o PRI FES N

INSTRUCT | ON MAMNLU &AL

GLENCO SOFTWARE

SPRITES COMPILER PROGRAM

WHAT IS A COMPILER

All computers work in Machine Code. They do not understand
High-Level languages such as Basic. When a computer is
instructed to RUN a program that is written in Basic, it has
to convert every command within your Basic program into
machine code so that it can then process your program.

Inside your computer there is a program to convert a Basic
command into machine code. This program is called an
Interpreter. An interpreter will only work on one instruction
at a time. Once the command has been converted into machine
code and processed, the machine code for that command is
discarded. If the computer has to process that command again,
it again has to convert it into machine code.

As an example, consider a complex instruction manual written
in a foreign language. You need an interpreter to convert
from the language in which the book is written, into your own
language. As the interpreter reads you the instructions, you
carry out the tasks, one instruction at a time. If you need
to repeat an instruction, the interpreter will need to tell
you the instruction again.

It would be much simpler if the instruction manual was
written in the language ou already understood. This would
significantly speed up the particular job vyou were being
instructed to do . This would mean the whole of the manual
had been compiled into your own language even before you
started to read.

This is how a computer compiler works !

ALL of your Basic program is converted into machine code
before being executed y the computer, this cuts out the
'middle-man', the interpreter, and so vastly increases the
speed at which your programs execute. Your program will then
run up to 16 times faster than an equivalent interpreted
Basic program.

The Sprites Alive Compiler is a full compiler, as opposed to
a semi-compiler, ALL of the Sprites Alive Basic instructions
are converted into machine code.

The Compiled machine code or 'object code' will run anything
up to 1600% faster than Basic, 16 times faster than Basic.

The Basic has also been extended by 70 new graphics and sound
commands, these extra commands are described in detail in the
Sprites Alive instruction manual.

SPRITES COMPILER PROGRAM

THE SPRITES ALIVE COMPILER
The language used within the compiler is a subset of the
Basic supplied with your computer. Some of the commands are
identical to Basic commands, some of the commands are similar

but may operate in a slightly different manner, and some of
the commands are totally new.

All maths routines use integer numbers, no decimal points are
allowed.

Line numbers are ignored, all GOTO and GOSUB commands use
labels as reference points.

No string variables are allowed.

OVERALL VIEW OF THE SPRITES ALIVE COMPILER

There are 5 steps that need to be taken in order to convert
your Basic program into an independent machine code program.

1) Write your Basic program using either a word processor or
by entering the program as you would enter a standard
Basic program.

2) Save the program to disc as an ASCII file.

3) Save any graphic or node files, your program uses,to disc.

4) Run the Compiler program.

5) Your source program will be 1loaded in from disc, compiled
and then saved back to the disc, ready for you to RUN.

The above process may seem a bit involved, however the
results are worth waiting for.
WRITING A PROGRAM

The way the commands are wused within the Basic version of
Sprites Alive and the compiler version differ slightly.

1) The compiler version of the commands do not require the
'l' symbol before every Sprites command.

2) A comma should NOT be placed directly after the command
and before the first variable, you should instead, use a
space.

3) The '@' symbol should never be wused. Where this symbol
occurs within your Basic program, simply remove it.

4) The 'Z' symbol should never be wused. Where this symbol
occurs within your Basic program, simply remove it.

SPRITES COMPILER PROGRAM

5) Due to the fact that all sprite commands now do not
require the '!' symbol before them causes some of the
command names to clash. ie Basic's MOVE and SPRITE's MOVE.
Details are given on page 21 of the manual on how to
overcome this problem.

There are two methods you may use to write a program that may
then be compiled. The program may be written as you would
write a normal Basic program, or you may use a word processor
such as Arnors Protext.

USING BASIC

Enter a program as you would write a normal Basic program.
However you should only use the commands as specified in
this, and the Sprites Alive manual.eg

10 .START:LOOP A,1,10:PRINT A:ENDLOOP

The line number is entered first followed by the instructions
for that line. Don't worry if you do not understand the
instructions, you will soon learn.

Line numbers are not recognised bK the compiler. The line
numbers are only needed to inform the computer where to place
that particular line within the program.

If you type the program into the computer using lower case
letters, Kou may find on listing the program that some of the
commands have been converted to UPPER case letters. The upper
case letters are the commands that the Basic interpreter
recognises. This will not affect the compilation process.

If you find that this effect makes your listing look untidy
there is a way to get around the problem. You can insert the
character ' after the line number and before the command.
This will not effect the compilation process.

Once Kou have entered your program, you will now need to save
it. This is achieved by using a slight variation of the Basic
save command.

SAVE "DEMO1.SRC",A

This is an example of how to save your program. There are two
things to note about the command.

Firstly is the file extension .SRC, the compiler program will
only accept a program if it has the .SRC extension. This
denotes your program to be the SOURCE program. If you fail to
use the .SRC filename extension the compiler will not compile
your program.

The compiler can only compile an ASCII file. The ,A command
extension tells the computer to save your program as an ASCII
file. If you instruct the compiler to compile a program that
is not saved in the ASCII format an error message will be
displayed.

SPRITES COMPILER PROGRAM

When you do compile your program and an error is found, the
compiler will report the 1line in which the error occurred.
This may not be the line number you have used within your
program. The compiler line numbering system starts at 1 and
increases by 1 for every new line it compiles. To simplify
matters please see the following example.

The compiler is trying to compile the following program.

10 .START:LOOP A,1,10
15 B=A*5:C=B/2:PRINT C
20 .START:ENDLOOP

There is an error in line 20 of the program, 'LABEL ALREADY
DEFINED'. The compiler would display the error as being in
line 3, the third line it tried to compile. This may cause
confusion when you are trying to track down the erroneous
line. To solve this problem we suggest that just before
saving your program you issue the command.

RENUM 1,1,1

This command will alter all the line numbers within your
program to match the line number the compiler will display.
If you wish to insert any new 1lines into your program you
should then use the command.

RENUM

This will allow you to insert new lines, without overwriting
any existing program lines. Once you have inserted the new
lines you may then use the first RENUM command prior to
saving your program.

USING A WORD PROCESSOR

Your word processor will need to be able to save files in
ASCII format, see your word processor instruction manual on
how to do this.

You should not include any control code sequences within your
program.

You have a free hand on how you set the 1layout of your
program. You may include as many spaces as you like between
commands. You may include blank lines between different
sections of program.

You do not need to start a line with a line number, the line
count on the word processor will be sufficient.

When you save your program please use the file extension
'.SRC'. This informs the compiler that your program is
written in Source code.

SPRITES COMPILER PROGRAM

COMPILING YOUR PROGRAM

Having saved your source file to disc, you may now compile
it. Reset the computer and 1load the compiler program into
memory. After a slight delay the following screen will be
displayed.

SOURCE FILE NAME
DRAWING FILE NAME
NODES FILE NAME

OBJECT FILE NAME

LINE NUMBERS (Y/N) :

This screen is requesting the names of the various files
which will be merged together in order to form a complete
working program.

If you make a mistake when typing in any of the above
information, you may use the DELETE key to backspace over the
mistake. If you have made a mistake and you have pressed the
RETURN key, pressing the ESC key will clear the screen and
allow you to enter all of the information again.

When you enter the filename as requested, you should not
include the file extension, this will be added automatically.

Source files have the extension .SRC, Drawing files have the
extension .DRW, and Nodes files have the extension .NDE.

The object file name will be the name that the finished
program will be called.

If you select 'Y' to the LINE NUMBER (Y/N) option, your final
compiled program will contain machine code to detect whenever
a new line is being processed. If an error occurs during
running your compiled program, the 1line number the error
occurred in will be reported.

During program development you should answer 'Y' to this
question, this will allow you to track down errors much more
quickly. The disadvantage to answering 'Y' to the option is
that your compiled program will be 1longer and will execute
slightly slower. Once all errors have been sorted out then
answer 'N' to this question.

If you are using a two drive system you may specify which
drive to use by making the first letter of the filename the
drive letter A or B followed by a colon, followed by the
filename.

Eie B:WIPEOUT

SPRITES COMPILER PROGRAM

Once you have answered the line number question, you will be
asked to

INSERT THE DISC CONTAINING SOURCE CODE

After inserting the correct disc you should press any key.
The compiler takes two passes to fully compile your program.
The line number of the 1line currently being compiled is
displayed.

If any errors have occurred within your source program, the
compi%er will stop and display an error message. The error
messages are self explanatory. Please see page 24 of this
manual for a further explanation.

There are two types of errors that may occur durin@ the
process of compilation. The error types are 'Fatal Error' and
'Compiler Error'.

FATAL ERROR

A fatal error is caused by something not allowing the
compiler to continue, ie OUT OF MEMORY. The compilation
process will stop.You will need to modify your source code
and rerun the compiler program again.

COMPILER ERROR

A compiler error is caused by something that will not allow
the compiled program to work correctly once it is fully
compiled, ie INCORRECT NUMBER OF VARIABLES. Once an error has
been reported the user has the choice to continue to compile
the program or to stop the compilation process. If an error
has occurred during pass 1, and you have selected the
compilation process to continue, the compiler will stop at
the end of pass 1| and allow you to make the relevant changes
to your program. Please note that some errors may lead to
other errors.

Example.

10 .START:LOOP A,1,1000,
20 PRINT A
30 ENDLOOP A

The above should print out all the numbers between 1 and
1000, however there is an error. On compiling the above
program, the compiler will stop at line 10, reporting a
SYNTAX ERROR (comma after the 1000). You then select the
compiler to continue, and it will stop and report an error in
line 30 (MISMATCHED LOOP - ENDLOOP). The LOOP statement in
line 10 has been rejected because of a syntax error,
therefore the LOOP has not been remembered by the compiler.
When the compiler tries to match the ENDLOOP command with a
LOOP command, it fails. An error has led to another error.

If no errors have been reported by the end of pass 2, the
next stage in the compilation process takes place.

6

SPRITES COMPILER PROGRAM

Information about the, now, compiled program is displayed.

VARIABLE START : 02816
PROGRAM START :..03130
PROGRAM EXECUTE : 05333
PROGRAM FINISH : 09177

DRAWING DATA T8 o U
VARIABLE LENGTH : 00314
TEXT LENGTH : 00028
DATA LENGTH Q2185
PROGRAM LENGTH : 06047

This is an example of how a typical information screen may
look. There 1is no great need for you to remember this
information, all of the relevant information will be stored
in the LOADER program. The DRAWING DATA section will be blank
at present.

The information above informs the user of how the memory is
allocated within your program.

VARIABLE START is the location in memory where your variables
defined within your Basic program are stored. The area
immediately below the variable memory is used by the disc
drive as a buffer area.

PROGRAM START is the starting position of your program, this
may not be the program execute address. The area immediately
above the program start, is the text area. All the text used
within your Basic program is stored from PROGRAM START
onwards. The area directly after the text storage area is the
data area, any DATA you defined within your Basic program is
stored directly after the text.

PROGRAM EXECUTE 1is the address from which your compiled
program runs.

PROGRAM FINISH is the address of the end of your compiled
program. The area between PROGRAM EXECUTE and PROGRAM FINISH
is pure machine code.

DRAWING DATA is the address of the start location of your
Drawings, Nodes and Sprites machine code. This variable will
be blank.

VARIABLE LENGTH is the amount of memory used by variables
within your program, each variable takes two bytes of memory.

TEXT LENGTH is the amount of memory the text uses within your
Basic program.

DATA LENGTH is the amount of memory any data defined within
your Basic program uses.

PROGRAM LENGTH is the total length of your program.
7

SPRITES COMPILER PROGRAM

After displaying the program information, the computer will
prompt :

INSERT DISC TO SAVE THE COMPILED CODE
Insert your disc and press any key. If you typed in a
filename for a drawing file, you will now be asked:

INSERT DISC CONTAINING DRAWING DATA

If you typed in a filename for a node file, you will now be
prompted:

INSERT DISC CONTAINING NODE DATA

Insert your disc and press a key. The information for the
DRAWING DATA will now be displayed.

IMPORTANT NOTE : When the DRAWING DATA number is displayed,
you must ensure that the DRAWING DATA figure is higher than
the PROGRAM FINISH variable. If the DRAWING DATA figure is
NOT higher the compiled program will NOT work.

You may use the area of memory between PROGRAM FINISH and
DRAWING DATA for your own purposes. The compiler uses the
area between 768 and 2815 as a disc buffer. Please do not use
this area unless you require a disc buffer within your
programs.

Finally you may be again asked:

INSERT DISC TO SAVE THE COMPILED CODE
Once you have done this you should press any key.
Your new compiled program will now be saved to disc. To get
it to execute, RESET the computer, insert the disc on which
you saved the compiled program and type RUN " followed by the
filename you specified when asked to enter the OBJECT
filename.

The compiler creates three files during the compilation
process.

"username. " -~ Basic loader program

"username.sal" - Your compiled program

"username.sa2" - Sprites Alive, Drawings and Nodes
VARIABLES

You may use up to 286 variables within your programs, these
consist of all the letters A - Z, and all the letters A - Z
followed by a single number 0 - 9.

Example. All of these variables are different.

A, AO ; AL ,-A2 , A3 , A% . A5 . A8 , A9 , B , BO , 29

SPRITES COMPILER PROGRAM

ARRAYS

You may use up to 26 different SINGLE dimension arrays. Array
subscripts may be between 0 and 255.

To define an array, simply use the standard Basic DIM
command. The array identifier can be any letter within the
alphabet (A - 2Z).

DIM A(100),B(240),C(10)

You may access arrays, by using variables or, directly using
numbers.

A(78)=R : A(U1)=234 : B(20)=3425

Arrays can only be used for storage purposes. You cannot use
an array within any mathematical calculations or commands.

To make use of arrays, you will need to store the value from
within the array in a standard variable.

Example: Set array A to contain the numbers 100 to 1, then
repeat the loop and print the numbers.

LOOP I,1,100
B=101-1:A(I)=B
ENDLOOP

LOOP I1,1,100
A=A(I):PRINT A
ENDLOOP

In the first stage, we have used variable B to store the
mathematical answer before storing the result within the
array. In the second stage we have retrieved the value from
the array and stored it within variable A, before it has been
printed.

Arrays can only be used as shown below:

A(I)=2143
A(T6)=P
P=A(I)
P=B(.J1)

There is an exception to this rule. If you know the position
within the array you require ie A(54), P(67) then you may use
this type of expression, as you would wuse any standard
variable.

Example of using Arrays:

NOT ALLOWED ALLOWED

A(I)=45%pP T=45*P:A(I)=T

P=A(Y1)+1 P=A(Y1) :P=P+1

P(I)=568/P $=568/P:P(I1)=S
F(I)=F(I)*Y(I) A=F(I):B=Y(I):C=A*B:F(J)=C

9

SPRITES COMPILER PROGRAM

VARIABLE ASSIGNMENT
Variables are assigned in the same way as you would assign

variables within Basic. You can, if you wish, use the LET
command, although this is not necessary.

LET a=1 : b=200 : ¢5=230 : z9 = -2431

If you use the LET command, you must include a space after
the command and before the first variable.

EXPRESSIONS
You may use the following mathematical expressions:

A=-B
A=B+2
A=B-2
A=B*2
A=B/2
A=B OR 2
A=B AND 2
A=B XOR 2

Each single expression is classed as one instruction. If you
require to do a number of mathematical tasks to calculate a
result, you must use a number of commands.

To express A=4*(R+B1)+5

Use R1=B1+R : R2=R1%*4 : A=R245

The spaces are used for clarity only.

CLEARING VARIABLES

To set all variables back to zero, use the command CLEAR.

This will reset all wvariables, including any loops you may
have defined. Please use this command with care. The
variables are cleared automatically when you RUN your

program. You do not need to initialise any variables with the
statement a=0:b=0 etc.

CONSTANTS

The Compiler allows you to use any integer number within the
range -32768 to 3276/.

There is one exception to this rule. If you are using
commands that require you to wuse numbers in the range 0 -
65535, (POKE,PEEK,CALL) you can include the ! symbol before
the number. You may not use this symbol in any mathematical
commands.

10

SPRITES COMPILER PROGRAM

SCREEN USAGE

The way the compiler prints text to the screen is different
to the way it 1is printed using standard Basic. We have
incorporated Turbo-Text machine code routines that will allow
screen printing to be up to 4 times faster than normal.

The Sprites program will not operate correctly if the screen
is scrolled, we have therefore incorporated within the
Turbo-Text code a routine that will stop the screen
scrolling. If you print text to the screen that would
normally make the screen scroll, the screen will now clear
and the text will continue to be printed from the top of the
screen again.

Even taking into account the time it takes for the screen to
clear, printing speed is greatly improved.

All control characters are printed. You will not be able to
alter any of the screen attributes by printing the control
characters.

All text handling commands use only one window, the complete
screen. You may not define a window within the screen and you
cannot use print streams.

When using different size screens using the SCREEN command
(see Sprites Alive Manual) it was necessary to experiment
with the LOCATE command in order to print a message or number
in a certain section of the screen. You do not need to do
this any more, the Turbo Text routines take into account the
shape of the screen when you want something printed.

You may output a single character to the screen using the
CHAR command .

You may output numbers to the screen using the PRINT command.
You may output text to the screen using the TEXT command.

As mentioned above, you may not use control codes within any
text output to the screen. The exception to this rule is the
carriage return and line feed control codes. You may send
control codes 10 and 13 to set the cursor to a new line. You
will need to use the CHAR command to do this.

There are no commands incorporated within the compiler to
allow you to alter the paper number. The paper has to be set
to zero in order to allow the sprites to work correctly. If
you wish to change the colour of the paper you should use the
INK O,n command.

When using a different sized screen, using the SCREEN

command, the computers own graphics commands will not work
correctly.

j 4

BORDER i

CHAR a

CLS

COLOUR

INK i,c

INKBLACK

LOCATE x,y

MODE m

PEN p

PRINT n

TEXT "abcd"

SPRITES COMPILER PROGRAM

SCREEN AND TEXT COMMANDS
Set border colour.

Output a single character (a) to screen in the
range 0 to 127. Character 10 causes a line
feed. Character 13 causes a carriage return.

Clear the screen.

Set inks to previously defined inks.

Set ink (i) to colour (e¢).

Turn off all pens.

Position the text cursor at location x,y.
Set the screen to mode (m).

Select a pen (p) for displaying text.

Print a number (n) onto the screen at the
current text location. Do not use this for
printing text. You may optionally include a
semi-colon after the variable to stop the
carriage return and line feed characters being
sent.

Print the text enclosed within the quotes to
the screen. No string variables are allowed.
You may optionally include a semi-colon after
the last quote to stop the carriage return and
line feed characters being sent.

The PRINT and TEXT commands cannot be mixed within a single
statement. You need to separate all commands by using either
a colon or by using a separate line.

ie

TEXT "YOU HAVE SCORED ";A IS NOT ALLOWED.

TEXT "YOU HAVE SCORED ";:PRINT A IS ALLOWED.

12

SPRITES COMPILER PROGRAM

GRAPHICS COMMANDS

The graphics commands supported by the Sprites Alive compiler
are identical to the computers own graphics commands.

DRAW x,y

DRAWR x,y

FRAME

GMODE g

GPEN p

MOVE x,y

MOVER x,y

PLOT x,y

PLOTR X,y

SPEEK x,y,a

SPOKE x,y,a

Draw a line onto the screen from the current
graphics location to position X,y.

Draw a line relative to current graphics
position.

wWait for frame flyback.

Set the graphics mask mode. Each mode effects
how any graphics, using the computers own
graphics system, appear onto the screen.

g =20 Normal Write mode.
g =1 XOR Write mode.
g =2 AND Write mode.
g =3 OR Write mode.

Set the current graphics pen.

Move current graphic cursor position to
position X,y.

Move current graphic cursor position relative
to coordinates Xx,y.

Plot a point at position x,y.

Plot a point relative to current graphics
position.

Find the pixel colour from the screen location
X,y and store value in (a).

Plot a point on the screen at location (x,y).
Much faster than PLOT. Does not move graphics
CUrsor.

SYMBOL s,a,b,c,d,e,f,g,h

Define a new character (s). s may be between 0
and 127.

13

SPRITES COMPILER PROGRAM

SOUND COMMANDS

The sound commands that are available through Basic are
allowed within the compiler. The commands are:

SOUND a,b,c,d,e,f,g

This command is identical to the standard Basic sound command
with one exception, all the parameters must be supplied. If
you do not require a certain function within the sound
command you should use the value 0.

- Channel and rendezvous requirements.
Amplitude envelope to use.

Tone envelope to use.

Tone period.

Noise period.

Initial amplitude.

Duration or envelope repeat count.

AN OR

| (B i (T |

The above is the Basic sound command. There is another sound
command used within Sprites Alive Basic. The Sprites Alive
sound command is used to 1link sounds to sprites. Both
versions of the command wmay be used within the compiler.
Please see page 38 of the Sprites Alive instruction manual
for details of the sprites sound command.

ENV n,al,bl,cl,a2,b2,c2,a3,b3,c3

This is identical to the Basic version of the ENV command.
All three sections of the envelope must be defined, if you do
not require three sections, please use the value 0.

- Envelope number.
- Step count.

- Step size.

- Pause time.

nowp3

ENT n,al,bl,cl,a2,b2,c2,a3,b3,c3

This is identical to the Basic version of the ENT command.
All three sections of the envelope must be defined, if you do
not require three sections, please use the value 0.

- Envelope number.
- Step count.
- Step size.
Pause time.

nowp3

14

SPRITES COMPILER PROGRAM

JUMPING COMMANDS

LABELS

Source programs do not use line numbers as references
throughout your program, instead it uses labels. A label
consists of a full stop followed by up to 16 characters.

.PROGSTART .GAME . END
-TRY-LEFT - SHOOT.IT
-OPEN-DOOR -HI-SCORE-ROUTINE

Labels allow source code to 1look very tidy and should make
the program easier to write and debug.

A label can use any alphabetical character, up to 16
characters in length. The case (upper/lower) is not taken
into account when the labels are stored.

goto start
GOTO START

These two instruction would both go to the same point within
the program.

Labels must be treated as if they were any other command. ie
they must be followed by a colon or they must be on a line by
themselves.

GOTO

The GOTO command is identical to Basic's version of the
command except that instead of jumping to a line number, we
are ?umping to a label. Please note that you should not use
the '.' before the label name. This is only used when we are
defining labels and not when we want to jump to them.

GOSUB - ENDSUB
This again is identical to the Basic's version of the command
except that we are now jumping to 1labels instead of line
numbers. Please note that the command to return from the
subroutine is ENDSUB and not RETURN as with Basic.

Please ensure that you have an ENDSUB command at the end of
your subroutine. You may nest up to 16 subroutines.

15

SPRITES COMPILER PROGRAM

OTHER COMMANDS

CALL 230

This command can be used to call one of your own machine code
subroutines. Your subroutines may exist in free memory as
explained on page 22.

This command may need to call a routine that is located
higher than 32767 in memory. Under normal circumstances
trying to use numbers greater than 32767 would cause an
overflow error. To get around this problem you should include
an ! symbol immediately before the number:

call !50000

USING FOR - NEXT LOOPS

There is a command within the compiler that simulates the
Basic FOR NEXT loop, it is simply called the LOOP command.

LOOP A,s,f,st

The A is the control variable as in FOR A=. The s is the
start value, as in the value before the 'TO'. The f is the
finish value, as in the value after the 'TO'. The st is the
optional step value, if this is not included the default
value will be 1

ENDLOOP A

This is the replacement for the Basic NEXT command. The
control variable after the ENDLOOP statement is optional.

You may nest up to 8 loops.

CONDITION TESTING : IF

There are a number of commands built in to the compiler to
test variables. You do this using the IF command.

We have extended the Basic IF,THEN,ELSE structure to be much
more flexible. In Basic, all the statements on the line
following the IF are executed until either an ELSE command or
the end of the line is reached. Any statements on the next
line of Basic program will be executed whether or not the IF
condition is met.

The Sprites Alive IF statement is much more flexible than
that. If a condition is met all the commands following the IF
command are executed, even though they may be on separate
lines, until an ENDIF command is executed. If a condition was
not true, all the statements following the IF command are
skipped until the ENDIF statement is reached.

16

SPRITES COMPILER PROGRAM

The tests you may use in an IF statement are shown below.

IF A=B:
IF A>B:
IF A<B:
IF A<D>B:

EXAMPLE:

.START
INPUT A
IF A<100:TEXT "VALUE LESS THAN 100" :ENDIF
IF A>100:TEXT "VALUE GREATER THAN 100" :ENDIF

IF A=100

TEXT "VALUE EQUALS 100"

1ENDIF

IF A<>100:TEXT "VALUE DOES NOT EQUAL 100"
ENDIF

IF A<>0:GOTO START:ENDIF

This program will accept a number and store it in variable A,
it will print the relevant information about the variable A's
relation to 100. Providing the value of A is not O the
program will repeat the process.

You may not nest any IF statements, doing so will cause an
error message during compilation.

ENDIF A

This command is used to mark the end of an IF statement. Its
use is described above.

PROGRAM INTERACTION

There are various commands that allow the user to enter data
into the program.

INPUT A

This command is identical to the Basic's INPUT command. It
will accept a numerical entry typed into the keyboard and
store it in the specified variable. You may enter any number
in the range -32768 to 32767.

INKEY 1,A

This command allows the user to check if a certain key has
been pressed. This command will not stop and wait for you to
press a key, if no key is available, program execution will
continue. The first variable after the command is the
required key number you wish to test, the second variable
will contain a value depending on if the specific key tested
for was pressed: 1 - key pressed, 0 - key not pressed.

7

SPRITES COMPILER PROGRAM

Please note the key number required is not the Ascii value of
the character. Key numbers can be found within your Computer
manual .

WAITKEY A
This command will pause the computer until a key is pressed.
The Ascii value of the key pressed will be stored in the
variable after the command.

FLUSH
This command will clear the keyboard buffer of any keypresses
that have yet to be reported.

RND A
This command will return a random number in the range 0 to
255 in the variable specified after the command. The random

number generator used within the compiler produces a very
large even distribution of numbers.

OTHER BASIC COMMANDS SUPPORTED

PEEK 1234,A

This command will store in the variable (a), the contents of
the memory location specified within the command. If you
require to use a number greater than 32767, you should use
the ! character immediately before the number.

POKE 1234,a
This command will store in memory location 1234 the contents
of variable a. Variable a should contain a number between 0
to 255. If you require to POKE a memory location higher than
32767 you should use the ! symbol immediately before the
number .

REM
You may use this command to insert comments into your source
code. The comments will be ignored by the compiler.

DATA
This command is used in exactly the same way as the Basic

DATA command. You may use it only to store integer numbers,
you may not use String variables.

18

SPRITES COMPILER PROGRAM

READ a

This command is wused to retrieve the information that is
stored in your DATA statements. You may only use one variable
after the command name.

eg READ al:READ C:READ D

RESTORE 20

This command is identical to the Basic RESTORE command, with
one exception. Instead of restoring the data pointer to a
particular line number, you restore the pointer to a
particular piece of data.

ie RESTORE 12 - Will restore the data pointer to the 12th
piece of data.

RESTORE 1 - Will restore the data pointer to the first
piece of data.

NEVER USE RESTORE 0

Every item of data you define within your Basic program takes
up two bytes of memory when compiled into machine code. If
you are going to use a large amount of data, you will use up
a great deal of memory.

The READ - DATA combination is a good way of storing data
about sprites for various levels within a game. If you have a
large number of levels you may run out of memory.

We therefore have included a command call DATALOW, this
command will allow you to wuse data in the range 0 - 255
instead of -32768 to 32767. The advantage of using this
command is that each piece of data used in your Basic program
will only take up ONE byte of memory in the compiled program.
This will allow ou to enter twice as much data as was
previously possible.

DATALOW

This command can be used anywhere within your program, even
after all the DATA statements. The effect this command has,
is to allow your DATA to use only half the memory it would
use if this command had been omitted. ALL of your DATA has to
be in the range 0 to 255, you should not use negative
numbers. No checks are made on your data. If you have entered
any data with a number outside of the range 0 - 255, no error
messages will be displayed, however the particular piece of
data that is out of range will be corrupt.

19

SPRITES COMPILER PROGRAM

MISCELLANEOUS COMMANDS

LOAD "filename" ,2341

This command will lcad a binary file into memory. You should
ensure you will not overwrite any of the compiled program
when using this command. If you require to load a file into
memory whose location 1is greater that 32767, you should
include the ! symbol immediately before the number.

STOP

This command will stop the compiled program and return
control back to Basic. You may use this command anywhere
within your compiled program, even in the middle of executing
a subroutine.

TIME W

This command will return a value of the time elapsed since
the computer was turned on. The wvalue is returned in the
variable specified after the command. The number returned is
a count in non specific time units, the timer increments
every .85 of a second.

20

SPRITES COMPILER PROGRAM

SPRITES ALIVE COMMANDS SUPPORTED

All Sprites Alive commands are supported with the exception
of the MEMORY, DRAW and NODE commands.

Certain commands have had their names altered due to the fact
that they clash with BASIC commands. These commands are:

BEFORE AFTER
MOVE SMOVE
MOVEALL SMOVEALL
MOVEHIT SMOVEHIT
SWINDOW WINDOW

Simply add an 'S' to all commands that start with the word
MOVE. SWINDOW has now become window.

If you are using Nodes within your program, you may not use
the DGET command.

ERROR DETECTION

If an error occurs during the process of executing your
compiled program, an error line will be displayed. This will
look like this:

ERROR: COM 23 TYPE 12 LINE 15

This message means that an error has occurred in command 23,
error type 12 in line 15. If you did not specify line numbers
to be included in your compiled code, the line number will,
for obvious reasons, not be printed.

The commands and their associated numbers can be found on
page 27 of this manual. The error type numbers can be
referenced to your Sprites Alive manual. An extension to the
error types can be found below

ERROR DESCRIPTION
100 Overflow.
101 No matching gosub found.
102 Too many gosubs.
103 Number greater than 127.
104 Division by zero.
105 Ran out of data.

21

SPRITES COMPILER PROGRAM

GENERAL INFORMATION
MEMORY MAP OF YOUR COMPILED PROGRAM

The compiler program uses memory from location 768 upwards.
The Basic loader program that the compiler «creates is the
largest Basic program that will fit into memory. Do not try
to modify the loader program in any way. Altering the
Basic loader program may corrupt your compiled program.

Disc Buffer &300

Variable Start &BOO

Program Start Variable Start + No of Variables * 2
Text Storage Area Program Start

Data Storage Area Text Area + Amount of Text
Program Execute Data Area + Amount of Data
Program Finish Program Execute + Length of M/C
Sprites Alive End &AB70

Sprites Alive Start &525E

*Drawing Info &525E - Memory for drawings

*Node Info Drawing Info - Memory for nodes
*DRAWING DATA Node Info

* Working backwards in memory

The Compiler works its way up in memory, the Drawings and
Nodes work their way down in memory. You may use the memory
between PROGRAM FINISH and DRAWING DATA for your own
purposes.

THE SPEED FACTOR

If your source programs use a large number of Sprites Alive
commands with very 1little Basic involved in 1linking them
together you may find they do not execute much more quickly.
This is due to the fact that the Sprites Alive graphics
routines are the fastest they could possibly be. It is Basic
that slows your programs down, if you do not have many Basic
commands you will not notice a great speed increase. If you
use a large number of Basic commands, well

22

SPRITES COMPILER PROGRAM

HOW THE COMPILER PROGRAM WORKS
OR
HOW TO PASS 5 MINUTES TRYING TO UNDERSTAND THIS DESCRIPTION

When you RUN your compiler program a complex process is
started. The loader program loads the Compiler into memory at
&5800, the banked RAM is turned on and the Sprites Alive run
time code is loaded into the very top of the banked RAM.

After setting all of the system variables and flags, you are
asked to enter the filenames of your Source, Drawing and
Node files.

Pass 1 now begins. Your source program is read into the
computer, one character at a time until a complete line has
been entered. Your 1line is scanned to check for labels,
instructions, maths, etc. If the 1line contains a label the
label name is stored at the highest area of free memory
available (below &5800).

If the line contains instructions, the instruction is decoded
and checked to ensure correct syntax, number of variables
etc. When an instruction is decoded, a lexical code is stored
in memory starting from &900. A lexical code is a single byte
of information informing the compiler of the instruction

type.

Once the complete line is decoded, the next line is loaded
into memory and the process repeats itself.

When the complete program has been converted into lexical
code, the checks at the end of pass 1 begin. The checks are
to ensure you do not have any undefined labels, mismatched
loops, etc.

If your program passes all of the tests, we start on pass 2.

The compiler starts to convert the lexical code into machine
code. As the lexical code is converted it is stored in the
banked RAM. When all of the lexical code 1is completely
converted into machine code, the 1lexical code is erased. The
machine code is copied back from the banked RAM into normal
memory. You are now prompted to insert a disc, and the
machine code is saved with the file extension .SAl.

The compiler will then erase the machine code from its memory
and copy the Sprites Alive run time module from the top of
the banked RAM. You are prompted to insert your disc
containing the Drawing and Node files. The information from
these files is merged with the run time module and the
complete module Drawings, Nodes and run time module is saved
to disc with the extension .SA2.

23

SPRITES COMPILER PROGRAM

COMPILER ERRORS

During the compilation process a number of errors may be
detected within your source program. The error messages that
the compiler may display are self explanatory. Below is a
brief description of any errors that may occur.

IMPROPER LABEL NAME

The first character of the label must be a letter (A - Z).
LABEL TO LONG

The label name is greater than 16 characters.

SYNTAX ERROR

The syntax of the command is not correct.

TOO MANY LABELS DEFINED

More than 255 labels have been defined. The maximum number of
labels is 255.

LABEL MEMORY EXHAUSTED

The labels have taken up to much memory. Try to shorten the
label names.

LABEL ALREADY DEFINED

You have tried to define a label which has already been
defined.

LINE TO LONG

A single line of source code is greater than 255 characters.
COMMAND TOO LONG

A command is greater than 127 characters. If this occurs
within a DATA statement, split the statement into smaller
sections.

QUOTES LEFT OPEN

You have not included both quotes within a command.

UNKNOWN COMMAND

The compiler does not recognise the command.

ARRAY ALREADY DEFINED

An array has tried to be defined more than once.

24

SPRITES COMPILER PROGRAM

ARRAY NOT DEFINED

An array has attempted to be accessed without first being
defined.

ARRAY DIMENSIONS INCORRECT

An arrag has attempted to be defined with a subscript larger
than 255.

NUMBER OVERFLOW

A number has been encountered that is outside the range 32767
to -32768.

ARRAY OVERFLOW

An access to an array is outside the defined subscript
maximum.

IF STATEMENT ALREADY OPEN

An IF statement has occurred within your program without the
last IF statement being closed with an ENDIF.

NO IF STATEMENT DEFINED

An ENDIF statement has occurred without a matching If
statement.

TOO MANY IF'S IN PROGRAM

More than 255 1IF statements have occurred within your
program.

TEXT COMMAND ERROR

A TEXT statement has been defined without a quote character
being included.

LOAD COMMAND ERROR

A LOAD statement has been defined without a quote character
being included.

LOOP ALREADY DEFINED

A loop has attempted to be defined whilst a loop with the
same control variable is still open.

MAXIMUM NESTED LOOPS 8
An attempt has been made to nest more than 8 LOOP statements.
MISMATCHED LOOP - ENDLOOP

An attempt has been made to <close a LOOP which is not the
current loop.

25

SPRITES COMPILER PROGRAM

NO LOOP MATCHED

An ENDLOOP has occurred without a matching LOOP being open.
INCORRECT NUMBER OF VARIABLES

The number of variables after the command is not correct.
TOTAL NUMBER OF LOOPS EXCEEDED

You have attempted to wuse more than 255 loops within your
program.

IF STATEMENT LEFT OPEN

You have not closed an IF statement within your program.
LOOP STATEMENT LEFT OPEN

You have not closed a LOOP statement within your program.
UNDEFINED LABEL

You have tried to jump to a label that has not been defined.
UNSIGNED NUMBER CANNOT BE NEGATIVE

An attempt has been made to set an unsigned number to a
negative value.

UNSIGNED NUMBERS NOT ALLOWED IN MATHS

Unsigned numbers can not be used within mathematical
expressions.

EXPRESSION ERROR

An expression has been defined that attempts to evaluate more
than 2 variables.

ARRAYS ILLEGAL WITHIN STATEMENTS

Arrays may not be used within expressions.
PASS 1 CODE, RAN OUT OF MEMORY

Your program is too long.

PASS 2 CODE, RAN OUT OF MEMORY

Your program is too long.

DATA STATEMENT NOT NUMERIC

Data statements can only contain numbers.

26

SPRITES COMPILER PROGRAM

COMMAND ERROR NUMBERS

ERR COMMAND TYPE PAGE
1 ANIMATE SPRITES 29
2 ANIMOFF SPRITES 29
3 ARRAY BASIC 9
4 BORDER BASIC 12
5 BULLET SPRITES 33
6 CALL BASIC 16
7 CHAR BASIC 1
8 CLEAR BASIC 10
9 CLEARREP SPRITES 24
10 CLS BASIC 12
11 COLLIDE SPRITES 22
12 COLLTEST SPRITES 23
13 COLOUR SPRITES I
14 CSPRITE SPRITES 27
15 DGET SPRITES 9
16 DIM BASIC 9
b DIVISION BASIC 10
18 DRAW BASIC 13
19 DRAWR BASIC 13
20 ENDSUB BASIC 15
21 ENDIF BASIC 17
22 ENDLOOP BASIC 16
23 ENT BASIC 14
24 ENV BASIC 14
25 ERASE SPRITES 15
26 EXPLODE SPRITES 36
& FLUSH BASIC 18
28 FRAME SPRITES 37
29 GMODE BASIC 13
30 ~ GOsSUB BASIC 15
31 GOTO BASIC 15
32 GPEN BASIC 13
33 HIT SPRITES 25
34 IF BASIC 16
35 INK BASIC 12
36 INKBLACK SPRITES 12
37 INKEY BASIC 17
38 INPUT BASIC 17
39 KEB SPRITES 17
40 KEBDEF SPRITES 19
41 KEBSPEED SPRITES 13
42 LET BASIC 10
43 LOAD BASIC 20
44 LOCATE BASIC 12
45 LOOP BASIC 16
46 MAZEOFF SPRITES 43
47 MAZEON SPRITES 43
48 MERGE SPRITES 35
49 MISSDELAY SPRITES 32
50 MISSDIST SPRITES 32

27

51
52
a3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7l
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
93
96
97
98
99
100
101
102
103
104

SPRITES COMPILER PROGRAM

MISSHIT
MISSILE
MISSTYPE
MODE
MOVE
MOVER
MULTIPLY
NEXTREP
NODEALTER
NODEATTR
NODEQFF
NODEON
NODESPEED
NODESPRITE
PEEK

PEN

PLOT
PLOTR
POKE
PRINT
READKEB
READSTIX
REM
REPOFF
REPON
REPORT
RESET
RND
SATTR
SCENERY
SCREEN
SDIR
SDRAW
SEQUENCE
SGET
SHOOT
SMOVE
SMOVEALL
SMOVEHIT
SOUND
SPEEK
SPOKE
SPUT
SPUTALL
STIX
STIXSPEED
STOP
STUCK
SXPOS
SYMBOL
SYPOS
TEXT
TIME
WAIT

SPRITES
SPRITES
SPRITES
BASIC
BASIC
BASIC
BASIC
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
SPRITES
SPRITES
BASIC
SPRITES
SPRITES
SPRITES
SPRITES
BASIC
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES/BASIC
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
BASIC
SPRITES
SPRITES
BASIC
SPRITES
BASIC
BASIC
SPRITES

28

34
31
30
12
13
13
10
24
42
41
42
42
41
42
18
12
13
13
18
12
20
20
18
23
22
24
15
18
38
36

17
27
28
14
34
21
21
25
38/14
37
37
15
15
17
19
20
37
27
13
27
12
20
27

105
106
107
108
109
110
111
112

—
P
&

SPRITES COMPILER PROGRAM

WAITKEY
WINDOW
WP

XDIR
XEDGE
YDIR
YEDGE
RESTORE
READ
DATALOW

BASIC
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
SPRITES
BASIC
BASIC
BASIC

29

18
21
12
27
16
27
16
i
19
19

] N . : P : .|.||"\, J;_' il J
R 1 LY L : ey I s) : i}
ALY - IR e T) R ol
I.,‘- " \'-‘-‘I'_ h‘u\', ¥ k v
=

i k ; : ’ g g-al

	Sprites Alive - Compiler Version (E) - Compiler.pdf
	IMG_0001_NEW

