A.D.A.M

ﬁ

_J,

|

Softweee L.
(J *
ﬂldoqemc

A g

L4

INTRODUCTION

ADAM is a powerful machine language development system for
the Amstrad 464, 664 and 6128 computers. Unlike some systems,
all three modules (assembler, disassembler and monitor) are
resident in memory at the same time. ADAM is written in
relocatable machine code, allowing you to position it almost
anywhere you like in memory so as to avoid conflict with your
own programs.

GETTING STARTED

ADAM may be located at any address from iOOO decimal to
28000 decimal. To load the system, type:

RUN "ADAM"

Normally ADAM loads at 16384 (4000 hex), but if you wish to
specify a different address, press the space bar whilst the first
part of the program is loading.

Loading the system like this has the disadvantage that any BASIC
program will be overwritten. To load ADAM and keep any
BASIC program intact, decide where you want to locate the
program - let’s say the address is 6000 - and type:

MEMORY 6000-1
LOAD "ADAM.BIN",6000
CALL 6000

When the system first runs, you are in the MONITOR. Most
ADAM commands are entered from the monitor, and consist of a
single letter, often followed by a single digit number (which
specifies a particular option), and sometimes by an additional
parameter. For example, the command to save (or PUT) a source
file on tape or disk is Pn,filename. Obviously you must insert
your own values for the parameters n and filename.

An example session using ADAM is shown in Appendix D to help
you get started.

-1-

ADAM occupies 10485 bytes. It contains its own display routines
and stack to help keep it immune from the effects of programs
that are being debugged. ADAM uses as few ROM routines as
possible, but when it does it always uses the standard vectors.

There are two important addresses that ADAM uses: HRAM and
HMEM. HRAM is the highest address in RAM used by the
ADAM system, normally the top of user RAM - but you can
change it if you wish. Memory from the start of ADAM up to
HMEM is protected by ADAM from being overwritten. Normally
the symbol table begins at HMEM. You can alter HMEM if you
wish,

ADAM uses the # symbol to identify hexadecimal numbers, eg.
#4000.

THE ADAM ASSEMBLER

The heart of ADAM is a powerful two pass assembler. Using the
assembler you can assemble a source file created by the EDITOR
into a machine code object file which can be executed directly by
the Z80 processor.

Each line is divided into several zones or fields - labels, opcodes,
operands and comments separated by at least one space. For
example:

LOOP ADD A,(HL) ;this is a comment

label opcode operand comment

A label must always start at the beginning of a line, begin with
an alphabetical character and be between one and eight characters
long. Operands can be up to 26 characters long.

To assemble a source file which is currently in memory, use the
monitor A command. The file will be assembled in two passes.
If an error is found, assembly will be aborted and an error
message displayed (see Appendix A). The only exception to this
is error 11, LABEL ABSENT, which is flagged but does not stop
assembly. ‘

-2

If during assembly ADAM realises that the symbol table will
overwrite the object code or extend beyond HRAM, it will
automatically copy the table into display memory before assembly
continues. You can force ADAM to use the display memory for
the symbol table if you select assembly options 1 or 3. The
assembly option you choose also determines where the object code
is positioned:

COMMAND SYMBOL TABLE OBJECT CODE

A HMEM ORG address

Al Display RAM ORG address

A2 HMEM After symbol table
A3 Display RAM HMEM

After assembly the symbol table can be displayed (or printed)
using the monitor command X1.

LINKING TEXT FILES TOGETHER

When a text file exceeds about 20k it becomes necessary to split it
into smaller blocks in order to assemble it, otherwise there is
insufficient memory to contain both the object code and the
symbol table. Each link in the chain except the last should end
with the special directive *F,filename where filename is the name
of the next block. *F must be entered in the label field and must
be the only command on the line.

To assemble a chain of linked blocks you should use a command
of the form:

Al,filename or
F2,filename

The A version of the command will start the assembly with the
file in memory (which should be the same as the one named in
the filename). Make sure that you have saved it away first!

The F version of the command must have option 2 selected, and
will load the named file before starting the assembly.

-3 -

PSEUDO-OPS & DIRECTIVES

In addition to the standard Z80 opcodes, ADAM accepts several
pseudo-ops and assembler directives. They should all be entered
in the opcode field.

ORG address
Defines the origin or start address at which the assembled
machine code will execute.

EQU value label
Assigns the value specified (which must be a constant or a
previously defined label) to the label. Labels can be up to 8
characters long.

DEFB byte(,byte...)
Writes a series of 8-bit values into memory.

DEFW word(,word...)
Writes a series of 16-bit values into pairs of bytes in memory (low
byte followed by high byte).

DEFS bytes(,value)
Reserves a block of memory and (optionally) fills the block with
the specified value.

DE¥M string
Writes an ASCII string into memory.

ENT address
Defines an entry address for use in conjunction with the monitor
J command (see debugger section).

IF expression(...ELSE).. END

Allows conditional assembly of sections of source code. If the
expression is TRUE (not equal to 0) when it is evaluated, then the
code following the expression is assembled. If the result is
FALSE (0) and an optional ELSE pseudo-op is found, then the
code following the ELSE will be assembled instead. Assembly
returns to normal after an END is encountered.

-4 -

ARITHMETIC EXPRESSIONS

ADAM allows the use of the following operands and operators:

OPERANDS

12 Decimal numerical constant

#20 Hexadecimal numerical constant

%10110 Binary numerical constant

"a" ASCII code constant

LABEL label (which has a constant value)

$ current location counter value

X contents of address x (like PEEK(x))

X contents of x,x+1 (like DEEK(x))
OPERATORS

+ addition

- subtraction

* multiplication

/ division

& logical AND

@ logical OR

! logical XOR

? modulus (a?b=a-b*INT(a/b))

THE ADAM EDITOR

ADAM has a powerful full screen editor which allows you to
prepare and edit source files. Type L to enter the editor from the
monitor. The editor really has two modes of operation - EDIT
mode allows you to examine and edit lines of text already typed,
as well as perform more complex functions such as moving and
copying blocks of text; INSERT mode allows you to type in new
lines. When you first enter the editor using the L command, you
are in EDIT mode.

INSERT MODE

To enter INSERT mode, press CURSOR LEFT when the cursor is
already at the start of the line. You can now type your source
code into the computer (it will be inserted immediately following
the indicated line).

-5-

When you enter each line it will be checked and any unneeded
spaces removed. At this stage the opcode is also ’tokenised’ to
save space and speed up assembly time. The line will be
reformatted and redisplayed on the screen. If ADAM detects a
mistake in the line, then the cursor will be positioned on the line
at the point that the editor detected the error. Opcodes can be
typed in upper or lower case - ADAM will always convert them
to upper case. Labels can also be typed in upper or lower case,
but ADAM will treat START as being different from start.

To exit INSERT mode and return to EDIT mode, simply enter a
blank line.

EDIT MODE

When you are in EDIT mode, the line you are currently working
on is indicated by the > indicator. Use CURSOR UP and
CURSOR DOWN to move the indicator up and down the text.
To make changes to the current line, press CURSOR RIGHT.
You can then move about the line using CURSOR LEFT and
CURSOR RIGHT and delete characters to the left of the cursor
using the delete key. To delete an entire line, simply position the
> indicator and press DEL. '

To return to the monitor, press RETURN when the > indicator is
displayed. When you subsequently enter the editor this line will
be remembered as the current line (unless an assembly error has
occurred). Alternatively, you can enter the editor at a chosen
place in the text by typing Llabel, where label has already been
defined.

SAVING AND LOADING TEXT
The P (Put) command in the monitor allows you to save source
files: :
Pn,filename
There are three options:
0 - Save the entire text file
1 - Save the text file starting from current line

2 - Save object code (valid only after assembly)

-6 -

The G (Get) command will reload a text file previously saved:
Gn,filename

'If there is already text in memory, the new text will be appended
to it rather than loaded over it. The option is a dummy argument
and its value has no effect.

DELETING A TEXT FILE

To delete the text in memory, enter N in the monitor. If you
execute this command by accident, you may recover the text by
entering 59 into the TEXT address given by the X command (see

page 9).

ADVANCED EDITING

Search and Replace
This facility uses strings set up in the monitor using the S
command - two strings can be set up, stringl (the search string)
and string? (the replacement string). The command takes the
form:

Sn,text

Where n is 1 or 2 then the text is assigned to the appropriate
string and both values confirmed. If n is 0, ADAM will display
the current values of stringl and string2 without changing them.

To activate a search for stringl (from the current line onwards),
press the COPY key. If an occurrence is found, the page of the
text where it is located will be displayed and the line will be
indicated by a dollar symbol ($). To replace stringl by string2
press S - any other key will abort the function. If the
replacement is valid, the search will continue for the next
occurrence of stringl. If the replacement would cause an error in
the format of the line it must be corrected before the search can
continue.

Block Editing Commands

These commands require that @ symbols are used to mark the
start and end of the block. The @ symbol must be the first and
only character on a line. These markers are ignored by the
assembler.

Delete block - press CTRL-D. This erases all the text between
(and including) the first pair of block markers found.

Copy Block - press CTRL-C. This will create a copy of the
text between the first pair of block markers encountered and
insart it immediately after the current line.

Kill Markers - press CTRL-K. This will erase all block markers
in the text.

THE ADAM MONITOR

Apart from allowing access to the editor,assembler and debugger,
the monitor has several other commands which allow you to
modify system parameters or directly examine or change registers
and memory:

SYSTEM COMMANDS

Upper/Lower Case Toggle
ADAM accepts both upper and lower case. Toggle between the
two using the CAPS LOCK key.

Change Number Base

ADAM normally displays numbers in decimal. Press CTRL-B if
you prefer numbers displayed in hex. To switch back to decimal
press CTRL-B again. The number base being used is shown on
the top line of the screen.

Printer Hard Copy
If you want to get a hard copy of the output sent to the screen,
press CTRL-P. To switch this feature off, press CTRL-P again.

Memory Banking

ADAM allows you to switch between having RAM or ROM
between #0000-#3FFF and between #C000-#FFFF. CTRL-R
toggles between RAM or ROM in the lower block (observe the
LRAM/ROM indicator on the top line of the screen - LRAM
indicates that there is RAM from #0000-#3FFF, ROM indicates
that there is ROM). CTRL-E toggles between RAM or ROM in
the upper block (URAM or EXT on the top line). When EXT is
indicated the ROM can be selected using a command of the form:

Erom number

The ROM number must be between 0 and 251. For example, E0
selects the BASIC ROM, whilst E7 would select the disk drive
ROM.

Display System Addresses
There are three useful system addresses which can be displayed
using the X command:

TEXT - the address of the first byte of the text file

END - the address of the last byte of the text file

HMEM - the address of the last byte occupied by
the ADAM system

If you type X1, the symbol table is also displayed.

Varying the Size of ADAM’s Workspace

The entire area of memory between the start of ADAM and
HMEM is reserved exclusively for use by ADAM. Any
command which attempts to modify this memory will be aborted
with error 12, BAD LOCATION. The lower HMEM, the smaller
the space reserved for the text file and vice-versa. You may
change HMEM using the command:

Maddress

The address of HMEM must be in the central 32k of RAM (ie.
between #4000-#BFFF). If HMEM exceeds HRAM, error 8§,
BAD MEMORY will occur. If it is too low then error 12 will
occur. Using the M command destroys an existing symbol table.

-9 -

Return to BASIC
To exit ADAM and return to BASIC, enter B. To return to
ADAM you simply need to call it at its start address.

MEMORY/REGISTER COMMANDS

Examine Memory

Use Kaddress to examine memory from the chosen address. To
halt the listing, press Q or CTRL-C. Note that bit 7 of the
characters in the listing is always reset to O so that they are
readable.

Modify Memory
You can modify bytes or pairs of bytes using the Q command and
the W command:

Qaddress,byte
Waddress,word

Q stores a single byte in a given address (similar to POKE in
BASIC). W stores a word (2 bytes) into two consecutive addresses
with the low byte first (similar to DOKE).

Disassemble Memory

To disassemble memory enter the command Daddress. If the
printer is selected, ADAM will ask for an end address. The Q
key or CTRL-C will halt the disassembly - any other key will
continue the disassembly an instruction at a time.

Disassemble to Source

You can create a source text file from object code if you wish -
use the command Haddress. The disassembly is effected in two
passes and the temporary symbol table generated is stored in the
display memory.

Because machine code programs are rarely made up entirely of
executable code but usually blocks of code and blocks of data,
after entering the H command, you will be prompted with
TEXT? You should enter an address. All bytes from the initial
address to this address will be disassembled as assembly code.

- 10 -

Bytes following the text address will be disassembled as individual
bytes and included in the source file using the pseudo-op DEFB.
If there is no block of text bytes in the code you are
disassembling you should enter nothing in response to the prompt.

If you enter an address, ADAM will prompt you with CODE?
This allows you to enter an address after which bytes will be
disassembled as assembly code again. You can alternate between
blocks of code and data tables if you continue to enter addresses
in response to the prompts. When you have entered the last
transition, you should enter nothing in response to the next
prompt. You will then be asked for the end address of the final
block.

Labels are automatically generated according to the following
criteria: a label beginning with R represents an address at which a
branch terminates. If the label occupies a line on its own, it is
because several branches terminate at that address. An address
referenced by a call or a jump generates an empty comment line
and a label beginning with W.

Modify Registers
The contents of registers can be modified by use of the full stop
(.), for example:

.BC,2 - loads BC with the value 2
..BC,2 - loads B with the value 2
...BC,2 - loads C with the value 2

BC,#ABCD - loads BC’ with #ABCD

MISCELLANEOUS

Evaluate Expression

Oexpression will evaluate the given expression and display the
result. The terms and operators described on page 5 may all be
used. If a symbol table exists, labels may also appear in the
expression. For example, Ostart will display the value of the
label start; O%101+#13-9 will give the result 15 (or #0F if
hexadecimal mode is selected).

- 11 -

THE ADAM DEBUGGER

As well as the monitor commands for examining and modifying
registers and memory, ADAM includes a versatile run-time
TRACE mechanism. This allows a program to be executed
instruction by instruction and the contents of the processor
registers to be displayed at each stage.

SINGLE-STEP TRACING

To enter single-step trace mode enter T in the monitor. Press
SPACE to single-step through the program starting at the address
contained in the Program Counter. At each stage the contents of
the registers and the first 16 bytes of the stack are displayed, then
the instruction is disassembled, executed and the register display
updated. Instructions which modify the RAM/ROM
configuration will also modify the top of page indicators.

Each instruction is checked before execution to make sure that it
will not corrupt ADAM. Any attempt to modify the memory are
between ADAM’s starting address and HMEM will cause error 12,
BAD LOCATION.

You can return to the monitor at any time by pressing Q (Quit) or
CTRL-C. To start tracing again, simply press T. Take care
about the program counter contents! To start tracing at a selected
-address use the command Taddress. The Program counter will be
loaded with address before the trace begins.

QUICK TRACING A SUBROUTINE

To execute a subroutine starting at the address in the PC use the
R command. The instruction disassembly and register contents
are not displayed, though they are checked before execution.
ADAM stores the contents of SP and enters single-step mode
when the SP has the stored value plus 2, ie. a RET, POP etc. has
been encountered. If the R command does not return (for
example, an endless loop), CTRL-C will allow it to be stopped
and returned to single-step mode.

-12 -

You can quick-trace from a chosen address if you specify the
address, ie. Raddress

PROGRAM EXECUTION USING ADAM

To execute a program, use the J command. This command has
three forms - if you use J by itself, it will jump to an address
previously set by the ENT pseudo-op in an assembled piece of
code. If you follow the command by an address, then execution
will commence in RAM at that point (regardless of the LRAM
and URAM settings), with the BC’ register taking the value
#7F8E and F reset to 0. Finally, J$ will execute a routine
starting at the address (in ROM or RAM as indicated at the top
of the screen) in PC, and with BC’ and AF’ unchanged.

To execute a chosen address without affecting BC’ and AF’ you
can use a command of the form J$-$+address.

Before executing a J command, ensure that the contents of SP is
within the central 32k of RAM.

In order to return properly to the ADAM monitor, routines being

executed using J should be terminated with a JP to the start of
ADAM rather than a RET.

- 13 -

APPENDIX A - ERROR MESSAGES

When an error occurs, an appropriate message will be displayed on the screen and
there will be a return to the monitor. Below is a list of error messages and their

probable causes.

0. SYNTAX ERROR - command not recognised or syntax incorrect
- a source code line is incorrect™*

1. REDEFINED LABEL - an attempt is made to define a label more than once

2. RELATIVE NUMBER a relative reference is out of range*

3. OUT OF RANGE - a number >255 is encountered when a byte is expected
- a number >65535 is found when a word is expected

4. ILLEGAL CHARACTER - an unrecognised character is found on a source line*

5. ILLEGAL REFERENCE - an undefined label is referenced*
- a *F command is used on an unlinked file*

6. BAD ORG - the ORG address is occupied by ADAM
- the resultant object code would overwrite ADAM*

7.1/0 ERROR - printer off-line/not connected
- tape/Disk operation failed

- 8. BAD MEMORY - loading too large a file for current configuration

- not enough room to add a line in the editor

- object code exceeded upper limit of RAM (HRAM)*
- the argument to the M command is too high

9. NO TABLE SPACE - symbol table exceeds 16k during option 1 assembly*
10. BREAK - you have interrupted an operation

11. LABEL ABSENT - you have used an undefined label in an expression

12. BAD LOCATION - attempt to modify a byte within ADAM using Q or W

- traced routine has tried to modify a byte in ADAM
- the argument for the M command is too low

*Errors which occur during assembly

APPENDIX B - TEXT FILE COMPATIBILITY

In order to assemble a text file created by another editor using ADAM, it is necessary
to convert the file to ADAM format. ADAM text files are basically ASCII files with
the exception that opcodes are tokenised. Lines are terminated by an ASCII
Carriage Return (13) and the file is terminated by an ASCII Null (0). Comments are
signified by ASCII 255 followed by a chain of alphanumeric characters.

The opcodes are tokenised in accordance with a table that starts at the address
TEXT-242. Bit 7 of the last character of each mnemonic is set to 1 in order to signal

its end.

You may find it instructive to edit a few lines of text and examine them using the K

commaeand.

APPENDIX C - USEFUL ADAM ADDRESSES

Since ADAM is relocatable the addresses are given relative to its start address.

ADAM+37 PTEXT (2 bytes)
Stores the address of the beginning of the line indicated by the > indicator.

ADAM+42 FLG1

Bit 1 of this variable is at 1 if an assembly has been initiated using option 2. The
expression IF :FLG1&2 in the text file will validate the assembly of the following
lines if option 2 is selected. The expression IF :FLG1&2!2 will invalidate the assembly
if option 2 is selected. Bit 5 at 1 indicates that the assembly is carried out by blocks.

ADAM+80 HRAM (2 bytes)
Stores the last address at which ADAM may deposit the object code or may establish
the value of HMEM (M command).

ADAM+43 FLG2
Bit 1 is the decimal/hexadecimal ﬂag. Bit 7 is the printer on flag.

ADAM+10248
This is the beginning of the table address which contains the mnemonics.

ADAM+23854
This is the point of entry to the monitor.

APPENDIX D - EXAMPLE SESSION

You have just loaded ADAM, the text file is empty, and the monitor is awaiting a
command. Press L, then CURSOR LEFT, and enter the following program:

ORG 40000 ;the program will be located at 40000
start
ENT $
LD AA"
LD B,26
loop
CALL #BB5A ;displays the character in A
INC A
DJNZ loop ;loop 26 times
RET
finish

Now, to see what ADAM is capable of, press <ENTER> twice, then:

Assemble it: . A <ENTER>
Execute it: J <ENTER>
Disassemble it: D start <ENTER>
Trace it: T start <ENTER>

Press SPACE until the PC displays #BB5A. At this point, if you have the time,

continue to press SPACE and you will trace the ROM routine which displays a
character on the screen.

You could press Q then R <ENTER> to quick trace the routine. After 26 iterations of
the loop, single step tracing will resume. At this point, the contents of the registers will
be displayed - B will be zero and the PC will have the value which was at the top of
the stack before tracing the routine. Finally, let’s try out the disassembler - enter Q
to return to the monitor then type:

Hstart <ENTER>
When ADAM displays 'Text?’ press <ENTER>; in response to the 'END’ prompt type
finish’ which is the label at the end of the program. Now when you enter the editor
you will find that the machine code has been disassembled into source code.

(c) Micro Application 1985

Manufactured and distributed in the UK by
Audiogenic Software Ltd, PO Box 88, Reading, Berkshire

	pag 00
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16

