoft The Old School, Greenfield, Bedford MK4S SDE

HISOFT GSX C LIBRARY

What is GSX ?

GSX is an extension to the CP/M Plus operating system that gives you a
powerful graphics interface on your computer through the use of standard
functions that are the same on all implementations. Both the Amstrad CPC 6128
and the Amstrad PCW8256/8512 have GSX supplied as standard under CP/M+
but the problem is that the calls to GSX are difficult to use and there is virtually
no documentation available for them. This manual and the associated C GSX
functions attempt to help by supplying a high-level C interface to GSX along
with substantial documentation on using the routines.

Please read this manual all the way through at least twice and do try out the
example programs before taking the plunge yourself.

What does GSX let you do?
With GSX you can:

1. Draw lines and any sort of polygon in 6 different styles.

2. Fill areas in 12 different fill styles.

3. Move a special graphics cursor and read the keyboard with one call.
4. Print text at any pixel position on the screen.

3. Write text in transparent or XOR mode.

6. Perform most of the CP/M Plus terminal emulation codes.

7. Display 5 sorts of 'markers’ that are useful for drawing graphs.

8. Use colour on the CPC 6128.

HiSoft C GSX Library Page 1 HiSoft C GSX Library

If you are using a PCW or have an Epson compatible, Shinwa or Amstrad
DMP-1 printer for your 6128 you also have the following features on the printer
only: '

1. Draw text in 12 different sizes, vertically and upside down on the printer.
2. Use 12 sizes of markers.

On Amstrad computers the CP/M operating system consists of just one file with
extension .EMS but to program with GSX you need several files:

1. GSX.SYS

the machine independent part of GSX : about 2K long.

2. GENGRAF .COM the program that makes your programs load GSX before they
run: about 2K long.

3. ASSIGN. SYS the file that tells GSX which driver to use : less than 1K long.
4. At least one device driver from the following:

DDSCREEN.PRL
The PCW series screen driver, SK long: use the one on the disc with the GSX
library on it; it will be better than the one on your system disc!

DDMODEO . PRL
The CPC mode 0 driver: 160 x 200 pixels with 16 colours. 20 characters per
line. 4K long.

DDMODE1 .PRL
The CPC mode 1 driver: 320 x 400 pixels with 4 colours. 40 characters per line.
4K long.

DDMODE2 .PRL
The CPC mode 0 driver: 640 x 400 pixels with 2 colours. 80 characters per line.
4K long.

DDFXHRS .PRL
High-resolution printer driver for PCW printers. 960 x 1368 resolution. 15K long.

HiSoft C GSX Library Page 2 HiSoft C GSX Library

DDFXLRS8 .PRL
Low-resolution printer driver for PCW printers 480 x 672 resolution. 12K long.

Or one of the printer drivers on your system disc. If you have a CPC 6128 see
side 3 of your system disc. Type the file DRIVERS . GSX. This gives information
on the various printer drivers.

5.GSX.LIB
contains the C functions for calling GSX. This does not call any other libraries;
so for some programs it is the only one you need.

6.GsSX.H
contains the declarations of the C variables that are used by GSX.LIB

The Format of ASSIGN.SYS

ASSIGN.SYS is an ordinary text file which must be present when using GSX;; it
is composed of lines with the following format:

nn d:fname

where nn is the number of the device. Conventionally
01-09 are used for screens.
10-19 are used for plotters.
20-29 are used for printers.

d is an extended drive name specifier. This can be just A: or B:or M: or
alternatively @: which means the default drive. So to use the screen on the
PCW it is normal to use

01 Q:DDSCREEN

and to use the High-resolution mode on the CPC
01 @:DDMODE2

or

HiSoft C GSX Library Page 3 HiSoft C GSX Library

21 @:DDFXHRS8
to use the printer on the PCW,

You can use more than one device at a time, but this uses more memory and
you can casily end up with a message ‘file too large’ because the device drivers
must load in the top 16K of memory.

HOW TO COMPILE AND RUN C PROGRAMS USING
THE GSX LIBRARIES

When compiling your program you need to use the compiler's #data
pre-processor command. This is necessary because GSX runs at the top of
memory and your program normally uses this area for its variables and so would
corrupt GSX. The minimum value you can use in #data is given when you
compile, but for small programs use

#data 0x4000
at the front of your program.
The format of your file should be of the form:

#data 0x4000

#include stdio.h
#include gsx.h

/* any other includes of .h files */
/* your functions */

main ()

{

/* your main program */

}

#include ?gsx.lib?

HiSoft C GSX Library Page 4 HiSoft C GSX Library

/* other includes of libraries including
#include ?stdio.lib?

if required */
It is essential that the #data is present and before the #include directives.
Then to compile a typical program like BAR.C (which is on your master disc)
use:
HC BAR.C[ENTER]
When your program compiles correctly use:
GENGRAF BAR [ENTER]
to add the GSX loader to BAR.COM, then
BAR [ENTER]
will run your program. Try this now!

It is often a good idea to create a . SUB file to do the compilation and GENGRAF
particularly if you are using the M: drive on the PCW.

GSX CONCEPTS

Before describing the function calls in detail its necessary to be aware of the
concepts behind GSX.

At the lowest level your program 'talks' to GSX by passing the address of an
array called contrl_ptr. This in turn contains the addresses of 5 further
ammays : contrl, intin, intout, ptsin, ptsout.Normally you don't
need to know about these, but they must be present in your program and are
defined in GSX.H.

HiSoft C GSX Library Page § HiSoft C GSX Library

Normally a GSX program opens a 'workstation’, does some GSX calls and
then closes the workstation. So that GSX can tell different workstations apart,
opening the workstation returns a ‘handle’ that must be used in all subsequent
calls.

The close workstation call is used to clear the screen and put the cursor etc.
back to normal for the screen and to actually do the printing on printers.

As far as the user is concerned the screen or printer page is considered to have
(0,0) in the bottom left to (32767,32767) in the top right, regardless of the screen
or priater physical resolution.

COLOURS

This section is mostly irrelevant when using a PCW.

Colours are referred to by colour indices. These are 0,1,2.. depending on how
many colours can be on the screen at any one time.

In mode O this is 16 colours; in mode 1, 4 colours and in mode 0, 2 colours.

Colour index O is the normal background colour and Colour index 1 is the
foreground colour.

The default colours are as follows:

0 black

1 red

2 green

3 blue

4 cyan

5 yellow

6 magenta
7 white

8-15 are also initially white.

HiSoft C GSX Library Page 6 HiSoft C GSX Library

Different ‘inks' can be associated with a colour by specifying the proportions of
red, green and blue. The device driver then does its best to match this colour
from the available pallette on the CPC 6128. When using mode 2 it is generally a
good idea to change the ink of index 1 as this is dark red and thus is difficult to
read against a black background on a colour monitor and almost impossible to
read on a monochrome one.

How and what GSX prints on the screen depends on several 'variables'. These
are:

1. Line type:

There are five different sorts of line type:
1. solid

2. dash

3. dot

4. dash,dot
5. long dash

There is also the line colour index, which gives the colour in which the lines
are drawn.

HiSoft C GSX Library Page 7 HiSoft C GSX Library

2. Marker type:

Markers give you the ability to plot graphs in a more interesting way than just
using dots. The different types are as follows:

PICTURE Ci

XO# T =

There is also the marker colour index which gives the colour in which the
markers are drawn.

3. Fill interior style

0. hollow
1. solid

2. pattern
3. hatch

Associated with fill interior styles pattern and hatch there is a 'fill style
index'.

HiSoft C GSX Library Page 8 HiSoft C GSX Library

The following table shows the patterns generated for different styles and
indices. 2, 1 indicates an fill interior style of 2 and a fill style index of 1.

PICTURE B2

2,1] [32

There is also the fill colour index which gives the colour that areas are filled
with and the text colour index which is the colour in which graphics text is
drawn.

For printers there is also the text rotation angle.

Writing mode

There are four different writing modes:

1 Replace normal over- printing

2 Transparent leaves any already printed pixels
3 XOR reverses the bits

4 Reverse transparent

The current writing mode is used in all the graph print routines.

HiSoft C GSX Library Page 9 HiSoft C GSX Library

THE GSX FUNCTIONS

1. OPEN WORKSTATION

v_opnwk (work_in, handle, work_out)
int *work_in, *handle, *work_out;

This is in fact the most complicated function to call. It opens a workstation given
the initial settings of the colours etc. given in the amay work_in. Normally 1 is
used for each value. The handle to use is returned in the variable handle.

The elzements of the armay work_in are as follows:

intin (0] device number.
intin{1] line type.

intin([2} line colour index.
intin(3] marker type.
intin(4] marker colour index.
intin(5) text face. Must always be 1 on Amstrads.
intin(6} text colour index.
intin(7} fill interior style.
intin{8]} fill style index.
intin (9] fill colour index.
intin(10] not used.

eg.

FAST int work_in{ll], work_out([57];
FAST int handle;

work_in[0] = 1; /* device number 1 the screen */
for (i=1; i<10; ++i)

work_in[i]} =1;

v_opnwk (work_in, éhandle, work out);

HiSoft C GSX Library Page 10 HiSoft C GSX Library

Note that the device is the number given in the ASSIGN.SYS file and that
textface will always be 1 since the Amstrad drivers do not support any other

typefaces.

The open workstation call also return the following in the work_out array:

work out [0]
work_out(1l]
work out (2]

work out [3]
work _out (4]
work_out [$]
work out[6]
work out [7]
work_out[8]
work_out [9]
work_out [10]
work_outf1ll]
work out(12]

work_out [13]
work out{14]

work_out [15]-
work_out {24]
work out[25]-
work_out {34]
work_out {35]

work _out (36}

pixel width of device -1

pixel height of device -1

0= device is capable of producing a continously scaled image.
1= otherwise.

width of one pixel in microns
height of one pixel in microns
number of character heights
number of line types

number of line widths
number of marker types
number of marker sizes
number of typefaces
number of fill patterns
number of hatch styles

number of colours that can be displayed on the device at
once.

number of Generalised Drawing Primitives (GDPs). Sadly for
the Amstrad device drivers this is always 1.

list of the GDPs supported. This is always just the Bar.

list of attributes associated with each GDP. Not useful on
Amstrads.

1= device supports colour.

0= No colour capability

1= text rotation available

0= no text rotation

HiSoft C GSX Library Page 11 HiSoft C GSX Library

work out [37]
work_out [38]

work _out [39]
work_out [40}
work_out [41]
work out (42]
work out[43]
work_out [45]
work_out [46]
work_out (47]
work_out (48]
work_out [49]
work_out [51]
work_out [53]
work_out [54]
work_out {55]
work_out [56]

1= fill area available

0= no area fill possible

1= cell array capability

0= no cell array capability

total number of colours in palette (2= monochrome)
number of locator devices (0= just keyboard)
number of valuator devices. Not applicable to Amstrads.
number of choice devices. n/a

number of string devices. n/a

minimum character width.

minimum character height.

maximum character width.

maximum character height.

minimum line width.

maximum line width.

minimum marker width.

minimum marker height.

maximum marker width,

maximum marker height.

CLOSE WORKSTATION

v_clswk (handle)

int handle;

For screen devices clears the screen and re-displays the cursor etc. For printers
this causes the current page to be output. Should be used before finishing your
program. Because this clears the screen it is usual to place a getchar ()
before it so that the screen can be viewed and then the screen cleared when
(RETURN] is typed.

e.g.
v_clswk (handle);

HiSoft C GSX Library Page 12 HiSoft C GSX Library

CLEAR WORKSTATION

v_clrwk (handle)
int handle;

Clears the device. On printers all data output but not printed is ‘forgotten'.

e.g.
v_clrwk (handle};

UPDATE WORKSTATION

v_updwk (handle)
int handle;

On screens, does nothing as the screen is always up to date. On printers, causes
the current page to be printed.

e.g.
v_updwk (handle) ;

POLYLINE

v_pline(handle, count, pxyarray)
int handle, count, *pxyarray;

Draws a series of lines on the screen; the number of points is given by the
parameter count. pxyarray is a pointer to an array that contains the points.
The current writing mode, line type and line colour index are used.

HiSoft C GSX Library Page 13 HiSoft C GSX Library

c.g. Given the definitions:

int p(6]);

then
pl0])=0; pil]1=0;
pl21=10000;p{3}=0;
pl4]1=0; pl5)=10000;

v_pline (handle, 3,p);

will then draw a line from (0,0) to (10000,0) and another one from (10000,0)
to £0,10000).

POLYMARKER

v_pmarker (handle, count,pxyarray)
int handle, count, *pxyarray;

Draws a series of markers on the screen; the number of markers is given by the
parameter count. pxyarray is a pointer to an array that contains the points
on which the markers are based. The current writing mode, marker colour,
marker height and marker type are used.

This is used in a way exactly analagous to v_pline. Note that on the screen
there is only one marker height.

WARNING: There appear to bugs in the printer drivers that cause markers not
to be printed unless v_gtext (see below) is called previously.

HiSoft C GSX Library Page 14 HiSoft C GSX Library

GRAPHIC TEXT

v_gtext {handle, x,y,string)
int handle, x,y;
char *string;

This function writes a string starting at graphics position (x,y).stringisa
pointer is to be printed. The string must be null terminated.

This uses the current writing mode, and text colour. On printers the current
rotation angle is used.

e.g.

gtext (handle, 16000,16000,"HiSoft");

writes HiSoft near the middle of the screen/page.

FILL AREA

v_fillarea(handle, count,pxyarray)
int handle, count, *pxyarray:

This fills a polygon specified in the pxyarray. The number of vertices is
specified by the parameter count and pxyarray isa pointer to the array
containing the points, in exactly the same the form as v_pline. The device
driver draws a line from the last point to the first point so that the polygon is
always closed.

The area is filled using the current fill area colour, fill style, and writing

mode, and the outiine of the polygon is drawn using a solid line in the current
writing mode of the current fill area colour.

HiSoft C GSX Library Page 15 HiSoft C GSX Library

BAR

v_bar (handle,pxyarray)
int handle, *pxyarray;

This draws a bar given (pxyarray([0],pxyarray(1]) as onc comner and
(pxyarray({2],pxyarray(3]) as the opposite corner.

The area fill attributes are used as with fillarea.
e.g. given the definition:

int pl4];

then

pl0l=p(11=10000;
pl(21=p[3]1=20000;
v_bar (handle,p);

draws a rectangle near the middle of the screen.

SET CHARACTER HEIGHT

vst_height (handle, height,char_width,
char_height,cell_width,cell _height)
int handle, height, *char_width,
*char_height,*cell_width, *cell_height;

This sets the size of the text characters printed on a printer. There are 12
different heights.

The height parameter is the size of the characters given in terms of graphics
points.

The char_width and char_height parameters are maximum size of the
actual characters and the cell width and cell_height are the size of the

cells in which the characters are printed.

HiSoft C GSX Library Page 16 HiSoft C GSX Library

The following table gives the different heights given by the PCW printer using
the High resolution driver:

yheight char size(mm) cell size(mm)
1- 383 ix1 1x1
384 - 574 2x 3 3x 3
575 - 766 3x 4 4x 4
767 - 958 4x 6 5x 6
959 - 1149 5x 7 6x 7
1150 - 1341 6x 8 8x 8
1342 - 1533 7x10 9x10
1534 - 1724 8§x11 10x 11
1725 - 1916 10x13 11x13
1917 - 2107 11x14 13x14
2108 - 2299 12x 15 14 x 15
2300 - 10000 13x17 15x17

The following table gives the different heights available using the Low resolution
driver:

yheight: char size(mm) cell size(mm)
1- 780 2x 3 3x3
781 - 1170 4x 6 5x 6
1171 - 1560 6x 8 8x 8
1561 - 1950 8§x11 10x 11
1951 - 2340 11 x 14 13x 14
2341 - 2730 13x17 15x17
2731 - 3120 15x20 18 x 20
3121 - 3510 17x22 20x22
3511 - 3500 19x25 23x25
3901 - 4291 21 x28 25x28
4292 - 4681 23 x 31 28 x 31
4682 - 1000 25x34 30x34

HiSoft C GSX Library Page 17 HiSoft C GSX Library

SET ROTATION
int vst_rotation(handle, angle)

int handle, angle;

Again this is a function that is only applicable to printers. The angle parameter
is a measure of the angle at which text will be printed. Normally this is 0
corresponding to the usual East to West. 900 corresponds to upwards; 1800 to
upside down and 2700 to down the paper. If a different value is given then the
closest match is taken.

The value returned is the set value.

e.g.

vst_rotation (handle, 1800);

v_gtext (handle, 15000, 16000, "This is Upside down");
prints

umop apTsdn ST STYL

COLOUR

vs_color(handle, index, rgb_in)
int handle, index, *rgb_in;

This is only useful on CPC 6128 screens; the index can be:
0-1 in mode 2
0-3 in mode 1
0-15 in mode 0

rgb_in is a pointer to an array containing the red, green and blue proportions of

HiSoft C GSX Library Page 18 HiSoft C GSX Library

the various colours defined.These vary from O to 1000. Thus the default for
index 0 is 1000,0,0.

To change index 1 to be white use:

int white([3]=(1000,1000,1000};
vs_color (handle,white);

and to set ink 8 to be 'dark’ blue use:

int dark_blue[3]={0,0,300};
vs_color (handle,dark blue);

The default colours are:

0 black

1 red

2 green

3 blue

4 cyan

5 yellow

6 magenta
7 white

8-15 are also initially white.
SET LINE TYPE

int vsl_type (handle, style)
int handle, style;

This function sets the line type that is used. Valid style arguments are:

1. solid

2. dash

3. dot

4, dash,dot

HiSoft C GSX Library Page 19 HiSoft C GSX Library

S. long dash

This function returns the style that has been set. If an illegal value is used solid
(1) is set. ~

e.g. After
vs_ltype (handle, 4);

then lines will be drawn using dashes and dots.

SET LINE COLOUR

int vsl_color (handle, color_index)
int handle,color_index;

This functions sets the color_index in which lines will be displayed. Normally
the default is index 1 (normally red on the CPC and 'white' on the PCW) (this is
set by the open workstation call). It returns the colour that has actually been set,
so that if you try to set a colour index that does not exist for a particular screen
you will get the highest value possible.

Thus if using either MODEO or MODE! on a CPC machine and assuming that
colour index 3 has not been redefined using vs _color (see above) then

vsl_color (handle, 3);

will cause lines to be drawn in blue.

HiSoft C GSX Library Page 20 HiSoft C GSX Library

SET MARKER TYPE

int vsm_type (handle, symbol)
int handle, symbol;

This function sets the current marker type to be one of

1 m
2 4
PICTURE C2 3 !
+ 0
> X

As usual this returns the type that is set; this is asterisk (3) if an illegal type is
passed.
.8

vsm_type (handle,S5);

sets the marker type to be a diagonal cross.

HiSoft C GSX Library Page 21 HiSoft C GSX Library

SET MARKER HEIGHT

int vsm_height (handle, hei1ght)
int handle, height;

This sets the size of markers to be displayed on the printer. There are 12
different sizes available with the two drivers. The PCW High resolution driver
gives the following sizes:

yheight approx height in mm
1- 383 1
384 - 574 3
575 - 766 4
767 - 958 6
959 - 1149 7
1150 - 1341 8
1342 - 1533 10
1534 - 1724 11
1725 - 1916 13
1917 - 2107 14
2108 - 2299 15
2300 - 10000 17

The PCW Low resolution driver gives the foflowing sizes:

yheight approx height in mm
1- 780 3
781 - 1170 6
1171 - 1560 8
1561 - 1950 11
1951 - 2340 14
2341 - 2730 17
2731 -3120 20
3121 - 3510 22
3511 - 3900 25
3901 - 4291 28
4292 - 4681 3
4682 - 10000 34

HiSoft C GSX Library Page 22 HiSoft C GSX Library

SET MARKER COLOUR

int vsm_color(handle,color_index)
int handle, color_index;

This functions sets the color_index in which markers will be displayed. It
returns the colour that has actually been set, so that if you try to set a colour
index that does not exist for a particular screen you will get the highest value
possible.

Thus if using either MODEO or MODE! on a CPC machine and assuming that
colour index 2 has not been redefined using vs_color (see above) then

vsm_color (handle, 2);

will cause markers to be drawn in green.

SET TEXT COLOUR

int vst_color(handle, color_index)
int handle, color_index;

This function sets the color_index that text is drawn with when using both
the v_gtext and v_curtext procedures on the CPC machines.

e.g.
vst_colour (handle, 5);

will cause subsequent text to be output in yellow.
Note that you should always reset this to be 1 before you do a v_clswk and

then return to CP/M because otherwise you will end up with a blue foreground
and background.

HiSoft C GSX Library Page 23 HiSoft C GSX Library

SET FILL INTERIOR

int vsf_interior(handle,style)
int handle,style;

This function sets the fill interior style (o be one of:

0 - hollow

1 - solid

2 - pattern

3 - hatch

For the pattern and hatch options the fill style index (see below) is also used.

So that for example:

vsf_interior (handle,0);
will cause subsequent fills to be done in current background colour.

SET FILL STYLE INDEX

int vsf_style(handle,style_index)
int handle,style_index;

This changes how areas are filled if pattern (2) or hatch (3) fill interior styles
are in use.

HiSoft C GSX Library Page 24 HiSoft C GSX Library

The following table shows the patterns generated for different styles and
indices. 2,1 indicates an fill interior style of 2 and a fill style index of 1.

2,6 B 3.4
2,s B 3.5
2;4{f] 3,4
2,3[] 3,3
PICTURE B1 2,2[] B 3.2
2,1 [} 3.1

SET FILL COLOUR

int vsf_color(handle,color_index)
int handle,color_index;

This function sets the colour index that areas are filled with. It returns the
colour that has actually been set, so that if you try to set a colour index that does
not exist for a particular screen you will get the highest value possible.

Thus if using either MODEO or MODE1 on a CPC machine and assuming that
colour index 2 has not been redefined using vs_color (see above) then:

vsf_color(handle, 2);

will cause areas to be filled in green.

HiSoft C GSX Library Page 25 HiSoft C GSX Library

PLACE GRAPHIC CURSOR AT LOCATION
v_dspcur (handle, x, y)

int handle,x,y;

Displays the graphics cursor at the graphics location (x,y) . The graphics
cursor is of the ‘cross hair' type. It is drawn using the XOR mode so that in can
subsequently be removed.

c.g.
v_dspcur (handle, 16384,16384);

displays the graphics cursor in the middle of the screen.

REMOVE LAST GRAPHIC CURSOR

v_rmcur (handle: INTEGER) ;
This removes the last graphics cursor displayed using v_dspcur. It is

removed by writing the graphics cursor in XOR mode. Thus if it has been
cleared already it will in fact be redrawn.

HiSoft C GSX 1 ibrary Page 26 HiSeft C GSX Library

SET INPUT MODE

vsin_mode (handle,dev_type,mode)
int handle, dev_type, mode;

This function is used to choose between using vrq_locator and
vsm_locator. You must set dev_type to be 1 on the Amstrad computers. If
mode is

1 then vrq_locator is to be used.
2 then vsm_locator is to be used.

¢.g. vsin_mode (handle, 1, 2) is used before calling vsm_locator.

GET LOCATOR

vrq_locator (handle, x, y, xout, yout, term)
int handle, x,y, *xout, *yout, *term;

This routine displays a graphics cursor at graphics position (x,y) and then lets
the user move it using the cursor keys. Using the cursor keys alone moves the
cursor in quite large steps; using the shift keys as well will cause it to move in -
small steps. When the user presses a non-cursor key this is returned in term as
the value of the function with (xout, yout) containing the final co-ordinates of
the graphics cursor which is then removed.

e.g.
vrq_locator (handle, 16384,16384, &xpos, &ypos, &key) ;
printf(
"You moved the cursor to (%d,%d) and pressed %c \n",
xpos,pos, key) ;

If you have used the samplelocator function (see below) then you must use
vsin_mode (handle, 1, 1) ; before calling this function.

HiSoft C GSX Library Page 27 HiSoft C GSX Library

SAMPLE LOCATOR

int vsm_locator (handle, x,y, xout, yout, term)
int handle, x,y, *xout, *yout, *term;

This function is used to find the current position of the graphics cursor, which

must be displayed separately at (x,y) using v_dspcur (sec above) first.
The value returned as the result is either:

0 nothing happened.

1 the cursor has been moved; the new cursor position will be in
{xout, yout)

2 a non-cursor key has been pressed; the character is returned in the

parameter term.

You must call vsin_mode (see above) before calling this function.

HiSoft C GSX Library Page -28 HiSoft C GSX Library

Here is an extended example of the use of samplelocator in the form of an
entire program:
#data 0x4000

#include *"stdio.h”
#include "gsx.h"

main ()

{

FAST st; /* status returned from sample locator call #*/
FAST int i, work_in{1ll}, work_out(57):

FAST int term; /* any characters typed */

FAST int handle;
FAST int p{]=~{10000,10000,10000,10000};
/*(p(0],p(1]) is the last point and (pl[2]),p(3))
is the current point */

work_in(0] = 1;
for (iml; 1<10; ++1i)
work_in(i]) =1;

v_opnwk (work_in, éhandle, work_ out);

vsin_mode (handle,1,2); /* set sampling mode */
v_dspcur (handle,p{0],p(1]); /* display the cursor initially */
do

{
switch (st=vam_ locator(
handle,p(0]),p(l],&p(2),&p (3], 6term))

{ case 0 : break; /* nothing has happened so do nothing */
case 1 : /* the cursor has been moved */
v_rmcur (handle) ; /* remove the cursor */
v_pline (handle, 2,p); /* draw a line between the old
and new points */
v_dspcur (handle,p(2]},p(3)); /*display the new cursor */
pl0)=p[2); plll=p(3]; /* make the old point the current one */
break;
case 2: putchar(term); break; /* acho any characters typed */

}
}
while (!((i=w2) && (termm='E?))); /* finished if B is typed */

getchar():
v_clawk (handle) ; /* clear the screen etc */

}

#include 2gsx.lib?

HiSoft C GSX Library Page 29 HiSoft C GSX Library

THE TERMINAL 'ESCAPE' FUNCTIONS

These give text, cursor positioning etc in a machine independent way providing
most of the facilities of the CP/M Plus terminal emulator on the Amstrad
machines.

INQUIRE CHAR CELLS

vq_chcells (handle, rows, columns)
int handle, *rows, *columns;

This returns the size of the screen in character positions. This varies depending
on whether you are using a PCW or a CPC and whether or not the status line is
enabled.

Thus given the declaration
int r,c;

ingcharcells (handle, &r, &C)

will normally return r=31 and c=90 on a PCW with the status line enabled.

EXIT ALPHA MODE

v_exit_cur(handle)
int handle;

This simply switches the cursor OFF on the Amstrad machines.

HiSoft C GSX Library Page 30 HiSoft C GSX Library

ENTER ALPHA MODE

v_enter cur (handle)
int handle;

This simply switches the cursor ON on the Amstrad machines.

ALPHA CURSOR UP

v_curup (handle)
int handle;

This moves the cursor up one line; if it is already on the top line it does not move.

ALPHA CURSOR DOWN
v_curdown (handle)
int handle;

This moves the cursor down one line; if it is already on the bottom line it does
not move.

ALPHA CURSOR RIGHT

v_curright (handle)
int handle;

This moves the cursor right one character; if it is already on the right most
column it does not move.

HiSoft C GSX Library Page 31 HiSoft C GSX Library

ALPHA CURSOR LEFT

v_curleft (handle)
int handle;

This moves the cursor left one character; if it is already on the left most column
it does not move.

HOME ALPHA CURSOR

v_curhome (handle)
int handle;

This moves the cursor to the top left comer of the screen.

ERASE TO END OF ALPHA SCREEN

v_eeos (handle)
int handle;

Erases the screen from the current alpha position to the end of page. The cursor
does not move.

ERASE TO END OF ALPHA TEXT LINE

v_eeol (handle)
int handle;

Erases the screen from the current cursor position to the end of the line. The
cursor does not move.

HiSoft C GSX Library Page 32 HiSoft C GSX Library

DIRECT ALPHA CURSOR ADDRESS

vs_curaddress (handle, row, column)
int handle, row, column;

This function moves the cursor to alpha position (row,column) with (1,1) as
the top left hand corner. If the position is not on the displayable screen it is
moved to the nearest value that can be displayed.

OUTPUT CURSOR ADDRESSABLE ALPHA TEXT

vs_curtext (handle, string)
int handle, *string;

This outputs a text string starting at the current alpha cursor position. string
is a pointer to the string. The string must be null terminated.

e.g.

vs_curaddress (handle, 1,10);
vs_curtext (handle,"A HiSoft Powerful Tool");

writes A HiSoft Powerful Tool on the top line of the screen 10 characters
in from the left.
REVERSE VIDEO ON

v_rvon (handle)
int handle;

This function causes all subsequent alpha text to be displayed in inverse video
until v_rvoff is called.

HiSoft C GSX Library Page 33 HiSoft C GSX Library

REVERSE VIDEO OFF

v_rvoff (handle)
int handle;

this causes subsequent alpha text to be printed in normal video.

INQUIRE CURRENT ALPHA CURSOR ADDRESS

vq_curaddress (handle, row, column)
int handle, *row, *column;

This function returns the current alpha cursor position in the variables
(row, column) with (1,1) as the top left hand corner.

HiSoft C GSX Library Page 34 HiSoft C GSX Library

INDEX

alpha cursor 30-34

alpha cursor down 31

alpha cursor left 31

alpha cursor right 31

alpha cursor up 31

current address 34

home alpha cursor 32
alpha mode 28

enter alpha mode 31

exit alpha mode 30
alpha text 32
area 12,15,16

fill area 11,15
angle 9,15,18
bar 5,16
character height 16-17
close workstation 512
clear workstation 13
colour 6, 7-10, 13-15, 18-20, 21-24

fill colour 9,25

line colour 7,13,20

marker colour 7,14,23

text colour 9,15,23
compiling 4-5
cursor

alpha cursor 30-34

graphic cursor 26, 27-29
direct cursor address 30
dspgrcusor 26,2
down alpha cursor down 31

HiSoft C GSX Library Page 35 HiSoft C GSX Library

erase to end of screen
to end of line
whole screen

escape sequences

fill
fill area
fill colour
fill interior
fill style

graphic cursor
graphic text

handle
height
character height
marker height
home alpha cursor

ink

input mode
inverse video off
inverse video on

left alpha cursor left
line

line colour

line type
locator

get locator

sample locator

HiSoft C GSX Library

32
32
12

30-34

8-12, 15, 23-25
11,15

9,25

8,9, 24-25

8,9, 15, 24-25

26, 27-29
15, 18,23

6,10, 11-34
14, 16-17, 22
16-17

14, 22

32

7,19

27, 28,29
34

33

31

7,12-13, 18,19, 27
7,14,20

7, 13,19
27,28,29

27,29

27,28

Page 36 HiSoft C GSX Library

marker

8, 10, 14, 21-23

marker colour 8,14,23

marker height 14, 22

marker type 8,14,21
mouse 29
open workstation 5,10-12
polyline 13-14
polymarker 14
reverse video on 33
reverse video off M
rotation 915,18
right alpha cursor right 29
screen size

graphics 11

characters 20
text

alpha text 32

graphic text 15,18,23

text colour 9,15,23
up alpha cursor up 31
update workstation 13
vq_chcells 30
vq_curaddress K
vrq_locator 27
vsf_interior 24
vsf_color 25
vsf_style 24-25

HiSoft C GSX Library Page 37 HiSoft C GSX Library

vsin_mode
vsl_color
vsl_type
vsm_color
vsm_height
vsm_locator
vsm_type
vst_color
vst_height
vsl_rotation
vs_color
vs_curaddress
vs_curtext
v_bar
v_clrwk
v_clswk
v_curdown
v_curhome
v_curleft
v_curright
v_curup
v_dspcur
v_eeol
v_ceos
v_enter_cur
v_exit_cur
v_fillarea
v_glext
v_opnwk
v_pline
v_pmarker
v_rmcur
v_rvoff
v_rvon
v_updwk

HiSoft C GSX Library

27

19-20

22

21

16-17
18
18-19

33
16
13
12
31
32
32
31
3t

32
32
31

15
15
10-12
13-14
14
26

33
13

Page 38

HiSoft C GSX Library

workstation 6, 10-13

clear 13
close 6,12
open 6, 10-12
update 13

HiSoft C GSX Library Page 39 HiSoft C GSX Library

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122
	pag 123
	pag 124
	pag 125
	pag 126
	pag 127
	pag 128
	pag 129
	pag 130
	pag 131
	pag 132
	pag 133
	pag 134
	pag 135
	pag 136
	pag 137
	pag 138
	pag 139
	pag 140
	pag 141
	pag 142
	pag 143
	pag 144
	pag 145
	pag 146
	pag 147
	pag 148
	pag 149
	pag 150
	pag 151
	pag 152
	pag 153
	pag 154
	pag 155
	pag 156
	pag 157
	pag 158
	pag 159
	pag 160
	pag 161
	pag 162
	pag 163
	pag 164
	pag 165
	pag 166
	pag 167
	pag 168
	pag 169
	pag 170
	pag 171
	pag 172
	pag 173
	pag 174
	pag 175
	pag 176
	pag 177
	pag 178
	pag 179
	pag 180
	pag 181
	pag 182
	pag 183
	pag 184
	pag 185
	pag 186
	pag 187
	pag 188
	pag 189
	pag 190
	pag 191
	pag 192
	pag 193
	pag 194
	pag 195
	pag 196
	pag 197
	pag 198
	pag 199
	pag 200
	pag 201
	pag 202
	pag 203
	pag 204
	pag 205
	pag 206
	pag 207
	pag 208
	pag 209
	pag 210
	pag 211
	pag 212
	pag 213
	pag 214
	pag 215
	pag 216
	pag 217
	pag 218
	pag 219
	pag 220
	pag 221
	pag 222
	pag 223
	pag 224
	pag 225
	pag 226
	pag 227
	pag 228
	pag 229
	pag 230
	pag 231
	pag 232
	pag 233

