
HiSoft Devpac80
Fast Interactive CP /M Development Kit

System Requirements:
280 disc system running CP /M 2 or CP /M 3 with at least 36K TPA.

Copyright© msoft 1987
Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of msoft Devpac80.

It is an infringement of the copyright pertaining to msoft Devpac80 and its
associated documentation to copy, by any means whatsoever, any part of HiSoft
Devpac80 for any reason other than for the purposes of making a security back
up copy of the object code.

(

Introduction

How to Use this Manual

This manual is set out in five chapters, this introduction, a chapter on
HDE, the interactive editor, one on GENS0, the macro assembler, then
a chapter on the debuggers ProMON and MONS0 and, flnally, a Full
Tutorial.

Each chapter is separated from the previous one by a light blue card
with the chapter title on it.

Beginners

If you are a newcomer to assembly language then we recommend that
you read one of the books in the Bibliography alongside this manual.

You should start by working through the HDE chapter, Section 1,
Getting Started and Tutorial, to familiarise yourself with the editor.

Then, go through the Full Tutorial (the fifth chapter in this manual)
after which you can dip into the reference sections ofHDE, GENS0 and
ProMON at your leisure.

If you are an Amstrad, Einstein or MSX owner then all the programs
will have been installed for your computer's screen and you will only
need to use the Installation programs if you wish to change the
commands in HDE, ProMON or MONS0 or the default options in
GENS0.

If you have an Amstrad PCW8256/8512/9512 then please note that
the programs have been installed for a 24-row, SO-column screen. If
you wish to make full use of the large screen size on the PCW computers
then you should run the relevant installation program (HDEINST,
MON80INS or PMONINS), choose option 2, select 31 rows and 90
columns and then use option 3 to save the configured version.

Remember to make a backup and working disc as described later.

Introduction HiSoft Devpac80 ver. 2 Page 1-1

Experienced Users

If you are experienced in the use of assembly language but have not
used Devpac80 before then we recommend that you treat yourself as
a beginner and work through the sections given on the previous page.

If you have used Devpac80 before then you will, in all probability, find
it sufficient to read through the following sections:

HDE Section 1.1 to Section 1.4.

GENS0 Section 2.6, to Section 2.11, Section 4.

ProMON All Sections.

If you are an Amstrad, Einstein or MSX owner then all the programs
will have been installed for your computer's screen and you will only
need to use the Installation · programs if you wish to change the
commands in HDE, ProMON or MONS0 or the default options in
GENS0.

Otherwise. you should read the Installation sections of the editor and
the debuggers carefully and run the installation programs to configure
the programs for your screen.

If you have an Amstrad PCW8256/8512/9512 then please note that
the programs have been installed for a 24-row, 80-column screen. If
you wish to make full use of the large screen size on the PCW computers
then you should run the relevant installation program (HDEINST,
MON80INS or PMONINS), choose option 2. select 31 rows and 90
columns and then use option 3 to save the configured version.

Remember to make a backup and a working disc as described in the
following section.

Page 1-2 HiSoft Devpac80 ver. 2 Introduction

The Package

Devpac80 is a fast, interactive Z80 development system designed to
run under the CP/M 2 and CP/M Plus (CP/M 3) disc operating
systems. The package comprises, essentially, a macro assembler, a
full-screen editor and a symbolic front-panel debugger and
disassembler.

What to do First

Make a Backup

Discs are sensitive animals, prone to heat, cold, damp, magnetic fields
and, above all, coffee. So the first thing you should do is to make a copy
of your Devpac80 disc and then store the original somewhere safe,
away from things like the sun, televisions, telephones, radiators and
the kids!

The way you make a copy will depend on your computer configuration;
the space occupied by all the files on a Devpac80 disc comes to about
160K (even though most of the individual programs are no larger than
14K) and there must, therefore, be this much space on the disc to
which you are going to copy. Most CP /M systems come with a program
called BACKUP or DISCCOPY or DISCKIT (don't use DISCKIT on an
Amstrad 8256/8512/9512 - see later) which allows a whole disc to be
copied in one go. Check with your system handbooks.

If you don't have such a program then you should format a new disc,
write-protect it and then use our WP program, to copy all files i.e. put
the master disc in drive A and type:

WP A: B: [ENTER]

This copies all files from the disc in drive A to the disc in drive B (it won't
matter if you get them the wrong way round, you'll Just get some error
message, then you can swap the discs round and try again).

Introduction HiSoft Devpac80 ver. 2 Page 1-3

If you only have one drive then things get a little more complicated. If
you have CP /M 3 (also called CP /M Plus) then you may be able to use
the virtual disking feature. This means that you can use the WP
program just as if you had two drives, A and B, and you will be asked
to put in the disc for drive B whenever the copying program needs it i.e.
put the master disc into your drive and type:

WP A: B: [ENTER]

You will be asked to swap discs twice for every file copy, this can get a
little tedious and you will be much better off using a whole disc copying
program.

If you have CP /M 2 and only one disc then you must use a disc copying
program since the only other way involves using the programs DDT (or
ProMON) and SA VE and this is rather like cracking a nut with a sponge!

Amstrad Owners

CPC 464/664/6128

Owners of the Amstrad CPC machines can use DISCKIT2 or DISCKIT3
to make a backup copy of the Devpac80 disc.

PCW 8256/8512/9512

Amstrad PCW8256/8512/9512 owners must go about making a copy
a little differently since we supply Devpac80 on a CPC6 l 28 format disc
which the PCW DISCKIT program will not recognise.

If you have two drives then:

1. Format a new disc in drive A using DISCKIT. ··
2. Put the Devpac80 master in drive Band type:

B: [ENTER]

WP B: A: [ENTER]

You now have a backed-up copy in drive A.

Page 1-4 HiSoft Devpac80 ver. 2 Introduction

If you only have one drtve then:

I. Format a new disc in drive A using DISCKIT.
2. Put the Devpac80 master in drive A and type:

THINCOPY [ENTER]

and then follow instructions to change discs. This will copy all the
programs on the master disc onto your newly-formatted disc via the
RAM disc.

Make a Working Disc

Although all the programs on your Devpac80 disc occupy a total space
of nearly I 60K you do not need all of them to develop programs. Toe
programs that are essential for interactive development are:

Programs needed for interactive Development

HOE.COM, HDE.HLP, GENS0.COM, PMON.COM, PMON.MON

HDE. COM is the screen editor and menu system, HDE. HLP is its help file,
GENS 0 is the assembler and PMON is the debugger/ disassembler.

If you don't want to work interactively you can use the assembler and
debugger from within CP /M and use EDS 0 . COM as your screen editor,
again from within CP/M normally.

There are some useful utility programs on the master disc that you may
wish to put on your working disc in addition to the above.

Useful Utilities

WP.COM, WO.COM, SO.COM, COMTOBIN.COM, BINTOCOM.COM,
GTOG.COM, UNLOAD2.COM

WP is a file copying program, WD deletes files, so gives a directory- with
sizes and COMTOBIN/BINTOCOM convert between CP /M COM files and the
Amstrad Amsdos BIN files. All the utilities are explained later.

To make a work disc simply format a new disc, put the CP /M system
on it and then copy the files you need to it using PIP or our WP program.

Introduction HiSoft Devpac80 ver. 2 Page 1-5

Amstrad PCW owners may find it usefu t to copy the necessary files onto
their RAM disc (drive M:) for speedy development, to this end we provide
a PROFILE. SUB file on the master disc that does this.

Copy this program to your working disc together with the boot program
(JxxCPM3 • EMS) to automatically copy all the DevpacSO files on start-up.

Some Useful Utilities

Some useful (and small!) file utilities are provided with Devpac80 to
make file management and conversion more straightforward. The
utilities WP, WD, SD, COMTOBIN, BINTOCOM, GTOG and UNLOAD2 are
described below.

WP

WP • COM copies files from one disc to another. It is invoked by typing its
name followed by its parameters at the CP /M prompt. The general form
of the command line is

wp <source afn> <destination afn> [-q)

Theitemsspecifledas<source afn>and<destination afn>above are
standard CP /M ambiguous ftle specifications, with optionally a drive
name at the front. An ambiguous file specification is a fllename which
can match more than one file; this is done using wildcards, which are
described in great detail in your CP /M documentation. WP extends the
definition slightly in line with CP /M's built-in D IR command, such that
a drive name alone (such as B:) is equivalent to * . * on the specified
drive. If this item is left out altogether, it is taken as *. * on the current
(default) drive.

The item specified by [-ql is optional and will be described later.

Typical WP invocations, then, would be

wp a: m: [RETURN]

which copies all files on drive A onto drive M,

Page 1-6 HISoft Devpac80 ver. 2 Introduction

wpm: [RETURN]

which copies all files on the default drive to drive M and

wp b:*.com a:*.bak [RETURN]

which copies all files on drive B with an extension of . COM to drive A with
an extension of . BAK. If the source and destination files are the same,
then WP plints an error message and returns to CP /M.

When a valid command line has been typed, WP collects the names of

0 the matching files and displays each one in turn, followed by a prompt:

Copy (Y/N/A/Q/P/B/W)?

You may type Y to copy this file, N not to copy this file, P to go back to
the previous selection, A to copy this and all subsequent matching files,
Q to quit now without copying this or subsequent files, B to copy with
a backup (extension . BAK) of the original file or w to copy this file without
a backup (useful if you have specified option Bon the command line).

If -Q is present as the last item on the command line, WP does not
prompt and copies each matching file without asking.

WO

WD • COM deletes files from a disc. lt is invoked by typing its name followed
by its parameters at the CP /M prompt. The general form of the
command line is

wd <afn>

The item specified as <afn> above is a standard CP/M ambiguous.file
specification, with optionally a drive name at the front. An ambiguous
file specification is a filename which can match more than one file; this
is done using wildcards, which are described in great detail in your CP /
M documentation. WD extends the definition slightly in line with CP /M's
built-in DIR command, such that a drive name alone (such as B:) is
equivalent to*.* on the specified drive. If this item is left out altogether,
it is taken as * . * on the current (default) drive.

Introduction HiSoft Devpoc80 ver. 2 Page 1-7

Typical WO invocations. then. would he

wd a: [RETURN]

which deletes all files on drive A and

wd b:*.com [RETURN]

which deletes all files on drive B with an extension of . COM.

When a valid command line has been typed, wo collects the names of
the matching files and displays each one in turn. followed by a prompt: ,

Delete (Y/N/A/Q)?

You may type Y to delete this file, N not to delete this file, A to delete this
and all subsequent matching files or Q to quit now without deleting this
or subsequent files.

SD

SD. COM is a utility to display a detailed directory listing and the disc free
space. It takes exactly the same parameter types as CP /M's built-in D IR
command: an ambiguous file specification, a drive name or no
parameter at all. TI;ie files matching the given specification are listed on
the screen along with their vital statistics. These include the length in
CP /M records (128-byte units) and the size of the file rounded up to the
nearest lK boundary. If a file it set to Read-Only, an R is printed by its
name; if a file is set to System, an s appears. Both can appear together
for the same file. �

The final part of the display is the bytes free on the disc. in lK units.

COMTOBIN and BINTOCOM

COMTOBIN and BINTOCOM are provided to covert CP/M .COM files to
Amstrad CPC .BIN files and vice versa. You will need COMTOBIN if you
are writing programs using Devpac80 that are designed to run on the
native CPC machines and not under CP/M. Likewise BINTOCOM will be
useful for debugging purposes.

Page 1-8 HiSoft Devpac80 ver. 2 Introduction

COMTOBIN for converting CP/M COM files to
Amstrad AMSDOS BIN files

Usage:

COMTOBIN destination[.BIN] source[.COMJ [SJ [&]Load [&Run]

[J means optional.

If you omit the chive then it will default to the currently logged-in
chive.

If you omit the destination filetype then it will default to BIN and if
you omit the source filename it will default to COM.

If there is an s after the source filename, all keyboard input will be
suppressed, allowing COMTOBIN to. be SUBMITted.

Load is the address at which the BIN file is to be loaded.

Run is optional and is the address at which to start .executing the BIN
file. If it is omitted then the value defaults to that of Load.

Both Load and Run will be read as decimal numbers unless they are
preceded by an ampersand (&) in which case they will be read as
hexadecimal numbers.

If you type just COMTOB IN and then [ENTER J , you will be prompted with
the word COMTOBIN) and you can then execute a sequence of
commands. Toe command is entered as normal, but on completion you
will be reprompted. To quit press [ENTER] alone.

Some example use of COMTOBIN:-

COMTOBIN
COMTOBIN amsfile cpmfile &1000
COMTOBIN AMSfile.bin CPMfile.com/S , &2000 , &5200
COMTOBIN amsfile=cpmfile.com 1024
COMTOBIN A:AMSFILE.BIN = A:CPMFILE;s;1024;&400

Introduction HiSoft Devpac80 ver. 2 Page 1-9

BINTOCOM for converting Amstrad AMSDOS BIN files
to CP /M COM files

Usage:

BINTOCOM destination. [COM] source. [BIN] [S]

[l means optional.

If you omit the drive then it will default to the currently logged-in drive.

If you omit the destination filetype then it will default to COM and if you �

omit the source filename it will default to BIN. .._,/

If there is an s after the source filename, all keyboard input will be
suppressed allowing BINTOCOM to be SUBMITed.

If you type just BINTOCOMand then [ENTER], you will be prompted (with
the word BINTOCOM) and you can then execute a sequence of
commands. The command is entered as normal, but on completion
you will be reprompted. To quit press [ENTER) alone.

Some example uses of BINTOCOM:-

BINTOCOM
BINTOCOM cpmfile amsfile
BINTOCOM a:cpmfile.com amsfile.bin , S
BINTOCOM cpmfile=amsfile,bin
BINTOCOM A:COMFILE.COM = A:AMSFILE

GTOG AMSDOS DEVPAC TO DEVPAC80
SOURCE FILE CONVERSION

Syntax:

GTOG GEN80file GENA31file <ENTER>

The program GTOG. COM supplied on your Devpac80 master disc allows
you to convert source files created by our AMSDOS assembler
(GENA31) to GEN80 source format.

Page 1-10 HISoft Devpac80 ver. 2 Introduction

The GENA31 source file should have been saved to disc using the
editor's P command e.g.

Pl,400,TEST.AMS <ENTER>

To convert this file to a GENS0 source file run GTOG from within CP/M
like so:

GTOG TEST.GEN TEST.AMS <ENTER>

Notes:

Please note that GENA3. l and GEN80 differ in some aspects regarding
the syntax of source ftles:

1. GEN80 contains full operator-precedence artthmietic,
whereas GENA3.l does not. You may need to rewlite some of
your expressions if they use multiplication or division inter

alia.

2. GEN80 does not recognise the ENT directive. You must
remove all references to ENT yourself.

UNLOAD2

UNLOAD2 is a public-domain utility that converts a . COM file into an
Intel . HEX file. If you don't know what this means then you probably
don't need UNLOAD2!

(' UNLOAD2 is useful if you are blowing ROMs or generally
communicating with the outside world.

The usage of UNLOAD2 is:

UNLOAD2 filenan1e [RETURN]

where filename.COM is a regular binary- file. filename.HEX will be
produced by the utility.

Introduction HiSoft Devpoc80 ver. 2 Pagel-11

Page 1-12 HiSoft Oevpac80 ver. 2 Introduction

HiSoft HDE
Fast Interactive CP /M Editor

System Requirements:
Z80 disc system running CP /M 2 or CP /M 3 with at least 36K TPA.

Copyright © WSoft 1987

Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh TM and LaserwrtterTM with Aldus PagemakerTM .

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of mSoft Devpac80.

It is an infringement of the copyright pertaining to msoft Devpac80 and its
associated documentation to copy, by any means whatsoever, any part ofmSoft

Devpac80 for any reason other than for the purposes of making a security back
up copy of the object code.

Contents

SECTION 1 Getting Started & Tutorial ET-1

1.2 Using HOE ET-2

1.3 Using ED80 ET-4

1.4 The Editor ET-5

1.4. 1 The Status Lines ET-5
1.4.2 The Text Window ET-5
1.4.3 Typing Modes ET-6

1.5 A Quick Tutorial ET-6

SECTION 2 Installing the Editor El-1

2.1 Starting up the Install Program El-1

2.2 Terminal Installation El-3

2.3 Redefining the Editor
Commands El-6

2.4 Redefining User Options El-8

2.5 Use of Installation Files El-9

2.6 Leaving the Installation
Program El-10

HDE Editor HISoft Devpac80 v. 2.0 Contents

SECTION 3 Command Reference Guide

3.1 Cursor-Moving Commands

3.2 Text Deleting Commands

3.3 Block Commands
Printing a Block

3.4 Quick Cursor Movement

3.5 Find and Substitute

3.6 Leaving the Editor

3.7 Toggles

3.8 Miscellaneous

SECTION 4 Prompts and Messages

SECTION 5 Technical Details

Contents

5. 1 Internal File Format

5.2 Non-Printing Characters

5.3 Data and External Devices

HiSott Devpac80 v. 2.0

ER-1

ER-1

ER-2

ER-3
ER-5

ER-5

ER-6

ER-7

ER-8

ER-8

ER-11

ER-15

ER-15

ER-15

ER-16

HOE Editor

SECTION 1
Getting Started & Tutorial

On your Devpac80 disc are two screen editors, HDE. COM and EDS o • COM.

EDSO is simply an editor which can be used to produce text for
whatever application you need, you can even write letters with it.

HDE is also a screen editor but is especially tailored to work efficiently
with Devpac80, it has a menu system from which you can edit,
assemble and debug your program. HDE also remembers all the
assembler errors (if you had any) and allows you to go to the erroneous
lines immediately, with the error message on the screen.

Both HDE and EDSO are fully configurable, you can tailor the
commands to suit your taste and you can also install the editor to suit
your computer·s particular screen codes.

To enable you to get the best out of these packages, we shall descrtbe
the menu system ofHDE first and then how to use the screen editor,
which is the same in both HDE and EDSO except for the goto-error
features ofHDE. Then the installation program will be detailed. Before
all that, let's see what should be on your disc:

The supplied disc contains the following files connected with the editor
package:

1) HOE.COM ('The interactive menu sysfem/editor)
2) HDE. HLP (Help file for HDE)
3) ED80 .COM (The non-interactive editor)
4) EDS 0. HLP (Help file for EDSO)
5) JABBER. WOK (Example text file)
6) EXTRA. WOK (Example text ftle)
7) HDEINST .COM (The installation program for HDE & EDSO)
8) ED80INST .MSG (Needed by HDEINST)

Editor Tutorial HiSoft Devpac80 ver. 2 Page ET-1

1.2 Using HOE

You enter HDE from CP/M by typing:

HDE [RETURN]

or

HDE filename [RETURN]

After some loading time a menu will appear on your screen:

HiSoft DevpacSO Menu Selection

Start editing

Assemble

Run

Debug

Quit

Edit file:

Main file:

If you used HDE filenarne then the ftlename (with a default extension
of . GEN) will appear after Edit file: and Main file:.

You can now press s. A, R, D, Q, E or M:

Start editing

This takes you into the editor to edit the ftlename given after Edit

file:, if no name is present after Edit file: the cursor will be moved
there and you can type in a filename, followed by [RETURN]. After this
you will enter the editor.

Assemble

Assemble the file specified after Main file:. If no filename is present
then the cursor will be moved after Main file: and you can type one
in, followed by [RETURN l .

Page ET-2 HiSoft Devpac80 ver. 2 Editor Tutorial

r

Once you have done this. GEN SO will be loaded and the file assembled.
Note that you must have GENS0 on your disc to do this. After GENS0
has finished, you will be returned to the menu, once you have pressed
a key.

Run

Execute the file given by the Main file: with an extension of .COM. If

no file is specified after Main file: you will be asked to type one in.

You will normally use Rafter assembling a program correctly. Once the
program you have run finishes. you are returned to the menu.

Debug

D loads ProMON which then loads the . COM file specified after Main

file:. if no ftle is given here you will be prompted to type one in.

Assuming ProMON finds the . COM file on your disc, it will load it in at
address #100 and look for a corresponding . SYM file. It will then
automatically load the program's symbols and display Symbols
loaded, now press a key for the debugger.

If no relevant . SYM file is found then the debugger is entered
immediately after loading the file.

When you quit ProMON after invoking it like this. you will be returned
to the menu after a message.

If D cannot find ProMON. it trys to load the compact debugger, MONS0;
if it can't find MONS0 either then it returns to the menu.

MONS0 will not automatically load the Main File in, you must do it
manually with the R command. Also MONS0 does not return to HDE
after invocation. but to CP /M.

PMON. COM and PMON. MON or MON 8 0 . COM and MONS O • MON must be on your
disc for D to work.

Quit

Simply returns you to CP /M.

Editor Tutorial HiSoft Devpac80 ver. 2 Page ET-3

Edit flle:

Pressing E allows you to type in the name of a new file to be edited. Once
you have done this and pressed [RETURN l . the program will be loaded
and the editor will take charge.

When you leave the editor, you will return to the menu.

If you type in only the name with no extension (the 3 letters after the
•) then an extension of . GEN is assumed.

Main file:

Mallows you to enter a new Main file: name, followed by [RETURN].

The name here ls used by the menu options A. D and R. A uses the name
as the program to assemble while D and R look for the name with an
extension of • COM as the file to debug or run respectively.

If you don't type in an extension, then .GEN is assumed.

1.3 Using ED80

You enter EDSO from CP /M by typing

ED80 [RETURN]

You may, however, add a ftlename preceded by a space e.g.

ED80 MYFILE.TXT [RETURN]

This will cause that filename to become the Current File. If the Current
File exists then it is loaded from the disc otherwise you simply start
from scratch with an empty file.

When you leave ED80, you are returned to CP /M.

Page ET-4 HISoft Devpac80 ver. 2 Editor Tutorial

r

1.4 The Editor

The following description is of the editor which is common to both UDE
andED80.

1.4. 1 The Status Lines

The upper status-line (the top line of the screen) has six sections and
appears like this:-

JABBER.WOK LINE:1 COL:1 INSERT

On the left is the name of the Current File. To the right is the line and
column at which the cursor is positioned. The space to the right of the
column number is for the commands you give to the editor. To the right
of this is the mode (see next section) and fmally there is a large space
for messages.

The lower status-line (the bottom line of the screen) has three sections
and appears like this:-

FREE:XXXXX $ $

On the left is the amount of free space you have left in memocy which
will vacy depending on the size of the current text. The value is
approximately equal to the number of characters you can type before
the editor becomes full of text. The two $ signs mark the start of the Find
and Substitute strings which are currently undefined.

1.4.2 The Text Window

The screen is best looked upon as a window onto the current text. This
window may be moved in all four directions so that you can view any
part of the file. If the window moves downwards then the text appears
to move upwards and this is called upward scrolling. In the same way,
if the window moves to the right then the text appears to move to the
left (leftward scrolling}. The scrolling is handled automatically and
intelligently to give you the most convenient window onto the text.

Editor Tutorial HiSoft Devpac80 ver. 2 Page ET-5

1.4.3 Typing Modes

There are two basic typing modes: INSERT and CHANGE. INSERT
mode is the more normal method of text entry. When you type a
character in INSERT mode, all of the line to the right of the cursor is
moved right one position before the character is entered. This means
that the current line becomes longer by one character. In CHANGE
mode, the character you type overwrites the current character (i.e. the
one at the cursor) and thus the line remains the same length. You are
not allowed to go over the end of the line in CHANGE mode.

In general, INSERT mode is used to build up a file and CHANGE mode r-,

is used to alter small sections within a line.

1.5 A Quick Tutorial

If you are quite familiar with the use of word-processors then a quick
glance over this tutorial to clarify the points of difference with the one
you are used to should be sufficient. If, however, you are in any doubt
as to the full capabilities of a word-processor then it is strongly
recommended that you work through this tutorial on your computer.
Using a disc containing ED80 .COM (or HDE .COM), ED80 .HLP (or HDE. HLP),

JABBER. WOK and EXTRA. WOK, enter CP /M and type:

ED80 JABBER.WOK [RETURN]

HDE JABBER.WOK [RETURN]

or
and, once the menu appears. press s

On the screen at the moment is the text of JABBERWOCKY from Lewis
Carroll's Alice Through the Looking-glass. This is just a sample piece
of text to enable you to become familiar with the editor. As a re-assuring
start, verify that the help key ([CTRL J -J) will list the various one
key commands. After a quick look at the help page, pressing [RETURN J

will get you back to the file.

An important factor in the efficient use offull-screen editors is gaining
confidence in moving the cursor around the file. It is worthwhile trying
out the two main cursor-moving commands which are:-

character left ([CTRLJ -s

character right ([CTRLJ-D
) and

)

Page ET-6 HISoft Devpac80 ver. 2 Editor Tutorial

If you keep pressing the character-right key until the cursor is just past
the Y of JABBERWOCKY in the title and then press it a further time, you'll
notice that the cursor wraps around to the start of the next line. Also
notice how the line and column numbers change in the upper status
line.

If character spaces were the only way you could move the cursor then
it would take a very long time to get to the end of some files and so, of
course, there are many other ways to position the cursor. You can move
the cursor one word to the left ([CTRLJ -A) or one to the right
([CTRL J -F) or even straight to the beginning ([CTRL J -Q s)

r or end ([CTRL J -Q D) of the line.
\.

Now move the cursor down ([CTRLJ-X) and place it at line 7
column 1 just below All mimsy etc. As you may have realised, there
is a line missing from the poem and the fourth line of the first stanza
should read:

And the mome raths outgrabe

Type this line in preceded by the correct number of spaces and press
[RETURN J at the end. You may have noticed that the second line of this
verse is also incorrect and should read:

Did gyre and gimble in the wabe;

Move the cursor up to where the word the has been missed out i.e. the
space after in and simply type the word the.

Note that the rest of the line is moved to the right after each letter. This
,-..., is because we are in INSERT mode (see the upper status-line). You can

change(toggle) thetyping mode by pressing([CTRLJ-V l .Now
the word CHANGE appears in the upper status-line.

Move the cursor to the letter o of wobe which should be an a and simply
type the letter a. Note that in CHANGE mode, the text is not moved to
the right and the characters typed simply overwrite the existing ones.

If you finish off the line by typing be; then you can also see that you
are not allowed to overwrite the end-of-line in CHANGE mode.

Editor Tutorial HiSoft Devpac80 ver. 2 Page ET-7

A word of explanation is in order here about end-of-line. At the end of
each line is an invisible character (its value is 13) which can be
cursored-over, deleted, found and substituted as can any other
character. In fact the installation program gives you the option of
displaying all end-of-line characters so you can see where you are more
easily. The most usual way of displaying them is with <.

The second verse has been omitted from the poem and this is a good
excuse to test the deleting commands and the auto indent feature.

Firstly go into INSERT mode ([CTRL] -v) and then move the cursor
to the start of the blank line below at the end of the first verse. Now press
[RETURN] twice to give a good separation between the stanzas. You can
toggle auto-indent by pressing ([CTRL]-0 I) and the message
I/AUTO will appear on the upper status-line. Now type the first line
preceded by the correct number of spaces so that the line starts directly
under those of the first verse:

Beware the Jabberwock, my son!

If you make a mistake then you can delete the character before the
cursor ([DEL]) or delete the character in front of the cursor
([CTRLJ-G). Press [RETURN] at the end of the line and note that
the new line starts immediately under the one above. This is due to the
auto-indent and is an extremely useful feature when writing programs
to improve legibility. Now type in the other three lines of the stanza
ending all with [RETURN]:

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!

Typing mistakes are usually very common when entering programs
and the editor has been designed to minimise the effects of the more
common errors. Thus, whenever you delete a line, it is stored until you
start to edit another line and can be recovered. To illustrate this, move
the cursor until it rests on the line starting:

Beware the Jabberwock

Page ET-8 HiSoft Devpac80 ver. 2 Editor Tutorial

and give the command to delete the line ([CTRL J -Y). As you can
see, the line disappears from the text, but the restore line command
([CTRL J --o R) can be used to get the line back and in fact you
may move the cursor to an entirely different place and restore the line
again as many times as required. This manoeuvre can be quite useful
for moving a line or copying it to some other place in the text.

If you start editing a line i.e. type in a few characters to an existing line
and then use the restore line command, the line is restored to what it
was originally.

In a large program using the Find and Substitute facilities is often the
best way of getting to a known point in a program. To illustrate this,
position the cursor on the first line of the poem, and give the find-first
command ([CTRL J -Q F) . This puts the cursor just after the first
dollar sign on the bottom status-line. Now type in Jabberwock. (you
can use the delete-character-left ([DEL]) if you make a mistake) and
then [RETURN]. Just press [RETURN] for the second or Substitute
string.

The cursor will now be positioned on line 34. Note that the two previous
occurrences of Jabberwock are not followed by a full-stop. If you now
put the cursor to the top of the file ([CTRL J -Q R) and redefine
the Find string as Jabberwock (without the full-stop) then the cursor
will first rest on line 10. Now the find next command ([CTRL J -L)

will go to line 23.

The next part of the tutorial illustrates the way you can manipulate
blocks of text, rather than just characters and lines.

To defme a block of text you have to mark its start and end. The original
Lewis Carroll poem duplicates the first verse at the end and so the aim
is to mark the whole of the first verse as a block and then copy it to the
end. However, this will be done in rather an unusual way to illustrate
the block buffer in the editor. Put the cursor to the start of line 4 i.e.
the start of the first line of the first verse and mark this point as the start
of a block ([CTRL] -K B).

Now position the cursor at the end ofthe lastline ofthe poem(the space
afteroutgrabe.)and markthis as the end ofthe block([CTRL]-K K).

Now the unusual part: delete this block ([CTRLJ-K Y)II

Editor Tutorial HISoft Devpac80 ver. 2 Page ET-9

You can now see that there is a star(*) after the figure showing the
amount of free space left on the bottom status-line. This star means
that there is a block in the block buffer.

You can see the size of the block by operating the free-space toggle
([CTRLJ-O F). You get the block back by using the paste block
command ([CTRL J -o P) . Do this now. Note that the block is still
there and can be pasted as many times as required.

Now move the cursor to the end of the file ([CTRL J -Q c) and paste
the block again and lo! the last verse is duplicated. Exactly the same
effect would have been achieved by marking the block and then copying
it ([CTRLJ-K c) except that the block would not have been put
in the buffer. Both block delete and block move (which is exactly
equivalent to delete followed by paste) put the block in the buffer if there
is space.

It is possible to write a block to the disc ([CTRL J -K w) and read
a block from the disc. As an exercise, move the cursor right to the end
of the ftle and then issue the command to read a block ([CTRL J -K R
) . You are now prompted for the ftlename of the file you wish to read
in.1ype:-

EXTRA.WOK [RETURN]

(you can use [DEL] if you make a mistake typing in the name).

Naturally Alice did not understand the explicit and obscure sexual
connotations of the poem as we do today and the poem stands as an
interesting if rather distressing insight into Dodgson's dark, tulgey
mind.

Finally, it is obviously very important to be able to save an edited file
to the disc. There are three ways to quit. Firstly, you can abandon the
ftle ([CTRL] -K Q). Here nothing is saved and the current text
is lost.

Or you can save with no backup ([CTRL]-O Q). This will save
the current text on the disc deleting a file of the same name if it existed.
This method is generally used when space is low on the disc.

Page ET-10 HISoft Devpac80 ver. 2 Editor Tutorial

The most normal method of leaving, the editor is to save with a backup
([CTRLJ-K x). Here, if there is a tlle with the same name it is
converted to type . BAK and thus is preserved.

Do the save-with-backup command ([CTRLJ-K x). You are
prompted for a filename, with the Current Filename already given for
convenience. The Current Filename may be deleted if you require and
the text saved under another name. In this case, however, just press
[RETURNJ.

When silence and the A> prompt rules again, a look at the disc directory

r with D IR will show that the original flle is now called JABBER. BAK and
there is a new JABBER. WOK that is the file we have just edited.

r

It should now be perfectly possible (with frequent forays into the help
pages) to edit your own files. Before doing so it is advisable to cast a
quick glance over the reference section as there are some very useful
features documented there that have not been covered in this tutorial.

Editor l'utorial HiSoft Devpac80 ver. 2 Page ET-11

Page ET-12 HISoft Devpac80 ver. 2 Editor Tutorial

r

SECTION 2
Installing the Editor

The process of installing the editor (either ED80 or HDE) involves three
phases. The editor is first read in from the disc. Then, sections of the
program are modified and finally it is wrttten back out to the disc (as
a . COM file) together with a help (. HLP) file. Thus the process involves
a permanent change to the editor.

There are two reasons that you might want to run the installation
program. Primarily, it may be that there are problems with the screen
layout and the editor seems not to work at all. This will be due to
incorrect terminal codes and in this case you should read the section
on Terminal Installation. Alternatively, you may wish to modify some
of the commands or options to suit either keyboard or taste. This
procedure is covered in the section Re-Defining the Editor
Commands and Re-Defining User Options. In either case you should
first read the next section.

2. 1 Starting up the Install Program

To run the installing program in order to install either HDE or ED80,
insert your back-up disc and type:-

HOEINST [RETURN]

You will now see the copyright message. The purpose of the installation
process is to alter the copy of your editor on the disc. To this end, some
copy of the program (called the working copy) is read in from the disc
into the machine. The first question is thus:-

Normally the working copy of HOE is
read in from a file called HOE.COM
Use another file instead

(Y/N) ?

Editor Installation HiSoft Devpac80 ver. 2 PageEl-1

o install HDE, the rep:iy will normally be N, the exception being when
you have renamed a version of HDE. To install ED80 you should
answer Y to this question which will produce the prompt:-

[ESC] to abort
Omit file type (.COM assumed)
Enter filename

to which a ftlename should be typed in (omitting the filetype e.g. to use
ED80 .COM as the image, type E080 [RETURN]). If you typed Yby mistake
and really do want to use HOE . COM as the working copy then just type
HOE. Whether you replied N to the opening question or Y and then
specified a ftlename, the working copy will now be read in to the
machine from the disc and the Installation Menu will appear.

There is now a copy of the editor in the memory of your machine ready
to be altered and the Installation Menu on the screen.

HDE INSTALLATION MENU

1. Return to CP/M
2. Alter screen codes
3. Save HOE as <working copy filename> (normally HOE.COM)
4. Save HOE as another file
5. Alter command codes
6. Alter user options
7. Load installation from .E80 file
8. Save installation to .E80 file

Type desired number:

If you are a first-timer using the installation program because the
screen codes in the editor were wrong then turn first to the section
Terminal Installation and then to Leaving the Install Program. The
other sections in this chapter are Re-Defining the Editor Commands,
Re-Defining User Options and Use of Installation Files.

Page El-2 HISoft Devpac80 ver. 2 Editor Installation

2.2 Terminal Installation

Select option 2 from the main menu to alter the screen codes. You will
be asked:

How many screen columns (80) ? and then

How many screen rows (24) ?

In answer to each of these questions you should type in the correct
number followed by [RETURN J • Pressing [RETURN J alone is equivalent
to giving the answer in brackets.

The rest of the questions concern how the screen controller works on
your machine. If you are in doubt about any of the questions, consult
the manual for your machine. You are now asked for the:-

�ursor position lead-in sequence

() () -

When the editor is in operation it has to be able to tell the screen
controller to put the cursor at a certain position on the screen. To do
this. it tells the controller the row and the column required. Most
screen controllers require a special sequence of codes to indicate that
the values to follow represent a row and a column. Thus inside the first
set of brackets there will be the sequence as it is currently defined with
the decimal values of the codes in that sequence in the second set of
brackets. If the sequence is correctly set up then just press [RETURN]
and move on to the next question. If the sequence is incorrect then it
must be changed.

Assuming your screen controller does have a Cursor Position lead-in
sequence (on Amstrad CP /M Plus computers it is [ESC J Y) then you
should enter it now code by code (up to a maximum of four codes)
terminated by [RETURN J • Each code may either be entered as a single
keypress or as its decimal value terminated by [RETURN].

Editor Installation HiSoft Devpac80 ver. 2 Page El-3

As an example, if the correct sequence for your controller was [CTRL l -
K =. You could enter this either by typing

[CTRL)-K = [RETURN] or by typing

11 [RETURN] 61 [RETURN] [RETURN]

note the two [RETURN) s at the end. The first is to terminate the 61 and
the second is to terminate the whole sequence.)

The next question asked is:

Is the row sent before the column

(YIN/ENTER) ?

The screen controller may require the row before the column, or the
column before the row. As above, pressing [RETURN] is equivalent to
giving the answer in brackets.

You are now asked:

Offset for column

Offset for row (?

? and then

When the values for the row and the column are sent, many screen
controllers require an offset to be added to each. The values required
for the offsets are those required to position the cursor at the top left
of the screen (i.e. if the correct offsets for your machine were both 32
then sending the Cursor Position lead-in sequence, then 32, then 32
will put the cursor at the top left of your screen). If the value in brackets
is correct then just press [RETURN] otherwise type in the correct value
terminated by [RETURN]. You should consult the manual for your
machine if in any doubt.

The next text to appear is:

Clear Screen sequence

() () -

Page El-4 HISoft Devpac80 ver. 2 Editor Installation

The layout is identical with that for the cursor positioning sequence
detailed above. Press [RETURN J alone if the sequence for clearing the
screen is correct or enter the correct code terminated by [RETURN] as
above. If your controller does not recognize a sequence to clear the
screen (possible but unlikely) then press D.

Next:

Clear to End of Line Sequence

()) -

r prompts you for the sequence to clear to the end of the current line.

r

Respond to the prompt exactly as above for the clear-screen sequence.
It is quite possible that your screen controller does not recognize a
sequence for clearing to the end of the current line. If this is so then
press D to delete the sequence and the editor will perform the function
by software (although more slowly than the controller would do it).

Inverse video on sequence

) -

Inverse video off sequence

) -

These codes will only be used if you are installing HDE. If your
terminal supports, in some way, inverse video then enter the
sequences to tum this feature on and off. If inverse video flipping is not
supported, press D in answer to both questions to disable the facility
in the editor.

Which RST 1-7) -

This question will appear only when installing HDE. You should enter
the number (1 to 7 inclusive) of a restart that it is safe for HDE to use.

HDE will use this restart to allow running programs to return to the
menu. This will involve lowering the top of the TPA while in HDE by a
few bytes.

Normally, RST 6 (on an Amstrad) or 7 is a good choice. The restart
number can be the same as used by ProMON.

Editor Installation HiSoft Devpac80 ver. 2 Page El-5

Use lead-in)
(YIN/ENTER) ?

Use lead-out

(YIN/ENTER) ?

These fmal questions concern the use of lead-in and lead-out
sequences. These options allow you to send a command to the screen
controller or run a small program at the start and end of an editing
session. For example. this facility might be used to put your machine
into 80 column mode for editing and reset back to 40 column mode on
exit. However, unless you have an important reason for wanting to use
this facility. it is advisable to answer N to both questions. If you answer
Y to either you will be asked to specify a code sequence to send to the
screen controllei: which you should enter as described above.

You will now be returned to the installation menu.

2.3 Redefining the Editor Commands

Pressing 5 from the main menu will allow you to alter the command
definitions.

All of the commands will be shown and you have the opportunity to
change the definition or accept it and pass on to the next command.
After the last command you are returned to the main menu. For each
of the commands the display format is:

Command name [keystroke definition I decimal definition)

where the keystroke definition is the sequence of keys the user
presses to give the command and the decimal definition is the
decimal ASCII value of those keys. These are alternatives.

At any stage you have the option to go back to consider the previous
command, to retain the current definition or to change the current
definition.

Page El-6 HISoft Devpac80 ver. 2 Editor Installation

.,I

r

r

1) To backtrack to the previous command, press B

2) To retain the current definition press [RETURN]. The process
then repeats for the next command. At the end you are returned
to the main menu.

3) To change the current definition the new definition should be
typed in element by element (up to a maximum of four elements)
and terminated by [RETURN] after which the redefined command
appears. If you are now sure that the definition is correct then
press [RETURN] to pass to the next command, otherwise type in
another definition and the whole process is repeated.

4) Definition elements are of two types. The first type is simply
a keystroke and the second type is a sequence of digits terminated
by [RETURN]. For example, the two ways to include a [CTRL]-Y

(which has an ASCII value of 25) in the definition are:-

a) hold down the [CTRL J key and press Y
b) press 2 then 5 then [RETURN)

The two modes of entry of elements may not be mixed within the
same defmition. Thus if the first character of a definition was a
number then all subsequent numbers are treated as their
numerical value. However, if the first character was not a number
then all subsequent numbers are treated as ASCII characters.
This feature is included so that command definitions such as
[CTRLJ-K o can be entered directly (i.e. hold down [CTRLJ and
press K, then press O)

If the definition given is the same as that of a previous command
or a prefix to a previous command then this message will appear:

WARNING : There is a conflict between the

and commands.

Do you wish to continue anyway (Y/N) ?

A response of Y will ignore the duplication and N will allow the
current command to be re-defined. Note that if the editor is saved
to the disc with two commands identical, the use of one of the
commands will be lost.

Editor Installation HiSoft Devpac80 ver. 2 Page Et-7

It is recommended that you consult the reference section of the manual
if in any doubt as to the meaning of some of the commands.

After the last command, you are returned to the main menu.

2.4 Re-Defining User Options

You can change the user options by selecting 6 from the main menu.
There are four user options. They are: �

Size of tabs () ?

to which you should type in the tab size required followed by [RETURN l
or [RETURN] alone to retain the value in brackets.

Tabs per scroll () ?

When the cursor in the editor moves off the right-hand edge of the
screen, the text window moves to the right (i.e. the text appears to scroll
to the left). This left/right scroll works in units of one tab. On most
screens, a value of one or two is best for this parameter. Enter the value
as above.

End of line display

End of file display

?

?

A single key response is needed for both of these. If you don't wish the
end of lines or the end of file to be displayed then press D to delete the
current value, otherwise type the character you would like to be used
for each(< is a common end-of-line marker with maybe I for end-of
file).

Although not normally used in word-processors, the markers can be
useful in a program editor for distinguishing spaces and tabs at the
end of lines and end of -file.

After responding to these options you are returned to the main menu.

Page El-8 HiSoft Devpac80 ver. 2 Editor Installation

j

2.5 Use of Installation Files

There are many features of the editor that are alterable by the user.

Every copy of the editor naturally contains one set of these options.
There is a type of file, however, called an Installation File that consists
solely of the set of the alterable options. An Installation File is of type
.EBO.

To save the current installation information in a file. select option 7
from the main menu. You will then be prompted for a fllename which
you should type in terminated by [RETURN].

It is possible that you will see the error message

Too many characters in commands

If so. you should decrease the number of characters used to define the
commands.

To load an installation file, select option 8 from the main menu. As
above, you will be prompted for a filename. If the file you give does not
exist then the prompt will be repeated. You can press [ESC] to quit.

When the installation file is loaded into memory, it will overwrite the
alterable options already present in the copy of the editor in memory.

The main use of Installation Files is when you are in the long-term
process of tailoring your version of the editor to suite your own
preferences. If you save each successive change you make to the
installation then any changes you find undesirable can be overwritten
by using the last installation file rather than going all the way through
the commands. If you have an earlier version of EDSO which you have
modified you can use the new HDEINST program to save out a .EBO
from your old version. Then run it again to update your new versions
of HDE and EDSO. Note that when using an installation file from an
old EDSO then you will have to re-enter the inverse video codes.

Editor Installation HiSoft Devpac80 ver. 2 Page El-9

2.6 Leaving the Installation Program

You can leave the install program by selecting option 1 from the main
menu, but BEWARE! If you select option 1 then nothing will be
changed on Lli.e disc. Thus if you are satisfied with the changes you
have made in the last installation session. you should first use either
option 3 or option 4. Both will save a copy of the editor (as a . COM file)
and a help ftle (as a . HLP file) on the disc.

Option 3 will save both files under the name you specified at the
beginning of the session (normally EDSO or HDE) whereas option 4
allows you to change the name by which you will invoke the editor.

You may have more than one copy of the editor on� disc at the same
time (under different names, of course) without a clash of help files.

Thus the normal method ofleaving the install program-will be first to
select option 3 and then option 1. If you don't wish to save the results
of your installing labours then select option 1 alone.

You may, when saving, get the error message

Too many characters in commands

in which case you should decrease the size of your command
definitions.

It is well worth spending some time deciding on the design of the
command defmitions. A well-designed and succinct set will be easier
to use and will also lead to quicker and more efficient editing.

Page El-10 HiSoft Devpac80 ver. 2 Editor Installation

r

SECTION 3

Command Reference

Guide

This Section is intended as a short reference guide to the commands
and features of the editor. In all cases, the default command is given
in brackets followed by some space so that you may fill in the
keypresses that you may have chosen using the Installation program.
Where possible, the default command is the same as the Wordstar™

command. [CTRLJ- means that the control key is to be held down,
[RETURN] indicates that you should press [RETURN] or [ENTER] onyour
keyboard, and <CR> indicates a byte of the value #OD (ASCII 13).

3. 1 Cursor-Moving Commands

Character left/right [CTRL] -s : [CTRL]-D

Move the cursor one character position left/light. Moving past the end
of a line positions the cursor at the beginning of the next line. Likewise
moving past the beginning of a line puts the cursor at the end of the
previous line. This feature is hereafter called wraparound).

Word left/right [CTRL] -A : [CTRL]-F

Move the cursor to the beginning of the last/next word. Characters that
constitute the boundaries between words are:-

" () [) { } = + - * / < > " - ; : , # $ & \ [TAB)

and wraparound operates.

Tab left/right [CTRL] -OS : [CTRL] -OD

Move the cursor to the last/next tab position. Wraparound operates.

Editor Reference HISoft Devpac80 ver. 2 Page ER-1

Start/End of line [CTRL] -QS : [CTRL]-QD

Move the cursor to the start/ end of the current line. Wraparound does
not operate.

Line up/down [CTRL] -E : [CTRL] -x

Move the cursor up/ down one line. After moving up or down one line.
the cursor column is always the same. Thus it may appear that the
cursor is positioned beyond the end of a line. If another line up/down
or page up/down command is issued then the cursor will move as
described. However. if any other key is pressed, the editor will behave
as though the cursor was at the end of the current line (ambiguous
cursor).

Top/Bottom of screen
[CTRL]-OE : [CTRL]-OX

Move the cursor to the top/bottom of the screen.

Page up/down [CTRLJ -R :[CTRL]-C

Move the text window down/up by one less than the number of non
status lines displayed on the screen. Thus a page up command on a 32-
line screen will move the text window up by 29 lines (32 screen lines-
2 status lines-1) and the old top line becomes the new bottom line.
Ambiguous cursor operates.

Start /End of file [CTRL] -QR : [CTRL] -QC

Move the cursor to the start/ end of the file.

3.2 Text Deleting Commands

Delete line [CTRL] -Y

Delete the current line. Note that the line is placed into the editing
buffer and can be recalled into the text by use of the restore line
command. The deleted line will be overwritten when the user next
makes a change to any line.

Page ER-2 HISoft Devpac80 ver. 2 Editor Reference

Delete last character [DEL 1

Delete the character to the left of the cursor. Wraparound operates.

Delete this character [CTRL 1 -G

Delete the character under the cursor. Wraparound operates.

Delete word left/right
r [CTRL] -OT : [CTRL] -T

Delete from the cursor to the beginning of the last/next word. The
characters that constitute the boundaries between are given under the
Word left/rtght command above. Wraparound operates.

Delete to start of line [CTRLJ -Q [DEL]

Delete from the cursor to the beginning of the current line.

Delete to end of line [CTRL J Q-Y

Delete from the cursor to the end of the current line.

3.3 Block Commands

Mark start/end of block
[CTRL]-KB : [CTRL] -KK

Place the block markers. A marker will be positioned at the cursor
position. The markers are lost if the line containing the marker is
altered subsequently.

Editor Reference HiSoft Devpac80 ver. 2 Page ER-3

Move block [CTRL] -KV

Delete the currently marked block from the text and place in the block
buffer, then insert the block at the cursor position. If there is enough
space the block will be retained in the buffer, but the less space there
is, the longer the command will take.

Copy block [CTRL] -KC

Copy the currently marked block from the text to the cursor position.

Delete block [CTRL] -KY

Delete the currently marked block from the text and place in the block
buffer. The less space there is, the longer this command will take. This
is due to the procedure required to place the block in the buffer rather
than abandoning it altogether.

Thus, if the amount of free space is very small (less than 256) you are
asked whether to abandon the block. If you press Y then the block will
be deleted from the text and not placed in the block buffer. If you don't
want to completely abandon the block then N should be pressed, the
block should be written out to the disc (from where it may later be read
back in if desired) and then deleted.

Paste block [CTRL] -OP

Insert at the cursor the block currently in the block buffer. The block
remains in the buffer if there is sufficient space.

Read block [CTRL] -KR

The user is asked for a fllename. [RETURN] alone aborts the command.
A filename followed by [RETURN] will search the disc for the filename
given and insert it at the cursor. The response RDR: will read the block
from the logical reader device.

Page ER-4 HiSoft Devpac80 ver. 2 Editor Reference

Write block [CTRL] -KW

The user is asked for a ftlename. [RETURN] alone aborts the command.
A ftlename followed by [RETURN] will write the currently marked block
to the disc with the ftlename given.

Printing a Block

In response to the ftlename prompt, LST: will send the block to the
current logical list device and may thus be used to print a block of text.
The response PUN: will send the block to the current logical punch
device. The whole file may thus be printed by setting the block markers
to the start and end of the file and writing the block to LST: (but see
Printing the File below).

3.4 Quick Cursor Movement

Goto line [CTRL] -OG

User will be prompted for a line number. This should be entered digit
by digit (the DELETE CHAR LEFT command may be used as a
destructive backspace) and after [RETURN] the cursor will be
positioned at the start of the line given. This command is extremely
convenient for quick access to an error reported by a compiler or
assembler.

Goto start/end of block
[CTRL]-QB : [CTRL] -QK

Move the cursor to the start/ end block marker.

Remember position [CTRL] -Ko

The current cursor position is stored. The marker is lost if the line in
which it lies is subsequently changed.

Return to position [CTRL] -Qo

·-

The cursor is positioned at the stored position.

Editor Reference HiSoft Devpoc80 ver. 2 Page ER-5

3.5 Find and Substitute

Find first [CTRL] -QF

The current Find suing is displayed. [RETURN] will retain the current
suing, otherwise you should type in the required Find string (up to a
maximum of 32 characters) and then press [RETURN].

[DEL J may be used as a destructive backspace, [CTRL J -R will redisplay
the previous string and [CTRLJ-U will abort the operation leaving the ,,---,
suings as they were. �·

A control character may be entered by pressing the control meta-key
([CTRL J -P (see Miscellaneous) and then the control character (e.g.
[CTRL]-P then [RETURN] enters a<CR>or [CTRL]-Minto the string).
Pressing the meta-key and then? will return a value which is displayed
as ? and counts as a wild-character when in the Find string.

After [RETURN] is pressed the operation is repeated for the Substitute
suing, and then the cursor is positioned at the start of the first
occurrence C?f the Find string in the file.

Find next [CTRL] -L

The file is searched for the next occurrence of the Find suing starting
from one character after the cursor. A wild- character in the Find suing
will match with any character at all in the file.

Substitute and find [CTRL J -OL

The file is searched for the next occurrence of the Find suing starting
from the cursor. A wild-character in the Find suing will match with any
character at all in the file. When the string is found, it is replaced by
the Substitute string and the cursor is positioned after the last
character of the Substitute string. Finally the file is searched for the
next occurrence of the Find suing starting from the cursor.

Page ER-6 HiSoft Devpac80 ver. 2 Editor Reference

Substitute all [CTRL] -OA

Starting from the cursor, all occurrences of the Find string in the file
are replaced by the Substitute string. A wild-character in the Find
suing will match with any character at all in the file. The cursor is then
placed after the last string substituted.

3.6 Leaving the Editor

Quit and Exit [CTRL] -KQ

You are asked whether to abandon the file. Pressing Y will cause a
return to CP /Mor to the Devpac80 menu if the editor was invoked from
HDE and the current text will be abandoned. Any other response will
abort the command.

Exit without backup [CTRL] -oQ

The Current Filename is displayed after the prompt Filename:. This
may be deleted using the DELETE CHAR LEFT command ([DEL]) and
altered. When you are satisfied with the filename, [RETURN] will cause
the current text to be saved on the disc under the filename given. You
are then returned to CP /M or to the DevpacSO menu._

A file already on the disc with the same name will be lost.

Exit with a backup [CTRL] -KX

Identical with above except that a file already on the disc with the same
name as the Current Filename will be renamed as a . BAK flle and any
• BAK file with the same name will be lost.

Printing the File

With the Exit without backup command in response to the fllename
prompt. LST: will cause the current text to be written to the current
logical list device and may thus be used to send a file to the printer. PUN:
will write the text to the current logical punch device.

Editor Reference HiSoft Devpoc80 ver. 2 Page ER-7

Note that after both these responses you will abandon the current text
and the disc copy of the Current Filename will be unaltered. A better
way of printing the whole file is to set the block markers at the start and
end of the file and then write the block to LST: (see Printing a Block
above).

3.7 Toggles

Toggle insert mode [CTRLJ -v

Switch between INSERT and CHANGE mode. A character typed in _,,
INSERT mode will only be entered after the characters to the right of
the cursor on the same line have been moved right one character
position. A character typed in CHANGE mode will overwrite the
current character. A [CR] may not be overwritten in CHANGE mode.

Toggle auto indent [CTRL J -or

Auto indent will only operate in INSERT mode. The message INSERT
will become I/AUTO. When indent is on and [RETURN] is pressed in
INSERT mode, the next line will be indented so that it starts at the same
column as the line above.

Toggle free space [CTRL J -OF

A star following the amount of free space indicates that there is a block
in the block buffer. The free space toggle is used to check the size of the
block.

3.8 Miscellaneous

Deliver tab [CTRL] -I

Will return a tab character ([CTRLJ-I or ASCII 9).

The size of tabs may be defined. Tabs will be entered as a ASCII 9 in the
me and will not be changed to spaces. They are treated in the main like
any other character in the file.

Page ER-8 HiSoft Devpoc80 ver. 2 Editor Reference

Restore line [CTRL J -OR

If you are in the process of editing a line then this command will restore
the line to what it was when you first positioned the cursor on it. If you
are not in the process of editing a line then this command will insert
in front of the current line, the last edited line.

This aspect of the command is useful because the DELETE LINE
command places the deleted line into the line-buffer exactly as though
it had just been edited. You may thus move a line from one place to
another by deleting it, moving the cursor to the desired place and then
issuing a RESTORE LINE command.

Disc directory [CTRL J -KF

The prompt F ilename: is given. See Rules for Filenames. A reply of
[RETURN] or [SPACE] alone will abort the command.

After thefllename is terminated by [RETURN] or [SPACE]. the screen is
cleared and a directory is printed (in fact the directory given will be the
same as that seen after the equivalent D IR command). Any key will then
return you to the current text.

Erase file [CTRL) -KJ

The prompt F ilename: is given. See Rules for Filenames. A reply of
[RETURN J or [SPACE J alone will abort the command. After the filename
is terminated by [RETURN J or [SPACE J the named file or files will be
deleted from the disc.

Control meta-key [CTRL J -P

Any key pressed after the meta-key will be entered into the file as its
literal value. This may thus be used to enter control characters into the
file that are normally commands or prefixes to commands (e.g. [CTRL J -
P then backspace enters a [CTRLJ-H).

Editor Reference HISoft Devpac80 ver. 2 Page ER-9

The meta-key can also be used in the same way to enter control
characters in the Find and Substitute strings. In this case if? is pressed
after the meta-key a character is returned that is displayed as ? but
acts as a wild-character in the find strtng.

Help key [CTRL] -J

Pressing the help key will display help pages giving information on the
commands available from the editor and how to access them.

The last two commands are only available if the editor has been called
from HDE and is being used interactively with the assembler. GEN80.

Goto Next Error [CTRL] -ON

Assuming you have just performed an assembly that has produced
some errors, the assembler will have, by default, produced a file with
the same name as your Main file: but with an extension of . ERR that
contains information about the errors found in this assembly.

You can step through these errors one by one using the Goto Next Error

command. You will be taken to the start of the line on which an error
was found and the error message will appear on the top status line, to
the right. You can then correct the error and issue another Goto Next

Error command to find the next error.

If the next error is in another me (perhaps one that was included at
assembly time) then you will be told:

Next error is in <filename>

on the bottom status line and the Exit with a Backup command will be
entered. You can abort this with [CTRLJ -u if you wish or press
[RETURN] to save the current me. load the one with the next error in it
and go to the error. You then repeat the Goto Next Error command as
many times as you like. If there are no more errors then you will remain
on the current line.

Goto First Error [CTRL] -OM

This takes you back to the first error reported and you may then use
Goto Next Error to step through the errors from the beginning again.

Page ER-10 HISoft Devpoc80 ver. 2 Editor Reference

SECTION 4
Prompts and Messages

There are four prompts produced by the editor. They appear on the
upper status line. Two require a single key response and the other two
require a string of characters terminated by [RETURN].

Abandon block: Sure?

This prompt requires a single character response. It appears if the user
has issued the DELETE-BLOCK command and there are less than 256
bytes free. If you respond Y then the block will be deleted and lost (note
that the block is normally saved in the block buffer and thus not lost)
while any other response will abort the command.

The prompt also appears if you have issued any command the
execution of which would overwrite the block in the block buffer. If you
respond Y then the block in the block buffer will be lost and the
command executed while a.ny other response will abort the command.

Abandon file: Sure?

This prompt requires a single character response. It is produced after
the QUIT command. Respond Y and the current text will be lost and you
will be returned to CP /M or the Devpac80 menu. Any other response
will abort the command.

Filename:

This prompt requires a string of characters terminated by [RETURN].
It is produced after any command that requires reading from or writing
to the disc. The response is interpreted as a filename and the maximum
allowed length is 14 characters (See Rules for Filenames). In building
up the filename, the currently defined DELETE CHARACTER LEFT can be
used as a destructive backspace. When [RETURN] is pressed, the
Current Filename is displayed for convenience although it may be
deleted if desired and another name substituted.

Editor Reference HISoft Devpac80 ver. 2 Page ER-11

If the name returned is null i.e. [RETURN] alone then the command is
aborted.

There are three responses to this prompt that are not interpreted as a
filename, viz LST: PUN: RDR: . These address the logical list device, the
logical punch device and the logical reader device respectively.

Go to line:

This prompt requires a string of numbers terminated by [RETURN]. It
is produced after the GO TO LINE command. The response is
interpreted as a line number and the maximum allowed length is 4
characters (only numbers are accepted). In building up the number the
currently defmed DELETE CHARACTER LEFT can be used as a
destructive backspace. [RETURN] alone aborts the command.

Rules for Filenames

Afilename consists of three fields. The drivename, thefilename and the
filetype e.g. B: MYFILE . GEN

When giving a ftlename:-

1) The drivename is optional and if not given the current logged-in
drive is assumed.

2) In a command where ambiguous filenames are allowed (i.e.
ERASE FILE and DISC DIRECTORY) a ? may be used to represent
any single character and a * may be used as if the remainder of ,,----,_
the field in which it occurs (barring the drivename field) were filled
out with ?s.

3) In the ambiguous filename commands a response of the
drivename field alone is interpreted as though the ftlename and
ftletype were *.

For example:

B:MYFILE.*
Addresses files of any filetype on disc B called MYF ILE

Page ER-12 HISoft Devpac80 ver. 2 Editor Reference

FILE* .GEN
Addresses files of type . GEN on the current disc whose filename starts
with the letters FILE

FILE? .GEN
Addresses files of type . GEN on the current disc whose filename
contains 5 letters and starts with the letters FILE

B: orB:*.*

The first form (drtvename alone) can be used only for the DISC
DIRECTORY command. Addresses all files on drive B

Error Messages

There are fourteen messages produced by the editor and they appear
mainly on the upper status-line as do the prompts.

Out of memory
Indicates that there is not enough space in the machine to cany out the
proposed command.

Line is too long
Produced when the length of the line would exceed the maximum
allowed length (255 characters) if the proposed action was taken. This
might either be simply the press of a key, or the deletion of a <CR>.

Undefined command
Indicates that the initial key of a command is correct, but the second
or subsequent keys do not form a valid command.

Block start unmarked/Block end unmarked
Produced after any block operation if the start/ end of the block has not
been marked or the mark has been lost (i.e. the line containing the
mark has been edited).

Block marks reversed
Produced after any block operation if the start of the block occurs after
the end.

Editor Reference HISoft Devpac80 ver. 2 Page ER-13

Invalid destination
Produced after a MOVE BLOCK or COPY BLOCK and indicates that the
destination (cursor) lies between the start and end of the block.

Block too big
Produced after a READ BLOCK command and indicates that the file on
the disc is too large to flt into memory.

No block in buffer
Produced after a PASTE BLOCK operation and is self-explanatory.

Marker lost
Produced after a RETURN TO POSITION command and indicates that the
position marker has not been placed or has been lost.

No file/Bad filename
Produced after any command which prompts the user for a filename.
The command indicates either that the filename is badly formed or
inappropriate or the file does not exist.

Disc full
Produced after any command that tries to write to the disc. Indicates
that either the disc or the disc directory is full. The user should
consider using the ERASE FILE command.

No such line
Produced after the GO TO LINE command and indicates that the line
number given is greater than the number of lines in the file.

Next error is in <filename>
Produced on the lower status line only when the editor is used from the
Devpac80 menu and when you have used the Goto Next Error
command. Indicates that the next assembly error is in file <f i lenarne>;

press [CTRL J -u to abort and stay in this file or any other key to save
this ftle, load <filename> and goto the next error.

Page ER-14 HISoft Devpoc80 ver. 2 Editor Reference

SECTION 5

Technical Details

5. 1 Internal File Format

Text is held simply as a string of ASCII characters. The end-of-line
sequence is <CR> (ASCII 13) rather than <CR><LF>, allowing the user
greater text space. The end-of-file is marked by a <NULL> (ASCII 0).

When the text is written to the disc, however, <CR> is replaced with
<CR><LF> and the <NULL> is replaced by [CTRL]-Z (ASCII 26) thus
making the disc file written by the editor compatible with normal CP /
M text files.

The maximum line-length is 255 characters. Note that the cursor
column number may exceed 255 due to tab and control characters (in
which case the column number displayed on the stat�line is 255).

The maximum number of lines in the file is limited only by memoiy
considerations, but note that the line number display on the status
line is only of four digits (due to space considerations) and the GO TO
LINE command can only reach line 9999 and no further. All other
commands will work as normal if the number of lines exceeds 9999
(although note also that on most systems the average number of
characters per line would have to be about three for the line numbers
to exceed 9999).

5.2 Non-Printing Characters

Characters of ASCII value less than 32 decimal (Control characters) are
treated as any other character. They may be entered into the file by
pressing the control meta-key ([CTRLJ-P) and then the control
character desired. If the terminal is capable of producing characters of
value greater than 127 decimal, then these characters are entered as
any other into the file and are displayed as ? .

Editor Reference HISoft Devpac80 ver. 2 Page ER-15

The meta-key may also be used to specify control characters in the find
and substitute strings in the same way as above. An obvious use for
this feature is to find the end-of-line character (reached by [meta
keyJ [RETURN] or [meta-key) [CTRLJ-M). The? character when pressed
after the meta-key returns #80. This character is displayed as ? in the
find and substitute strings, but is treated as a wild-character in the
fmd string i.e. it will match With any character at all in the file. (Note
that if a terminal has a key that can return #80 then this will be in all
respects identical to [meta-key] followed by ?).

5.3 Data and External Devices

Whenever you give a command that would normally access the disc (i.e.
READ BLOCK. WRITE BLOCK, EXIT WITHOUT BACKUP) there are three
responses to the prompt Filename: that are interpreted as logical
external devices.

1) LST: if used for a write operation will send the data to the current
logical Ust device which is normally a printer (but may, of course,
be set from CP /M using STAT). When the data is sent a <LF>
character (ASCII 10) is sent after evety <CR> as is usual for
CP/Mflles.

2) PUN: if used for a write operation will send the data to the current
logical punch device. As above, evety <CR> is sent as <CR><LF>,
but unlike the use of LST: a [CTRLJ-Z (ASCll 26) is sent after the
data to mark the end-of-file. [CTRL J -z is the standard CP /M end
of-file character.

3) RDR: when used for a read operation is designed to be compatible
With PUN: or indeed any standard CP /M data transfer operation.
The top bit of every character is reset (thus masking out any parity
bits sent by the transmitting hardware) and all <LF> characters
are ignored to produce the standard editor internal format. RDR:
requires a [CTRL J -z character to mark the end-of- data. Files may
thus easily be transferred from one machine to another from
inside the editor by use of PUN: and RDR:.

Page ER-16 HiSoft Devpac80 ver. 2 Editor Reference

HiSoft GEN80
Fast Interactive CP /M Assembler

System Requirements:
280 disc system running CP/M 2 or CP/M 3 with at least 36K TPA.

Copyright© HiSoft 1987
Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™ .

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording.
\\-ithout the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy offfiSoft Devpac80.

It is an infringement of the copyright pertaining to msoft Devpac80 and its
associated documentation to copy. by any means whatsoever, any part of ffiSoft
Devpac80 for any reason other than for the purposes of making a security back
up copy of the object code.

Contents

SECTION 1 Introduction to GEN80 G-1

1.1 For Experienced
Programmers G-2

SECTION 2 GEN80 Reference G-3

2.1 Getting Started G-3

2.2 How GEN80 Works G-4

2.3 Top-Of-File Options G-6

2.4 Assembler Statement Format G-14

2.5 Labels G-16

2.6 Location Counter G-17
2.6.1 .COM file Mode G-17

2.6.2 .REL file Mode G-19

2.7 Symbol Table G-20

2.8 Relative & Absolute Values G-22

2.9 Expressions G-22

2. 10 Assembler Directives G-27

Genao Assembler HiSoft Devpac80 v. 2.0 Contents

2. 11 Assembler Commands G-34

2. 12 Macros G-36

2. 13 Assembly Listing G-41

SECTION 3 Installing GEN80 G-43

SECTION 4 Quick Reference Guide G-45

4.1 Error Messages G-45

4.2 Reserved Words G-49

4.3 Valid Mnemonics G-49

4.4 Assembler Directives G-49

4.5 Top-Of-File Options G-50

4.6 Assembler Commands G-50

4.7 Operators G-50

4.8 .REL File Format G-51

Contents HISoft Devpac80 v. 2.0 Gen80 Assembler

r

SECTION 1

Introduction to GEN80

GENSO is a fast, full-feature, macro assembler for CP/M systems. It
conforms very closely to both the Microsoft M80'1M and Zilog'™
assembler syntaxes allowing a wide range of assembler directives and
commands and producing either directly-executable . COM files or
linkable . REL files. Full expression handling is included together with
conditional assembly, source include and extensive error reporting.

The various sections of this manual are now described to allow you to
make efficient use of them.

Section 2 of this manual is a comprehensive guide to GENSO giving
information on how to use and get the most out of every feature.
Everybody except the most experienced assembler programmer should
read this section as it contains many valuable examples of the use of
GENSO.

Section 3 is concerned with using the installation program for GENSO;
you do not need to read this section unless you wish to change the
default top-of-ftle options used by GENSO.

Section 4 is a quick reference guide to GEN SO for use after you have
familiarised yourself with the assembler.

If after reading Section 2 you are still unsure how to use the assembler
or you are unfamiliar with Z80 programming then you may find it
useful to work through the Devpac80 tutorial and/ or consult one of
the books given in the Bibliography.

If you are an experienced programmer then you may find that Section
1.1 covers all the details you need to use GENSO easily and efficiently.

Gen80 HISoft Devpac80 ver. 2 Page G-1

1. 1 For Experienced Programmers

This section is included near the front of the manual to introduce the
expelienced assembly language programmer to the bare essentials for
assembling a file. The details that follow should enable such a
programmer to get to grips with GENSO immediately. Naturally, the
requisite section of the manual should be consulted in case of
problems.

1) The normal and default filetype for GENSO files is .GEN

2) The valious fields in the source file (label, mnemonic, operand)
should be separated by white space. White space is defined as
any number of tab or space characters.

3) Labels may be of any length and may optionally be terminated
with a colon which will be stlipped before entry into the symbol
table.

4) Mnemonics should start in column 2 or after (thus a space or tab
in column 1 is sufficient in the source file).

5) A command line of GEN80 <filename> will normally suffice for
assembly. Alternatively you can run the assembler from the
menu system provided by HDE, top-of-file options may be
included in the first line of your program so that the only reason
for using GENSO from outside HDE is to assign different dlives
to your source and object files. If the source file is of type . GEN

then the type may be omitted. By default an executable (or . COM)

file is produced which will, in this case, be on the same disc and
have the same name as the source file.

6) You can obey Microsoft M80™ or Zilog™ assembler syntax with
few problems; consult the Quick Reference Guide in case of
difficulty.

Page G-2 HISoft Devpac80 ver. 2 Gen80

SECTION 2

GEN80 Reference

2.1 Getting Started

There are two ways of invoking GEN SO from within your CP /M system;
firstly you can nm the interactive editor by typing:

HOE TEST [RETURN]

where TEST. GEN is the file you wish to assemble. A menu will appear
and you press A to assemble the program. GENSO assembles the Main
file which can be seen on the menu. It produces, by default, an object
code file on the same drive as the source file and with an extension of
• COM, ready to nm. GENSO then returns to the menu after asking you
to hit any key. Alternatively, you can nm GENSO straight from CP/M
by typing:

GEN80 {object file=} source file {;options} [RETURN]

{ } means optional.

This allows you to specify the object ftle on a different disc drive from
the source ftle (or with a different name) and lets you enter options at
assembly time rather than having the options built-in to the source ftle.

We have included a small example ftle called TEST .GEN on your disc
which you should have copied to your work disc so, using your working
disc in drive A. try to two methods now. 'Iype:

HOE TEST [RETURN]
A
any key
Q

GEN80 object=test;l+ [RETURN]

Gen80 HiSoft Devpac80 ver. 2

and then type:

Page G-3

The first method produced a ftle called TEST. COM (you can nm it from
the menu using R or from CP /M by typing TEST [RETURN]). The second
method made a ftle called OBJECT. COM and turned the list on.

Having seen how to get GENSO assembling there follows a slightly
technical discussion of how it works.

2.2 How GEN80 Works

GENSO divides your available memory into three areas, one area for
source text, another area for resulting object code and the third area
for the Symbol Table, in that order. The size of these areas is normally
fIXed by the assembler in a sensible ratio although you may change the
size of the Symbol Table buffer (using option *B) on any run of GENSO.
If object code generation is inhibited then the source text is given all the
available memory not allocated to the.Symbol Table.

GENSO is a two pass assembler; it begins by reading as much of the
source text as will flt into the relevant memory area. This may be all of
the source. The assembler then enters its first pass in which it searches
for errors within the text and compiles its symbol table in memory.
When the last line of text from memory has been processed GENSO
checks to see if all the text has been read from the disc - if not, the
source text area in memory is ftlled with fresh text from the disc and
the first pass continues. This path may be altered through use of the
Include assembler command (*I) which allows source from a specified
disc ftle to be assembled; when the source from this new file is
exhausted then assembly will continue from after the include line in
the original file. This is all handled automatically and is transparent to
the user.

During the first pass nothing is displayed on the screen or printer
unless an error is detected, in which case the rogue line will be
displayed with an error message and the fllename of the file in which
the error was detected. The assembly then continues, displaying error
messages as appropriate. It will often be useful to direct these
messages to a disc flle for later inspection as well as the screen (see
Section 2.3).

Page G-4 HiSoft Devpac80 ver. 2 Gen80

r

At the end of the first pass the message:

Pass 1 errors: nn

will be displayed. If any errors have been detected the assembly will
then halt and not proceed to the second pass, unless you have specifled
that the 2nd pass be forced using the option *F.

If any labels were referenced in an operand field but never declared in
the label field then the message

WARNING label absent

will now be displayed (with label being the name of the undeclared
label).

If errors or warnings occurred and you ran GENSO from within the
menu system then the message:

Error(s) found, hit a key for the editor:

will appear. Hit a key and the editor will appear with your source ftle.
You can now use the command Goto Next Error to skip to the rogue
line, correct it, exit the editor and re-assemble from the menu. More
details of this are given in the Editor and Tutorial sections.

If you ran GEN SO from CP /M then you will be returned to CP /M.

If no warnings or errors were detected (or the 2nd pass was forced),
then the assembly now proceeds to the second pass.

It is during the second pass that object code is generated, if required.
Code is fed to the object code buffer in memory and if this area becomes
full then it is emptied to the specified object code file on disc and re
initialised. An assembler listing, see Section 2.13, is generated during
the second pass unless this has been switched off. The only syntax
error that can occur during the second pass is the

Out of range

error and the action taken following this is the same as given above for
first pass errors.

Gen80 HISoft Devpac80 ver. 2 Page G-5

The assembler listing may be paused at any time by using [CTRL] -s
and restarted by using any key except [CTRL]-C which will abort the
listing.

At the end of the second pass the message:

Pass 2 errors: nn

will be displayed followed by a repeat of any warnings for any absent
labels detected during the first pass. You will now be informed of how
many ORG assembler directives were issued; this is done since COM flles
must be continuous and the use of more than one ORG implies a
discontinuity of object code. The form of the message is:

WARNING ORGs used: nn

Finally the assembly will terminate with the message:

Symbol table used:xK out of yK.

where x is the number of kilobytes used by the Symbol Table and y is
the number of kilobytes that was allocated to the table.

Note: If at any time du.ting the first pass the Symbol Table becomes full
then it will not overflow to disc. Instead the message

Used all xK bytes of Symbol Table!

will be reported and the assembly aborted.

If errors were detected on the second pass then the action taken is the
same as that at the end of the first pass i.e. you are either returned to
the editor of CP/M depending on how you invoked GEN80.

2.3 Top-of-File Options

There are a large number of options available within GEN80 for
controlling the assembly process. They may be broadly divided into
those that must appear at the top of the source file and those that may
appear anywhere in the source flle.

Page G-6 HiSoft Devpac80 ver. 2 Gen80

The top-of-file options are described here and the others, which are
called assembler commands, appear later. There are three of the top
of-file options that belong to both groups and these are accordingly
described in both sections.

There are two places that are considered the top of the file:

1) On the command line when using GENSO directly from CP /M.
When the options appear here, they must be preceded by a; and
separated from each other by tabs, spaces or commas e.g.

GEN80 test;N, R+, K (RETURN]

2) On the vexy first line of the source file. When the options appear
here, they must be preceded by a * and sep�ated from each
other by tabs, spaces or commas e.g.

*List+, Maclist On Print +

When developing interactively with HDE, this is the only way you
can specify the top-of-file options.

If there are no options required then it is wise to leave a blank line at
the front of the file. The assembly options are divided into two groups:
Switches and Global Options (which must appear at the top of file).

SWITCHES consist of a letter indicating the command (optionally
followed by the rest of a word) followed by white space (space or tab
characters) and then one of ON, OFF. + or - . ON and OFF may be entered
in lower case if you wish. This format allows the flexiblity to be either
terse or to make things clear to the inexperienced user. For example:

GEN80 TEST;Listing off

GEN80 TEST;L - (Note that if + or - is used)
GEN80 TEST;List- (white space need not be present)

will all have the same effect (of switching off the listing).

Gen80 HiSoft Devpac80 ver. 2 Page G-7

The six switches are:-

List

This specifies whether assembly listing is generated. A counter is
maintained during the second pass of the assembly, the state of which
dictates whether listing is on or off. A List ON command adds 1 to the
counter and a List OFF command subtracts 1. If the counter is zero
or positive then listing is on, and if it is negative then listing is off. The
default starting value for the counter is -1 (i.e. listing off). This system
allows a considerable degree of control over.listing permitting, as an
example, the overriding of the List OFF which normally appears at the
head of a libraiy file by a preceding List ON in the main file. If the user
does not require such control. then alternating ON and OFF commands
will, of course, work as expected. The List switch is also an assembly
command (i.e. it may appear anywhere in the ftle) and is also mentioned
in Section 2.11.

Maclist

This specifies whether the lines generated by the expansion of macro
calls are listed or not. The default is Mac list OFF. The Maclist switch
is also an assembly command (i.e. it may appear anywhere in the file)
and is also mentioned in Section 2.11.

Printer

This specifies whether the assembler listing (if listing is being
generated) is output to the printer (via the CP /M logical device LST:).
The default is Printer OFF. The Printer switch is also an assembly
command (Le. it may appear anywhere in the file) and is also mentioned
in Section 2.11.

Relocate

This allows to to choose to generate either . COM or . REL object code
ftles .. COM files are ftles that can be executed directly from CP /Monce
they are produced, they should start at address #100 (decimal 256) .
• REL object files cannot be executed directly, they consist of a stream
of bits and not sensible Z80 opcodes.

Page G-8 HiSoft Devpac80 ver. 2 Gen80

The purpose of . REL files is to allow linking of files together, two or more
. REL flles may be joined together using a standard linker (e.g.
LINK. COM supplied with Amstrad CP /M Plus) or Microsoft's I..8O™.

The default setting of this switch is R- i.e. so relocatable output is off
and a . COM file is produced. If R+ is used then other assembler directives
are allowed viz. ASEG, CSEG, DSEG, PUBLIC, EXTERNAL, . PHASE, and
.DEPHASE. These are specific to relocatable code output and are
explained in more detail later: if you attempt to use these directives
when R+ has not been used then you will get an error. You can also use
.REL files to make Resident System Extensions under CP/M Plus.

Quick

This somewhat arbitrarily-named option specifies whether or not a
. ERR file is generated by the assembler when errors are detected.

If you have used Q+ then all error information will be dumped to a . ERR
file whose ftlename is the same as the source filename: this error
information is then used by the interactive editor (HDE) to show you
the errors in your source flle when you use the Goto Next Error
command. If you use Q- then no . ERR file is produced.

Upper case

u+ switches case-sensitivity off so that the assembler upper-cases all
characters in labels: u- turns case-sensitivity on. The default is u-.

The following GLOBAL OPTIONS may only appear at the top of the file.

Directlnput

This extremely powerful option may only appear on the command line
and not in the file and therefore cannot be used interactively. It allows
you to enter text from the keyboard just as though it was in a file. If

this option has been specified, GENS0 will print the prompt

Direct mode:
At Front (Y/N)?

and on receipt of an answer (Yes or No) will then accept input from the
keyboard prior to considering the frrst line of the main file.

Gen80 HISoft Devpoc80 ver. 2 Page G-9

You should type instructions just as though to a file and all the normal
CP /M line-editing functions are available. On receipt of a blank line
(i.e. just [RETURN) alone), GENSO will make a temporary file on the
logged-in disc whose identifier is GENTEMP. $ $ $ and whose contents are
whatever has been typed at the keyboard. GENSO's activities now
depend on the answer to the original prompt.

If you replied Y then GENSO will act as though the first line of the file
was

*I GENTEMP.$$$

i.e. the text input from the keyboard will be assembled at the front of
the file. GENSO will then continue to assemble the main file as normal.
If you replied N then GEN SO will ignore the temporary file and continue
to assemble the main file as normal. In both cases (but more obviously
the second case) you are free to include the line

*I GENTEMP.$$$

explicitly in the main (or any other) file (see Assembler commands
below for the meaning of *I). The temporary file will be deleted after
assembly is completed. The default setting is that Directlnput is not
accepted.

The Directlnput option can be used in many ways:- a label controlling
conditional assembly may be specified without altering the main file,
registers may be set up specifically for testing of program modules. an
ORG statement may be typed to test or verify the position-independence
of code etc.

ForceSecond

If this option is specified then the Second Pass of the assembly process
is forced even if there are errors or warnings in the first pass. This
option will generally be used if a print-file is being made (see below) so
all errors can be inspected and corrected at on go. An additional use
of the option is to find any

Out of range

errors (e.g. a relative jump that is out of range).

Page G-10 HISott Devpac80 ver. 2 Gen80

This type of error will only occur on the second pass and will thus be
missed if the assembly is aborted after the first pass due to other errors
in the file. The default setting is that the second pass is not forced.

KillObject

If this option is specified then if the object file already exists on the disc,
it will be deleted without asking the user. If the option is not specified
then the user will be prompted whether to delete the previous object file
or not. The default setting is that previous object files are deleted
automatically.

NoObject

This specifies whether an object file (. COM or . REL) is generated or not.
Using this option to inhibit generation of object code may be used for
a fast test assembly to check that there are no syntax errors in the file.
The default is that object code is generated. ·

TablePrint

If this option is specified then a Symbol Table, showing all labels in
alphabetical order (with their values) is output after the end of the
second pass. If this option is selected with listing off and a print-file is
made (see below) then a disc file will be produced consisting only of the
source file labels. This can be extremely convenient and useful for
debugging or reference purposes. The default setting is that no Symbol
Table list is produced.

Generate SYM file

The G option dictates whether or not a . SYM file is created and what
length of symbols go into it. The reason for wanting a . SYM file is that
the debugger,ProMON, will use any . SYM file corresponding to an
object program that is being debugged to extract the symbols of the
program so that you can see your program labels while debugging.

Gen80 HiSofl Devpac80 ver. 2 Page G-11

Two types of . SYM file may be produced; one containing up to 6
character labels, upper-cased (for compatibility with the . SYM files
created by the linkers LINK and LSO) or one with up to 10 character
labels, upper- and lower-cased for maximum readability whilst
debugging. You get the first by using G 6 and the second by G 1 o which
is the default. Alternatively, you can generate no . SYM file by using G
o to turn off the symbol dump.

Virtual Disking

This option allows the user who has only one disc drive in his system ,,..---..,
to retain full control over which discs are used for various files. If this
option is specified then the letter that is normally used in CP /M to
denote a drive is now used to denote a disc, and the logged-in drive is
used throughout. Thus the source file might read:-

*Virtualdisking, WritePRNfile B:file

*Include C:modulel
*Include C:module2
*Include C:module3

and the command line might be:

A>GEN80 D:file=file [RETURN]

This rather complex example simply means:-

a) Drive A: is used throughout
b) The main source file is taken from the same disc as GEN80. This "

is because no discname is specified for it on the command line.
c) A print-file is produced on another disc (B:).
d) The includes are taken from another disc (C:).
e) The object file is written to a fourth disc (D:).

Whenever a disk-change is required (which would be rather often in the
above slightly far-fetched example) GEN80 halts and prompts you to
insert a disc. This should, of course, be put into the logged-in drive and
then a key is pressed to restart GEN80.

Page G-12 HISoft Devpac80 ver. 2 Gen80

Virtual disking allows the owner of a one-drive system both to assemble
large files and to keep different types of files on different discs (e.g. a
certain disc is used for .PRN files alone).

WritePRNfile

If this option is specified then a file with filetype . PRN will be created
containing whatever assembly listing and error messages that would
otherwise have gone to the screen. You may specify a filename after
WritePRNfile (separated by a tab, space or comma).

If no file is specified then the drive and filename are the same as for the
source file, otherwise if no drive is specified then the currently logged
in drive is used. If errors result from the assembly then the messages
are sent both to the screen and the file. The default setting is that no
print-file is created. No other assembler option may follow the
WritePRNfile option.

SizeOflabels

This specifies the number of characters in labels that are treated as
significant and requires a numeric parameter. This should be a decimal
number separated by a space, tab, or comma from the option itself. The
value given is the number of characters that will be entered into the
Symbol Table and thus space considerations form the upper limit for
label length e.g.

Size 6 for a small symbol table.
Size 12 for a very readable listing but large symbol table.

Whatever value n is given, the first n characters of all labels must be
unique or a

Re-defined symbol

error will occur. The default value is 10, which should be sufficient for
most purposes.

Gen80 HiSoft Devpac80 ver. 2 Page G-13

BufferSymbols

This is used to specify the amount of memory used by the Symbol Table
and requires a numeric parameter. This should be a decimal number
separated by a space, tab, or comma from the option itself. The value
given is the amount of memory in kilobytes that the Symbol Table may
occupy. The default is 38% of the available RAM. The amount of space
used and allocated is displayed at the end of assembly. For fast
assembly it is best to specify a table-size just larger than that required.

(

As an example, if a test assembly reports that the Symbol Table size
used was 7K then you should subsequently specify a size of 7 for most r-,

efficient and speedy assembly e.g. use

B 7 as the option.

Remember that when you use options in your source ftle you must start
the line on which you use the options with an asterisk(*) e.g.

*List ON, R+, S 12

2.4 Assembler Statement Format

Each statement that is to be processed by GEN80 should have the
following format:

LABEL
start

MNEMONIC
LD

OPERANDS COMMENT
HL,label ;pick up 'label'

Excess spaces and tab characters (over and above the ones used to
separate the various fields) are ignored.

GEN80 processes a source line in the following way:

The first character of the line is checked and subsequent action
depends on the nature of this character as indicated on the next page:

Page G-14 HISoft Devpac80 ver. 2 Gen80

; the whole line is treated as a comment i.e. effectively ignored.

* expects the next character to be the first letter of an assembler
command - see Section 2.11. There may be more than one
command on a line and the commands should then be separated
by tab, space or comma characters.

<CR>

(end-of-line character) simply ignores the line.

(space)
if the first character is a space or a tab then GEN80 expects the
next non-space/tab character to be the start of a mnemonic,
macro or comment.

If the first character is any other than those given above then the
assembler expects a label to be present. For the format of a label see
Section 2.5 below.

After processing a valid label, or if the first character of the line is a
space/tab, the assembler searches for the next non- space/tab
character.

When found it either expects the character to be an end-of-line
character (in which case processing of the line ends) or the following I
plus characters to be a mnemonic or macro terminated by white space;
for a list of mnemonics see Section 4.3. If the mnemonic or macro is
valid and requires one or more operands then spaces/ tabs are skipped
and the operand field processed. Each mnemonic has a definite
number of operands associated with it.

Comments may occur anywhere after the operand field or (if a
mnemonic takes no arguments) after the mnemonic field and may be,
theoretically, of any length.

Gen80 HiSoft Devpac80 ver. 2 Page G-15

2.5 Labels

A label is a symbol which represents up to 16 bits of information. It can
be used to specify either the address of a data area or particular
instruction or it can be used simply to specify data. If a label has been
associated with a value greater than 8 bits and it i_s then used where
an 8 bit constant is applicable then the assembler will generate an error
message e.g. the text:

Label EQU #1234

LD A,Label

will generate the error

Out of range in <source filename>

when processing the second statement on the second pass.

A label can contain any number of valid characters. It is, however open
to the user to specify how many of the characters are significant. As an
example, assume you specify (by use of the s assembly command) that
labels should be six characters in length. Now, although labels may be
any length in the actual source file, only the first six are entered into
the symbol table and thus two labels whose first six characters are the
same (even though subsequent characters may differ) will be seen by
GENSO as identical.

Thus if the label length is s (default value 10) the first s characters of
all labels must be unique since a label may not be re-defined (unless
the DEFL pseudo-operand is used. See Section 2.10).

A label must not constitute a Reserved Word, see Section 4.2, although
a Reserved Word may be embedded as a part of a label.

The characters which are legal in a label are: 0- 9 $ and A- z although
a label may not start with a decimal digit. A label may also start with
a period (.) for compatibility. Note that A-z includes all the upper and
lower case alphabetics and the characters [\ J " ' _. A label may
optionally be terminated with a colon, which will be stripped from the
label. This feature is included for compatibility with source files from
oth�r assemblers.

Page G-16 HiSoft Devpac80 ver. 2 Gen80

Some examples of valid labels:

LOOP (These 2 labels are distinct)
loop (as case is distinguished)
a_long_label
A Label nol (not distinct by default as)
A Label no2 (first 10 chars not unique)
LDIR (LDIR is not a Resexved Word)
. labe 11 : (These 2 labels are identical)
.labell (as trailing colons are lost)

2.6 Location Counter

The assembler maintains Location Counters so that symbols in the
label field can be provided with addresses and entered into the Symbol
Table.

2.6. 1 .COM file Mode

Only one location counter is used when the assembler is generating
• COM files directly (this is the default mode or R-), this location counter
is initially set to the value #100 which is the start address of any file
loaded by CP /M. The location counter is increased as instructions are
generated.

You may set the location counter to any absolute value through use of
the ORG directive; note, though. that this will simply change the value
of the counter so that the next code will be generated as if it loaded at
the new address, no padding code will be created to actually force the
code to load at that address, that is your responsibility e.g.

ld de,start
ld hl,code
ld bc,length
ldir

jp start

message cib "Hello World!$"

Gen80 HiSoft Devpac80 ver. 2 Page G-17

code
org #8000

start
ld de,rnessage
ld c,9
call 5
rst 0

length equ $-start

This code will load at # 1 0 0 since this is the default. The code moves the
4 instructions at the end to location #8000 and then jumps there to
print out a message. These 4 instructions are actually held
immediately after the message but are assembled as if they were to run
at #8000 (the purpose of the ORG) and thus, when they are moved to
#8000, they will execute correctly there.

If you wish to pad out your code so that code after an ORG is generated
in the place it is going to run, then you can use the DEF..:; directive like
this:

address equ #8000

jp far
defs address-$

org address
far

call routine

jp more

Remember, though, that this will create a program on your disc that
is nearly # 8 o o o (32K) long, mostly full of zeroes! Normally this would
not be a sensible thing to do.

The above example demonstrates the use of the $ symbol to mean the
current value of the location counter, $ gives the value of the counter
at the beginning of this instruction.

Page G-18 HiSoft Devpac80 ver. 2 Gen80

,----..,

2.6.2 .REL file Mode

When using the R+ command to generate .REL files the assembler
keeps separate location counters for the ASEG, CSEG and DSEG

segments. This is so you can mix up the different segment types
without confusing the assembler. All location counters are set initially
too.

The Location Counter value within any segment may be set by use of
the ORG directive but this has different effects depending on which type
of segment you are currently using.

Within ASEG (the Absolute SEGment), an ORG will behave as described
above for . COM files except that, at link time, the code following the ORG

will be loaded at the address of the ORG i.e. there is no need for you to
move it or to pad out using DEFS, the linker does the padding for you.
Also the intial location counter is o not noo.

For CSEG (Code SEGment) and DSEG (Data SEGment) an ORG sets the
location counter relative to the start of this segment e.g.

*r+

DSEG

ORG 256

message defm "Devpac80$"

will generate the message at 256 bytes from the start of this data
segment, not at absolute location 256. The linker will decide where it
is going to load this segment and will generate 256 nulls within the
segment, before the message.

If you've been following the above discussion closely you might now be
Hunking, What if I want to generate some code that is to be moved by
me and executed at a different address, like for the . COM .file example
above? The answer is to use the directives . PHASE and . DEPHASE;

.PHASE exp says to the assembler: generate the following code as ifit
were to execute at address exp but leave it here. The linker also leaves
it where it was generated and does not move it. It is up to you, the
programmer, to move it to its execution address when appropriate .
• DEP HASE turns off this mode and reverts to the previous mode.

Gen80 HiSoft Devpac80 ver. 2 Page G-19

For example:

*r+

jp more

.PHASE C000h

or a

jp p,Not_Scr

call Get Screen

or a

ret

Not Ser call Get _Key

scf

ret

.DEPHASE

more ex de,hl

The code between .PHASE and .DEPHASE is left where it is by both the
assembler and the linker but the location counter is changed to be at
hex c 0 0 0 after the . PHASE so that the code is generated as though it was
at that address. You can then move it when you want. The expression
after the . PHASE must be absolute and the mode after a . PHASE is ASEG.

In . REL mode, the symbol $ works as you would expect, returning the
value of the location counter, within this segment, at the beginning of
this instruction.

2.7 Symbol Table

In the following discussion, the words symbol and label are used to
mean largely the same thing. In general, the text that is found in the
label field is called a symbol. Every time a symbol is encountered for
the first time (either in the label field or in the operand field) it is entered
into a table.

LABEL LD HL,3 ;LABEL in the label field

LO HL,LABEL;LABEL in the operand field

Page G-20 HiSoft Devpac80 ver. 2 Genao

If the first occurrence of the label occurs in the label field then its value
(the value of the Location Counter at this point) is also entered into the
table. Otherwise the value is entered later whenever the symbol is
found in the label field. In . REL file mode, any symbol listed after the
EXTRN directive is also included in the symbol table.

If, at the end of the first pass, any symbol In the table does not have a
value associated with it (apart from those declared as EXTRNal) then the
message:

WARNING label absent

will be generated for each &ymbol without a value.

if, during the first pass, a &ymbol is defined more than once in the label
field then the en-or:

Re-defined symbol in -<source filename>

will be generated since the assembler does not know which value
should be associated with the label.

Note that, by defauit, only the first I O characters of a label (see Section
'2.5 above) are entered into the Symbol Table in order to keep down its
size, this may be changed using the command s. The space allocated
to the Symbol Table may also be set (using the command B, see
Sections 2.2 and 2.3) and the default space allocated is 38% of the
available memory. As a rough guide as to how much space to allow for
the Symbol Table (in files producing less ,than about 8k of object code,
the default value should be sufficient) assume that each symbol
occupies 7+s bytes within the table, where sis the significant size of
your symbols. If you have a great number of macro definitions then you
may need to increase the size of the table since macro definitions are
also stored in the symbol table.

At the end of each assembly you will be given a message stating how
much memory was used by the Symbol Table during this assembly. It
is possible, however, to obtain a complete alphabetic list of the Symbol
Table at the end of the second pass (use the command T, see Section
2.3). Again, only the first s characters of any symbol will appear in this
list.

Genao HISoft Devpac80 ver. 2 Page G-21

2.8 Relative & Absolute Values

In . COM mode, all symbols are deemed to be absolute and can be added,
subtracted, multiplied etc. together at will, see Section 2.9 below.

In . REL mode symbols can be absolute or relative and there are
restrtctions as to how these different types of symbols can be combined
together. A relative symbol arises within the CSEG or DSEG segments
where it is effectively relative to the start of this particular section e.g

*r+,l+
CSEG

Absolute equ 5

Relative call Absolute

jp m,Relative

Absolute is an absolute symbol since it has one, unchanging value,
Relative, on the other hand, is a relative type of symbol since its value
will depend on where this CSEG is loaded by the linker.

All symbols defmed within ASEG are absolute whilst symbols defined in
CSEG and DSEG segments are absolute or relative depending on their
definition as in the above example. The rules for combining absolute
and relative symbols are given in Section 2.9 below.

If an expression evaluates to a relative type then the letter R is included
after the machine code representation in the assembler listing, this R
does not get generated in the code!

2. 9 Expressions

The expression handling in GENSO allows a wide range of operators to
be used, with full precedence which may be overridden by the use of
brackets. The items in expressions are either labels, in which case their
current value is used, or numbers or characters.

Page G-22 HiSoft Devpac80 ver. 2 Gen80

r'\

Numbers are one of the following:

1) A decimal number. Just a sequence of decimal digits.

2) A hex number. The hash character (# or ASCII 35 decimal)
followed by hexadecimal digits or a decimal digit (to distinguish
it from a label) followed by hex digits terminated by H.

e.g. #4A2E #AF SAFOH OAFH

Note that COS OH is a label but OCOSOH is a number.

3) A binary number. The % character followed by binary digits or
binary digits terminated by B.

e.g. %11011111 1101B %1111 10101010B

Literal characters are represented by enclosing them in double or
single quotes. Thus all the following lines will produce the same object
code:-

LD A,65
LD A,#41
LO A,41H
LO A, %1000001
LD A,01000001B
LO A, "A"
ld a, 'A'

A single quote character can be represented by " ' " and double quote
by '"' .Arithmetic operations generally use signed 16-bit arithmetic,
but the result is given modulus 65536 and overflow is ignored. What
this means in real terms is that the result will almost always be what
is expected. As an example:- 3 * #4000 = #COOO. Strictly speaking this
operation should lead to an overflow using signed arithmetic (#COOO is
really -#4000). but the result returned is what would be expected (i.e.
3*4=12=#C).

The only exception to this rule is during division where the operand is
a negative number (i.e. greater than #7FFF). As an example:-

#COOO / 2 = #EOOO (i.e. -4/2=-2)

Gen80 HiSoft Devpac80 ver. 2 Page G-23

When used with operators other than the + and - operators the
operands used must be absolute and not relative since, for example,
multiplying two relative values together is meaningless because you
have no idea what the end result is going to be since the linker decides
relative values. The results of combining absolute and relative values
with addition and subtraction are given below:

I Operation 1st operand 2nd operand Result type

+ absolute absolute absolute
+ absolute relative relative
+ relative absolute realtive
+ relative relative *illegal
- absolute absolute absolute
- absolute relative *illegal
- relative absolute relative
- relative relative absolute

• these operations are illegal and give an assembly-time error.

Relative values may be defined in the CSEG or DSEG segments but a
relative value defined in CSEG cannot be combined in any way with a
relative value defined in DSEG. Symbols defined in ASEG or when
generating a . COM file are absolute in type and can be combined in any
way.

External symbols (defined with the EXTRN directive) may also be used
in expressions. Any expression (absolute or relative) can be added to
an external, but you may not have more than one external in an
expression. Thus if we have

offset
label

EXTRN ext, ext2
equ 4

ld hl,10

then the following are all valid:

ld hl, ext+2
ld de,label+ext
ld de,ext +offset*2

Page G-24 HiSoft Devpoc80 ver. 2 Genao

r

But the following are illegal:

ld hl,2-ext ; can't have -external

ld de,ext*2

ld bc,ext+ext2 ;two externals in expression

Logical false is represented by O and logical true by -1 (or tFFFF),
although other non-zero values will be treated as true in most cases.
The logical operators are performed bitwise.

Note: The symbol $ returns the current value of the Location Counter.

Strings may also be used in expressions with compartson operators
only. This may not sound veiy useful but can be used to great
advantage in complex macro definitions.

A list follows of all the operators with their priority (I is the highest
priority). Brackets () may be used to override the normal priority.

Operator Precedence Table

1) Unaiy plus (+)
Unaiy minus (-)
Logical NOT (.NOT.)

Get high 4 bits (.HIGH.)

Get low 4 bits (.LOW.)

2) Exponential (. EXP •)

3) Multiplication(*)
Division (/)
Remainder (. MOD •)

Shift left logical (. SHL .)

Shift right logical (. s HR.)

4) Binaiy plus(+)
Binaiy minus (-)

5) Logical AND(&) or (.AND.)

6) Logical OR (.OR.)

Logical EXCLUSIVE OR (.XOR.)

7) Equals(=) or (.EQ.)

Signed less than (<) or (.LT.)

Signed greater than (>) or (.GT.)
Unsigned less than (. UL T.)

Unsigned greater than (. UGT .)

Gen80 HISoft Devpac80 ver. 2 Page G-25

The following are allowable expressions in GENS0:

#5000-label
16-%1110001
labell-label2+label3 These two expressions
labell-(label2+label3) are not the same

2.EXP.label
labell+(2*.NOT. (label2=-l))
"A"+l28
"A"-"a"

label-$
$+(label2-labell)

Notes on the operators

. NOT . is a unary operator. To produce the same effect as
(labell:if:label2) use the construct .NOT. (labell=label2)

.EXP. is used to raise a number to a power. Thus 3 .EXP. 4=81.
The expression following . EXP . is treated as unsigned and the
result will be modulus 65536 (i.e. overflow is ignored) .

. SHL. and . SHR. shift the first argument left or right by the
number of bit positions specified in the second argument. Zeros
are shifted into the low-order or high-order bits. Either operator
may have a second argument that is negative. Thus
labell.SHL.-2 is equivalent to labell.SHR.2

The five comparison operators (. EQ. . LT. . GT. . ULT. . UGT.)
will evaluate to logical true (-1 or# FFFF) if the comparison is true
and to logical false (0) otherwise. Thus (1. EQ .1) will return the
value-1 and (1>2)will retum the value 0. The operators .GT. and
. LT. deal with signed numbers whereas . UGT. and . ULT.
assume unsigned arguments. Thus (1. UGT. -1) is false (i.e. 1 is
not greater than 65535) but (1. GT. -1) is true (i.e. 1 is greater
than -1) .

. HIGH. and . LOW. are monadic operators returning the top and
bottom 8 bits of their arguments respectively. For example:

. HIGH. #1234 returns #12

. LOW. #1234 returns #34

Page G·26 HISoft Devpac80 ver. 2 Gen80

2. 10 Assembler Directives

Certain pseudo-mnemonics are recognised by GENSO. These
assembler directives, as they are called, have no effect on the Z80
processor i.e. they are not decoded into opcodes, they simply direct the
assembler to take certain actions at assembly time. These actions have
the effect of changing. in some way, the object code produced ..

Pseudo-mnemonics are assembled exactly like executable
instructions; they may be preceded by a label (obligatory for EQU, DEFL,

MACRO) and may be followed by a comment. The directives available are:

ORG expression

Sets the Location Counter to the value of the expression. In CSEG and
D SEG modes the location counter is set relative to the start of the section
whilst in ASEG and . COM mode it is set to an absolute value.

EQU expression

Must be preceded by a label. Sets the value of the label to the value of
the expression. The expression cannot contain a symbol which has not
yet been assigned a value.

DEFB expression{,expression,expression etc.}
DB expression(,expression,expression etc.}

DEFB or DB may be followed by as many expressions as can fit onto a line.
Each should be separated from the next by a comma and each must
evaluate to 8 bits or be a string. For each expression, the appropriate
byte is set to hold the value of the expression. Examples:

DEFB "A message", CR

db 1,2,3,4,5
defb CR,LF, 'Press a key',0

Strings are enclosed with single or double quotes. To include the quote
character in a string type it twice. E.g.

defb "double "" single '"
double " single '

Genao HiSoft Devpac80 ver. 2

gives
in the object code.

Page G-27

DEFW expression{,expression,expression etc.}

DW expression{,expression,expression etc.}

DEFW or ow may be followed by as many expressions as can fit onto a line.
Each should be separated from the next by a comma and each will be
evaluated as 16 bits. For each expression, the appropriate word, or two
bytes (starting from the Location Counter and incrementing by 2 after
each expression) is set to hold the value of the expression. The least
significant byte is placed at the lower address while the most
significant byte is placed after it i.e. normal Z80/Intel format.
Examples:

defw 10000,1000,100,10,l
dw label+2,label+4

DEFL expression

ASET expression

DEFL must be preceded by a label and sets the value of the label to the
value of the expression. The expression cannot contain a symbol which
has not yet been assigned a value. DEFL is veiy similar to EQU except that
if a label that has already been defined is redefined using EQU, an error
results. The use of DEFL to redefine a label overrides this error, and
means that a label may act as a variable during the time of assembly.
Thus the code:-

labell
labell

EQU 0
EQU 1

will produce an error, whereas the code:-
labell EQU 0
labell DEFL 1

is legal. The DEFL directive may be used on the same label as many
times as desired. This feature is often used in conjunction with macros
to avoid the same piece of code being produced repeatedly. See Section

2.12 on macros below.

ASET is an alternative for DEFL.

Page G-28 HiSoft Devpac80 ver. 2 Gen80

DEFS expression{,expression}
OS expression{,expression}

Reserves a number of bytes equal to the value of expression at the
current Location Counter and fills that memory with the value of the
second expression or zero if there is no second expression.

DEFM "string"

Defmes the contents of N bytes of memory to be equal to the ASCII
representation of the string, where N is the length of the string and may
be between O and 255 inclusive. The first character in the operand field
can be either ' or " and act$ as the string delimiter.

DC "string"

DC works like DEFM except that the top bit of the last character in the
string is set. This is sometimes useful for messages where the message
printing routine detects the end of the message by checking the top bit.

de "Hello there" gives

48 65 6C 6C 6F 20 74 68 65 72 ES

MACRO {parameters}

This direct·ve must be preceded by a label and marks that label as
identifying a macro. The parameters for the macro follow. Each
parameter must start with the character@ and is separated from the
next by a comma. The actual macro definition follows and must be
terminated by the directive ENDM (see below).

ENDM

This directive is used to signal the end of a macro definition.

Gen80 HISoft Devpac80 ver. 2 Page G-29

IF expression

COND expression

This is the first of the three conditional directives. The other two are
ELSE and ENDC. IF will evaluate the expression. If the result is false
(zero) then assembly of subsequent lines is turned off until either an
ELSE or an ENDC pseudo-mnemonic is encountered. If the result is non
zero then assembly is left in its current state. IFs are nestable to a
depth of 8.

ELSE

This pseudo-mnemonic normally flips the assembly on and off. If the
assembly is on before the ELSE is encountered then it will subsequently
be turned off and vice-versa. However. if ELSE occurs in a nested IF
then assembly will only be flipped if assembly was on before the
previous IF. If assembly was off then the ELSE has no effect.

ENDC

ENDIF

This pseudo-mnemonic returns assembly to the state it was in before
the previous IF.

The use of these conditional directives lies in the ability to control
whether certain sections of code are compiled or not. They are often
used in conjunction with labels and may be used, say, to control
whether a certain block of code used for debugging purposes is
assembled using the lines:-

IF DEBUG
;the debugging code sits here and will only
;be assembled if the va.lue of DEBUG is not 0

ENDC

The feature may also be used if the same code is being used on several
different machines and then generation of the various machine
specific sections of code may be controlled by the lines:-

Page G-30 HiSoff Devpac80 ver. 2 Gen80

END

IF CPC

ENDC

;this code will be assembled if the
;value of CPC is not 0

IF PCW

ENDC

;this code will be assembled if the
;value of PCW is not 0

This directive signals that no more text is to be examined on this pass.
It might, for example, be used in a macro in conjunction with the IF
directive to abort assembly if the parameters used are inconsistent
with the proper operation of the macro, or potentially disastrous to the
system. As an example, assume a macro:-

@BYTES,@FROM,@TO MOVE MACRO
IF'

*Zzzzz
END
ENDC

@BYTES<l ;if the number to move is zero
;make the listing stop here to
;see what's happening and quit

LD BC,@BYTES
LO HL, @FROM
LO DE,@TO
LDIR
ENDM

This would stop a disastrous piece of code being produced by the line:-

MOVE L2-Ll,Ll,L3

when L2 is the same as Ll.

Gen80 HiSoft Devpac80 ver. 2 Page G-31

.COMMENT delimited string

This directive allows multi-line comments; .COMMENT must start the
line (not in the mnemonic field) and you should follow the . COMMENT by
a space, a delimiter of your choosing followed by your comment text.
This comment text may then flow over as many subsequent lines as you
like and the assembler will treat everything as a comment until it finds
another occurrence of your chosen delimiter, for example:

.COMMENT/ This is a long comment that flows over
a number of lines and this feature allows
your source to be commented more neatly. /

. Z80

ld hl, label
bit 7, (hl) ;etc .

Does nothing, this directive is included for compatibility with other
assemblers. specifically the Microsoft MSO™ assembler. . z 8 0 must
appear at the start of the line, not in the mnemonic field .

. PHASE expression

This is used in . REL file mode to allow code to be assembled to run at
a different address, given by expression, from where it is placed .
. PHASE can be used in ASEG, CSEG and DSEG modes but the mode is
absolute while .PHASE is in effect, use .DEPHASE to end this mode.

For example, say you are writing some code that needs to run at
address #COO o but your main program is designed to execute at # 1 o 0.
This might be the case on an Amstrad CP /M Plus computer if you are
trying to access the video screen by the extended BIOS call SCR _RUN.
So you need some code ORGed at #C000 but you don't want it loaded
there by the linker. If you use ORG, the linker will load the code at the
ORG address, you don't want this because this would result in a very
large (approx. 48K) • COM file. So use . PHASE like this:

Page G-32 HiSoft Devpac80 ver. 2 Gen80

;some code to move a block of screen memory

;must go in common memory

MoveScr

.PHASE #C000

push

pop
ldir

ix

be ;because SCR RUN corrupts BC

;move screen RAM about

MSLen

ret

.DEPHASE

equ $-Move Ser

;some time lacer

SCR RUN equ 0e9h

ld hl,MoveScr

ld de,#C000

ld bc,MSLen

ldir

ld hl,ScrStart

ld de,ScrDest

ld ix,ScrLen

ld bc,#C000

call Call USERF

defw SCR RUN

;some time later

;etc

.COMMENT/ routine to call extended BIOS routine USERF

which takes extended routine address inline /

Call USERF

push hl

push

ld

ld

de

hl, (1)

de,87

add hl,de

pop de

ex (sp), hl

ret

;rest of your code

;to give USERF

Gen80 HiSoft Devpoc80 ver. 2 Page G-33

The above is a fairly complex example of the use of . PHASE, included for
those people who have an interest in hacking the screen environment
on anAmstrad CPC6128orPCW8256/8512/9512. In general.you use
.PHASE in .REL mode when you would use ORG in .COM mode .

. DEPHASE

Simply turns off the . PHASE mode and reverts to the mode that was in
force prtor to the previous .PHASE.

PUBLIC symbol, symbol, ...

Used to export symbols from this file that are to be used by other
assembly modules. This directive is only available when in . REL file
mode and tells the linker that the symbols have been defined values in
this assembly. Labels may also be declared PUBLIC by following the
label with 2 colons e.g. Message: : defm "Hello"

EXTRN symbol, symbol, ...

EXTERNAL symbol, symbol,

The symbols listed here are not defined in this source file but in some
other file. GEN80 accepts them as valueless and the linker will resolve
these references and fix-up the rtght values which will have been
declared PUBLIC is some other assembly. See Section 2.9 for the rules
regarding the use of externals in expressions. EXTRN can be used only
when generating . REL mes.

2.11 Assembler Commands

Assembler commands, with one important exception (*Inc 1 ude) do not
affect the code produced by GEN80. They are used for producing and
formatting the assembly listing. They are entered on lines that begin
with a * and may appear anywhere in the file. 1\vo or more may appear
on the same line and they should be separated by a comma, tab or
space character. Only the first character of the command is significant
(and may appear in upper or lower case) and the rest of the command
up to the next space, tab, or comma is ignored. The following
commands are available:-

Page G-34 HiSoft Devpac80 ver. 2 Gen80

*Eject

Causes a new page to be produced on the printer; carriage returns/
linefeeds are sent to the printer until a new page is reached. The
number of lines per page on your printer may be installed into GEN80,
see GEN80 Installation.

*Zzzzz

Causes the listing to be stopped at this point. The listing may be
reactivated by pressing any key on the keyboard. Useful for reading
addresses in the middle of listing. Note: *Z is still recognised after a *L
; see below. *Z does not halt printing.

*Heading string

Causes the first 32 characters of the specified string to be taken as the
heading which is printed on the top of every new page. An automatic
*Eis done after *H. The heading is only sent to the printer or print file.
The end-of-line character is taken as the terminator of the string and
white space may appear as desired in the string. No other text may
appear on the same line as a *H command.

*Include filenam·e
*Maclib filenam,e

This powerful assembler command causes source code to be taken
from another file and assembled exactly as though it were explicitly
present in the file. *Include must be followed by a filename (separated
from it by white space). If the filetype is not specified it will be assumed
to be .GEN. *Include commands may be nested up to 4 levels (i.e. an
included file may contain a *Include etc.). The *Include command
encourages and facilitates the modular approach to programming as
it becomes possible to develop and test modules one by one and finally
assemble the whole program from an extremely small main including

file thus:-

Gen80 HiSoft Devpac80 ver. 2 Page G-35

*LIST ON PRINTER ON TABLEPRINT WRITE PRN FILE
;Main linking file

DEBUG EQU 0 ;The real thing

*Include MODULEl
*Include MODULE2
*I MODULE3

Alternatively you can use the . REL file mode of the assembler to gether
with the EXTRN and PUBLIC directives and a linker to assemble modules
separately and then link them together. INCLUDE can also be present
as a mnemonic for Macro80 compatibility.

*List, *Printer, *Maclist

These are the three assembler,commands that are also top-of-file
options. They may thus appear on the command line and in the options
list. They are switches and details of their actions are described in the
section on top-of-file options, Section 2.3.

*Generate, *Quick, *Relocate

Top-of-file options, see Section 2.3.

2.12 Macros

In GEN80 macros are a powerful tool that let you greatly simplify
assembly language programming. When using macros in some less
sophisticated assemblers it is easy to generate huge code files, but
using the DEFL, conditional assembly and textual parameter facilities
of GEN80, files may be kept extremely readable and yet compact.

A macro may be defined thus:-

B C DE MACRO @PARAMl, @PARAM2
LO BC, @PARAMl ; The text of the
LO DE, @PARAM2 ;macro
ENDM

Page G-36 HiSoft Devpac80 ver. 2 Gen80

r

The pseudo-mnemonic MACRO is used to introduce a macro, and causes
the label (which must precede it) to be entered as a macro name into
the symbol table. The label thus becomes the name by which the macro
will be called. An optional list of parameters follow. Each must be
preceded by the character @ and may contain any of the characters
legal in a label (See Section 2.5). Parameters are separated from each
other by space, tab, or comma characters, but these characters may
appear in a macro parameter if enclosed in single quotes (when the
single quote is repeated to stand for itself) e.g.

PRINT

M@$YM

L@$YM

MACRO @Pl
PUSH HL
LO HL,M@$YM
CALL MOUT ;A message printing routine
POP HL
JR L@$YM ;See below for use of @$YM
DEFM "@Pl"
DEFB 0

ENDM
PRINT 'It''s a message' ;note, single quotes and

;It''s to give It's

The number of parameters allowed will rarely if ever be a practical limit.

The parameters declared on the first line of the macro are addressed
in the body of the macro by using the name with which they were
declared.

The macro definition is terminated using the pseudo-mnemonic ENDM.
All of the text between the MACRO line and the ENDM line is the macro
definition. The statements in the macro definition are not assembled
when they are encountered so they will not define labels, cause errors
or generate code. A macro may not be defined inside another macro
definition (nested definitions are not allowed). but a macro may be
called from inside a macro (recursion is allowed) and a macro may thus
call itself.

A macro is called thus:-

BC_DE #4424, -1

Gen80 HiSoft Devpoc80 ver. 2 Page G-37

i.e. the name occurs in the mnemonic field. It is then followed by any
actual parameters separated by delimiters. Delimiters are either
space, tab or comma characters. A parameter may optionally be
enclosed in single quotes and these will be stripped when the macro is
expanded. If the parameter contains space, tab, or comma characters
then the single quotes are obligatory. The quote character itself is
represented by two successive single quotes.

Parameters are substituted textually. When the macro is invoked, each
parameter in the definition is replaced for the text that is in the
corresponding position in the defmition. Thus in the example above,
the call to the macro will produce exactly the same code as if the
following text had been typed explicitly:-

LO BC,#4424
LO DE,-1

The following example will illustrate the real power of true textual
substitution as opposed to evaluation before substitution used in some
other assemblers:-

EXCH MACRO @REGl, @REG2
PUSH @REGl
PUSH @REG2 ;The body of the
POP @REGl ;macro definition
POP @REG2
ENDM
EXCH DE,BC ;calling the macro

The calling of the macro in the statement on the previous page will be
expanded to produce the code:-

PUSH DE
PUSH BC
POP DE
POP BC

.As can be seen, a new and highly useful pseudo-instruction has been
created which can be used exactly as a normal assembler mnemonic
which allows the user to swap the value of any of the register pairs
(excepting SP). providing an extension to the standard EX DE, HL
instruction.

Page G-38 HiSoft Devpoc80 ver. 2 Gen80

r

In addition to the parameters declared by the user every macro has an
extra implicit parameter @ $ YM. This returns a 4 digit hexadecimal
number which increases each time any macro is called. Its main use
is in generating labels which occur in macros. As an example:-

ABS MACRO

ABS@$YM

OR A

JP P,ABS@$YM

NEG

ENDM

then assuming that this was the only macro in a program it would
generate

ABSOOOl

OR A
JP P,ABSOOOl

NEG

when it is first called, and then

ABS0002

OR A
JP P, ABS0002

NEG

when next called. If@$ YM had not been used then the same label would
have been produced twice resulting in an error. There is an example of
@$YM on your disc, called FACT. GEN. Here is a listing of it, bend your
brain to fathom out how it works!

.COMMENT * A macro to generate factorial n and assign it

to result. Does up to factorial 6 (6!) *

fact:

@result

@result

Gen80

macro

if

defl

else

fact

defl

endc

endm

@result,@n

@n=l

1

t@$YM,@n-l

t@$YM* (@n)

HiSoft Devpac80 ver. 2 Page G-39

;a sample call

fact

ld

test,5

hl,test ;loads HL with 5 factorial

Another method of inhibiting the possible error above is given below to
stimulate the imagination. The method above runs faster but may
generate large amounts of code. The method below is extremely
compact.

ABSLAB EQU 0

ABS MACRO

CALL ABSUB

IF .NCT.ABSLAB

JR ABSEND

ABSUB OR A

RET p

NEG

RET

ABSLAB DEFL . NOT .. ABS LAB

ABSEND

ENDC

ENDM

Macros may be called recursively i.e. a macro may call itself, but macro
definitions may not be nested.

String comparisons may be used in macros to give optional arameters
or default values.

e.g.

CPM MACRO @FUN,@FCB

then

IF "@FCB">""

LD DE,FCB

ENDC

LD C,@FUN

CALL 5

ENDM

;we have a 2nd para�et�r

Page G-40 HISoft Devpac80 ver. 2 Gen80

LD E,A

CPM 2

CPM 26,80h ;set dma

will expand to

LO E,A

LD C,2

CALL 5

LD DE,80h

LD C,26

CALL 5

This is an easy way of detecting missing macro parameters thus adding
considerable flexibility to the use of macros.

2. 13 Assembly Listing

Each line of the assembler listing generated during the second pass of
GEN80 has the following format:

6000 210100 25 label LD HL,1 ;set HL to 1

The first entry in a line is the value of the Location Counter at the start
of processing this line, unless the mnemonic or macro in this line is the
pseudo-mnemonic EQU or DEFL (see Section 2.10) in which case the
first entry will represent the value in the Operand field of the
instruction.

The next entry, from column 6, is up to 8 characters (representing up
to 4 bytes) in length and is the object code produced by the current
instruction. This will be followed by the letter R if any operand
expression is found to be relative when assembling a . REL file.

Then comes the line number. Line numbers are integers in the range
1 to 65535. The line numbers corespond to lines in a particular file
rather than lines in the assembly; thus after a •1 compiler command the
number becomes 1 and when listing the expansion of macros no line
numbers are output.

Gen80 HISoft Devpoc80 ver. 2 PageG-41

Columns 21 to 20+s (where s is the length of labels defined by the s
-command with default S= 10) contain the characters of any labels that
may be present. If the line contains no labels then the field is left blank.

Next, in column 32 (assuming 10 character labels) is the mnemonic,
macro, pseudo-mnemonic or assembler directive.

Finally, from column 37 onwards (assuming 10 character labels), the
operands are output followed by any comment present. Comments
start at column 50 unless specified otherwise using the command c for
comment format.

Page G-42 HiSoft Devpac80 ver. 2 Genao

SECTION 3
Installing GEN80

GENSO does not require a correct installation to make it work
proper.but for maximum flexibilty you can change three aspects of
GENSO:-

a) The printer page length
b) The printer page width
c) The defaults for the top-of-file options

Type:

GEN80INS [RETURN]

then hit any key and N to the next question, this will read in the working
copy of GEN80 and then show the following menu:

GENB0 Installation Menu

1. Return to CP/M

2. Make changes

3. Save GENB0 as <working copy filename> (normally GENB0 .COM)

4. Save GENB0 as another file

Press 2 to make changes. You are now asked:-

Er.ter Printer Page Length (

The current value is given in brackets (and will be 66 which is the
normal value for most piinters). If the printer page length is different
for your printer then type in the number (in decimal) and then press
[RETURN]. Pressing [RETURN] alone acts like typing the number in
brackets. Next you are asked to:-

Enter Printer Page Width (

Gen80 HiSoft Devpac80 ver. 2 Page G-43

Enter this value in exactly the same way as above. Both of these values
are built-in to GENSO, and are only alterable by using the installation
program. Finally, a menu explaining the meaning of the various top
of-file options is given, together with the current default settings and
you are asked:-

Do you wish to change this ? (Y/N) ?

The current default options are those that are built in to GENSO. The
effect of them is exactly as though they had been typed in (preceded by
a*) on the top line of every file assembled by GENSO. As an example,
if you always like macros expanded in the listing, and only use the first
six characters of labels then you should include M+, s 6 (or perhaps
Macrolist ON, SymbolLength 6) in the line. You can use either
[CTRL J -H (backspace) or [DEL J as a destructive backspace when typing
in the new default string. Press [RETURN) when you are satisfied.
Pressing [RETURN) alone will accept the current default settings.

Note that the options are of two types. The first is followed by a
parameter (either +/-/ON/OFF or a number or string) and the other is
not. The first type can be overriden by an explicit command on the
command line or the top line of the file e.g. a default of Comment 50 can
be overridden by the line at the top of the file *Comment 4 O. The second
type, however, is only alterable by re-using the install program e.g. if
N is a default then GENSO will never generate an object file unless
reconfigured by the install program.

When back at the main menu, you can save GENSO as GEN80 .COM
(option 3) or as another file (option 4). Finally you can quit the install
program with option 1 (this does not save anything on the disc). It may
prove desirable to save two versions of GENSO on the disc. One may
be a version configured for syntax checking:-

N,F,L-,M-,P-,W

so that no object file is created, but the second pass is forced and all
errors are sent to a disc file for easy inspection by the editor. If you
normally produce linkable code then you can build the R+ option into
your file.

The two options s and B (for controlling the significant length oflabels
and size of symbol table) are parameters which are likely to be file
specific. That is, they are dependent upon the particular file being
assembled (i.e. does it use long or short labels and does it have an
abnormal length symbol table). Thus common-sense might dictate
that these options should appear on the first line of a file. if required,
rather than being built- in to GENSO (or having to be remembered on
the command line each time the file is assembled).

Page G-44 HiSoft Devpoc80 ver. 2 Gen80

SECTION 4

Quick Reference Guide

4. 1 Error Messages

The following is a list of the error messages generated by GENSO.

Label missing

One of the assembler directives EQU DEFL MACRO occurs on a line that
does not have an entry in the label field.

Illegal symbol

This message indicates that a label is badly formed and contains illegal
characters. Note that mnemonics and assembler directives are
acceptable as labels.

Symbol is Reserved Word

A label is declared which is a reserved word. Note that a reserved word
may constitute part of a label. Thus HL is an illegal label but HLl is not.

Redefined symbol

This occurs if a label appears twice in the label field (if DEFL has not
been used the second and subsequent times). This may be caused
when seemingly different labels are present, if the label length (S) is
such that the first s characters of the labels are identical.

Bad mnemonic

Indicates that the mnemonic (or opcode) is illegal. This error will occur
if a macro is called without (or before) having been declared.

Bad expression

An expression is badly formed. This generally means that an operator
is missing or unrecognisable.

Expression syntax

The operand field of a line is badly formed. e.g. LO A, DE

Genao HISoft Devpac80 ver. 2 Page G-45

Illegal Digit after # or %
A character which is not a valid hex digit is present after a # or a
character which is not a valid binary digit is present after a%.

Expression too complex
The expression evaluator has been called upon to do too much. Three
levels of brackets are the approximate maximum. Split the expression
into simpler units.

Division by zero
Self evident

Bad dot operator
An invalid dot operator has been used in an expression. This means
that a dot operator is badly formed eg . LT or . NOTT.

Numeric expected
This occurs when an expression contains a register where a number
or a label is expected. e.g. LD A, -HL

Missing)
This error indicates that an expression is missing a closing bracket.
The expression may be one containing an indirection off a register e.g.
LD HL, (32*LABEL or LD A, (HL

Illegal index
There are no brackets around an expression (IX+n) or (IY+n).

JP (IX+n), JP (IY+n) illegal
Self-evident

Mismatch of registers
Two of the register pairs HL, IX, IY occur in the same line, for example
ADD HL,IX

Bad command
This error indicates that the initial letter used for a command is
incorrect or the syntax of a command is bad e.g. *A or *L

Bad filename
The name of a file to be *Included is badly formed or does not exist.

Page G-46 HISoft Devpac80 ver. 2 Gen80

Too many includes

Includes may be nested up to four deep.

Bad directive

This error occurs if an assembler directive has the wrong number of
parameters
e.g. IF LABEL, 6

Forward reference

This error indicates that the expression after one of the directives ORG

EQU DEFL contains a label whose value is not yet declared.

Macro parameter stack overflow

The total number of characters generated during the expansion of a
macro is too great. The maximum is 255. This error will generally occur
when a macro is recursive, but may also occur if macros are nested i.e.
a macro uses a macro etc.

Bad Macro parameter

Macro parameters must be preceded by @ when the macro is declared.

Nested macro definition

A macro cannot be defined within another macro definition.

Bad ENDM

The directive ENDM occurs without a preceding directive MACRO.

Re-defined Macro

You have attempted to re-define an existing macro name.

Illegal for COM file
The directives ASEG, CSEG, DSEG, PUBLIC, EXTRN, • PHASE and .DEPHASE

can only be used when generating a .REL file (having used R+).

Expression must be absolute

The type of this expression cannot be relative, it must be absolute. (e.g.
after IF.)

String not terminated
A string has not been closed with either " or '. Version 1 users please
note that this wasd not previously enforced.

Genao HiSoft Devpac80 ver. 2 Page G-47

Illegal DEFM

. The structure of this DEFM statement is incorrect.

Error in Conditional

The nesting of your conditional statements has gone awry.

Out of range

This is the only error that can occur during the second pass. It most
frequently indicates a relative jump or DJNZ out of range. In general it
indicates that the value of an expression is too large to be held in one
byte e.g. LD A, 256 or DJNZ $-300 etc.

The following error messages arise from fatal errors. A fatal error is one
that will terminate the assembly process immediately and return to
CP/M.

No Source File:

The source file specified on the command line does not exist. This error
is suppressed if the D option is specified, allowing the assembly of small
files without the use of an editor. This is a fatal error.

Symbol Table too big!

The size assigned to the Symbol Table by the B option is too large for
the system. There is not enough space for the source and object
buffers. This is a fatal error.

Used all #XXXX bytes of Symbol Table!

The Symbol Table has grown too large to fit into the space assigned to
it. This is a fatal error.

Disc full!

Self-evident. This is a fatal error.

Directory Full!

Self-evident. This is a fatal error.

Page G-48 HiSoft Devpac80 ver. 2 Gen80

4.2 Reserved Words

The following is a list of Reserved Words within GENSO. These symbols
may not be used as labels although they may form part of any label.

A B C D E H L I R $

AF BC DE HL IX IY SP

C NC z NZ M p PE PO

Reserved words may appear in upper or lower case.

4.3 Valid Mnemonics

ADC ADD AND BIT CALL CCF CP

CPD CPDR CPI CPIR CPL DAA DEC

DI DJNZ EI EX EXX HALT IM

IN INC IND INDR INI INIR JP

JR LD LDD LDDR LDI LDIR NEG

NOP OR OTDR OTIR OUT OUTD OUTI

POP PUSH RES RET RETI RETN RL

RLA RLC RLCA RLD RR RRA RRC

RRCA RRD RST SBC SCF SET SLA

SRA SRL SUB XOR INCLUDE

Mnemonics may appear in upper or lower case.

4.4 Assembler Directives

.COMMENT .DEPHASE .PHASE .Z80

ASEG ASET COND CSEG DB DEFB

DEFL DEFM DEFS DEFW DS DSEG

DW ELSE END ENDC ENDIF ENDM

EQU EXTERNAL EXTRN IF MACLIB MACRO

ORG PUBLIC

Assembler directives may appear in upper or lower case.

Gen80 HISoft Devpac80 ver. 2 Page G-49

4.5 Top-of-File Options

BufferSymbols

Direct Input

GenerateSYMfile

List

NoObject

Quick

SizeOfLabels

Upper case

WritePRNfile

CommentPosition

ForceSecond

KillObject

Maclist

Printer

Relocate

Ta.blePrint

VirtualDisking

Top-of-file options may appear in upper and/or lower case.

4.6 Assembler Commands

*Eject

*Heading

*Include

*List

*Maclist

*Printer

*Zzzzz

Assembler commands may appear in lower and/or upper case.

4. 7 Operators

All the operators are listed in order of precedence.

1) + • NOT. . HIGH • .LOW .

2) .EXP.

3) * I ? .MOD • . SHL . • SHR.

4) +

5) & .AND.

6) .OR . • XOR.

7) .EQ. > . GT. < . LT • . UGT . .ULT .

Page G-50 HISott Devpac80 ver. 2 Gen80

4.8 .REL File Format

A GENSO . REL file contains information encoded in a bit stream. In the
unlikely event that you should want to interpret this bit stream, we give
its structure below:

If the first bit is a 0, then the following 8 bits are loaded at the current
value load of the location counter.

If the first bit is a 1, then the following 2 bits mean:

oo Special link item, these items are described below.

o 1 Program relative item. The next 16 bits are loaded after being
added to the program segment origin.

1 0 Data relative item. The next 16 bits are loaded after being added
to the data segment origin.

A special item consists of the following:

1. A 4 bit control field that specifies one of the 16 special link items
described in Table 4.8.1.

2. An optional value field that is a 2-bit address-type field and a 16-
bit address field. The address-type field is one of:

00 absolute
0 1 program relative
1 0 data relative

3. an optional name field which is a 3-bit count followed by the
name in 8-bit ASCII.

Gen80 HISoft Devpac80 ver. 2 Page G-51

Field

Table 4.8. 1 Special Link Items

Meaning

These link items are followed by a name.field only;

0000 This symbol is declared PUBLIC in this module.

o o 1 o The name of this program.

These link items are followed by a value .field and a name field:

o 11 o Chain external. The value field contains the head of a chain that
ends with an absolute 0. Each element in the chain contains the
previous occurrence of the symbol given in the name field so that
the linker can patch-up all references to this external.

O 111 Deflne entry point. The value field gives the value of the symbol
in the name field.

These link items are followed by a value.field only:

1 O O 1 External plus offset. The value in the value field after all chains
are processed must offset the following two bytes in the current
segment.

101 O Define data size. The value fleld contains the number of bytes
in the data segment of this module.

1 O 11 Set location counter. Set the location counter to the value
indicated in the value field.

11 O 1 Define program size. The value fleld contains the number of
bytes in the code segment of this module.

1110 End module. Defmes the end of this module. If the value field
contains a value other than absolute, the value is the start
address for the linking program. The next item in the me will
start at the next byte boundary.

This item has no value field or name field:

1111 End file. Follows the end module item for the last module in the
me.

Page G-52 HISoft Devpac80 ver. 2 Gen80

HiSoft ProMON
Fast Interactive CP /M Debugger

System Requirements:
ZBO disc system running CP /M 2 or CP /M 3 with at least 36K TPA

Copyright © HiSoft 1987

Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™ .

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of mSoft Devpac80.

It is an infringement of the copyright pertaining to msoft Devpac80 and its
associated documentation to copy, by any means whatsoever, any part ofmSoft
Devpac80 for any reason other than for the purposes of making a security back
up copy of the object code.

Contents

SECTION 1 ProMON Debugger MP-1

1.1 Getting Started MP-1

1.2 The Front Panel MP-3

r 1.3 ProMON Commands MP-8

1.3. 1 Expressions MP-8

1.3.2 The Commands Available MP-11

Memory Commands MP-12

Register Commands MP-14

File Commands MP-15

Search Commands MP-17

Breakpoints MP-18

Breakpoint Commands MP-21

Execute Commands MP-23

Disassembly Commands MP-27

Miscellaneous Commands MP-30

ProMON Command Summary MP-31

SECTION 2 Installing ProMON Pl-1

2.1 Starting up the Install Program Pl-2

2.2 Terminal Installation Pl-3

2.3 Redefining ProMON
Commands Pl-6

2.4 Use of Installation Files Pl-7

2.5 Leaving the Install Program Pl-8

Debuggers HISoft Devpac80 v. 2.0 Contents

SECTION 3 MON80 Debugger MC-1

3.1 Getting Started MC-1

3.2 The Front Panel MC-2

3.3 Standard MON80 Commands MC-5

3.3. 1 Entering Numbers MC-5
3.3.2 The Commands Available MC-6

3.4 Advanced MON80
Commands MC-14

3.4. 1 Disassembly Commands MC-15

3.4.2 Breakpoint Commands MC-17

3.4.3 Execution Commands MC-18

SECTION 4 Installing MON80 Cl-1

4.1 Starting up the Install Program Cl-1

4.2 Terminal Installation Cl-2

4.3 User Patches Cl-5

4.4 Redefining MON80
Commands Cl-5

4.5 Use of Installation Files Cl-6

4.6 Leaving the Install Program Cl-7

APPENDIX Example Patch File Cl-9

Contents HISoft Devpac80 v. 2.0 Debuggers

SECTION 1
ProMON Debugger

This Section describes the professional version of the debugger (called
ProMON from now on) which is provided for those who want the
maximum facilities; the pro version allows advanced features such as
symbolic debugging, conditional breakpoints, watchpoints, page
swapping (under CP /M Plus) etc. ProMON is obviously larger than the
compact version and if you wish to debug veiy large programs then you
are advised to use the compact package. However ProMON is still only
just over 12K in length. We recommend that you use ProMON unless
you have particular need for the smallest possible debugger. ProMON
needs a screen with at least 80 columns to work correctly.

The command set of the professional model is veiy different from that
of the compact version although the underlying concepts are veiy
similar.

1. 1 Getting Started

Your supplied disc will hold the two programs required to run the
professional model: PMON .COM and PMON .MON. To activate simplytype:-

r PMON {command line} [RETURN)

Pro MON will now load, tell you what type of CP /M system it has found
and ask you:

Filename:

If you wish to load a program to debug into memoiy now then type a
valid CP /M filename here (an extension of . COM will be assumed if you
don't type one), otherwise hit [RETURN). If you asked to load a program
and ProMON finds a . SYM file for this program on the disc then it will
say:

ProMON HiSoft Oevpac80 ver. 2 Page MP-1

Load symbols?

Answer Y or N to this question to load up the symbols or not.

If you say Y then the symbols for the program will be loaded and the
message Symbols loaded displayed; now hit any key. After this the
Front Panel (see below) will appear and you are ready to debug your
program.

If you reply N then the Front Panel will appear immediately.

Another way of getting into ProMON is from the menu in HDE; simply �
type D from the HDE menu and ProMON will load (assuming it is on
the disc). The Main file on the menu will be loaded automatically (if

present) together with any symbols (if a . SYM file is present for the Main
file).

If you invoked ProMON from CP /Mand you type a command line after
ProMON then this command line will be treated normally i.e. it will be
used to set up the two default FCBs at # SC and # 6C and the command
line will be copied into location # 81 with its length in # 8 o. This is so you
can debug programs that need a command line, example:

PMON file 1 file2,options [RETURN]

will load ProMON, put FILEl FILE2 , OPTIONS at address #81, FILEl
at #5D and FILE2 at #6D. CP/M upper-cases the command line.

Now, to get the most out of ProMON, please read through the rest of
this Section. If, after that, you are not sure how to use ProMON, work
through the Devpac80 tutorial.

Pro MON loads itself into high CP /M memory. just under the top of the
TPA, and then adjusts the address at locations 6 and 7 so that CP /M
thinks that the top of theTPAis just under where ProMON loaded itself.
Thus, in some ways, it behaves like an RSX does under CP /M Plus.

When a . SYM file is loaded, ProMON creates a symbol table and a hash
table for the symbols and again lowers the TPA accordingly.

ProMON is roughly 12K long and 6K of the code must always be in
common RAM (above #COOO) on CP/M Plus systems.

Page MP-2 HiSoft Devpac80 ver. 2 ProMON

This means effectively that you must have at least 54K of availableTPA
on CP /M Plus systems before loading ProMON. If there is not enough
room above tcooo for ProMON's common memory code, you will see
the message Low TP A! at load time. ProMON will still run if you see this
message but you will not be able to bank-switch.

1.2 The Front Panel

After loading ProMON as above a Front Panel appears. The name Front
Panel stems from the type of panels that are mounted on mainframe
and mini computers to provide information on the state of the machine
at a particular moment, usually through the use of flashing lights.
These lights represent whether or not particular flip-flops (electronic
switches) within the computer are open or closed; the flip-flops that are
chosen to be shown on this panel are normally those that make up the
internal registers and flags of the computer thus enabling
programmers and engineers to observe what the computer is doing
when running a program.

So these are hardware front panel displays; what ProMON provides
you with is a software front panel - the code within ProMON works out
the state of your computer and then displays this information on the
screen.

Let's have a look at ProMON's front panel; make sure you've made a
working copy of Devpac80 (see the front of this manual) and that you
have also copied the program FILES. GEN onto your working disc. Now
load CP /M, insert your Devpac80 working disc and type:

gen80 files [RETURN] to assemble FILES .GEN

when the assembly has finished (with no errors, hopefully!) type:

pmon [RETURN]

In response to Filename: type:

files [RETURN]

and then press Y when asked Load symbols? and [RETURN] once you
have the Symbols loaded message.

ProMON HISoft Devpac80 ver. 2 Page MP-3

The Pro MON front panel is now on the screen, it should look something
like this:

Example ProMON Front Panel

}0100 ID SP, (t0006)

0104 CALL TITLE
0107 ONE_TIME ID C,fll

0109 JR TIMEl

010B NEXT_TIME ID C,112

0100 TIMEl CALL CPMFCB

0110 CP tFF

0112 JR Z,FINISH
0114 CALL GET_TO_NAM

0117 CALL PRINT _ _ FCB

011A CALL Cl!ECK_NAME

0110 JR NC,NAME_OK
OllF CALL BAD_ MESSAG

0122 CALL DELETE_BAD
0125 JR OIIE_TIME

0127 NAME_OK CALL GOOD_MESSA

012A JR NEXT_TIME

012C FINISH CALL CONCLUDE
012F RST 0

0130 TITLE PUSH HL
0131 ID HL,TITLE_M

0133 JR OUT_MESS
0135 GOOD_MESSA PUSH IIL

0137
013A

ID HL,GOOD_M
JR OUT_MESS

013C BAD_MESSAG PUSH IIL
0130

013E
ID HL,BAD_M
JR OUT_MESS

0140 CONCLUDE PUSH IIL

Connand:

PC 0100 OOEO 66 20 6D 65 6D 6F 72 79 f memory

SP FSFE OOE8 20 74 68 61 74 20 43 50 that CP
IY 0000 OOFO 2F 4D 20 75 73 65 73 20 /M uses

IX 0000 OOF8 61 73 20 61 20 62 75 66 as a buf
HL 0000 > 0100 ED 7B 06 00 CD 30 01 OE m(•• MO ••

DE 0000 0108 11 18 02 OE 12 CD C9 01 ••••• MI.
BC 0000 0110 FE FF 28 18 CD 4B 01 CD -• (.MK.M

AF 0000 Oll8 64 01 CD 80 01 30 08 CD d.M •• O.M
0120 JC 01 CD AC 01 18 EO CD <.M, •• 'M

Alts 0128 36 01 18 OF CD 42 01 C7 6 •• _MB.G
HL' 0000
DE' 0000
BC' 0000 Break
AF'OOOO

IR 0075
Ints ON

Flags

Bank: 01

ProN:>N 2. 7 (C} HiSoft 1987
Condition/Scale Count

This is a sample screen from the 31-line, 90-column version running
on an Amstrad PCW8256. If you have installed ProMON for a smaller
screen then you won't see so many lines of disassembly and the
symbols will be shorter.

The Front Panel screen display is composed of three main sections:-

a) The Register Display
b) The List Display
c) The Memory Display

Page MP-4 HISoft Devpac80 ver. 2 ProMON

The Register Display

PC 0100

SP B906

IX 0000

IY 0000

HL 0000

DE 0000

BC 0000

AF OOFF

Alts

HL'OOOO

DE'OOOO

BC'OOOO

AF'OOOO

IR 007A

Ints ON

Flags

SZ H VNC

Bank: 01

the program counter
the stack pointer
the IX register
the 1Y register
the HL registe
the DE register
the BC register
the AF register

the alternate register set

the interrupt and refresh registers

the Z80 status flags

which CP /M Plus bank we are in

This display shows the values held by the vartous internal Z80 registers
including the Program Counter (PC), Stack Pointer (SP) and flag
register. Remember that the HL, DE and BC registers (plus the alternate
equivalents) may each be regarded as one 16 bit or two 8 bit registers.

Also shown is the interrupt status (Ints ON/Ints OFF) and, for CP/M
Plus computers, the current CP /M bank number. Bank l is the normal
CP /M TPA bank, Amstrad CP /M Plus computers use Bank O for much
of the BOOS code.

To the left of the register display is the list display:

ProMON HISoft Devpac80 ver. 2 Page MP-5

List Display

}0100 LD SP, (#0006)
0104 CALL TITLE
0107 ONE TIME LD C, #11
0109 JR TIMEl
010B NEXT TIME LD C, #12
010D TIMEl CALL CPMFCB
0110 CP #FF
0112 JR Z,FINISH
0114 CALL GET TO NAM
0117 CALL PRINT FCB
011A CALL CHECK NAME
Olli) JR NC,NAME_OK
0llF CALL BAD MESSAG
0122 CALL DELETE BAD
0125 JR ONE TIME
0127 NAME OK CALL GOOD MESSA
012A JR NEXT TIME
012C FINISH CALL CONCLUDE
012F RST 0
0130 TITLE PUSH HL
0131 LD M HL,TITLE_
0133 JR OUT MESS
0135 GOOD MESSA PUSH HL
0137 LD HL,GOOD_M
013A JR OUT MESS
013C BAD MESSAG PUSH HL
013D LD HL,BAD_M
013E JR OUT MESS
0140 CONCLUDE PUSH HL

The list display consists of a disassembly of instructions initially
starting from address #100. If any of the instructions disassembled is
at the same address as held by the program counter (PC) then that
instruction will be marked on the display with a right curly bracket } .

Symbols will be included in the disassembly if a . s YM file has been
loaded for the program under inspection. You have the option of
loading symbols when you first enter ProMON and when you read in
a file using the FR command (see later).

Page MP-6 HiSoft Devpac80 ver. 2 ProMON

On the top right of the screen is the memocy display:

Memory Display

00E0 66 20 6D 65 6D 6F 72 79 f memory

00E8 20 74 68 61 74 20 43 50 that CP

00F0 2F 4D 20 75 73 65.73 20 /M uses

00F8 61 73 20 61 20 62 75 66 as a buf

> 0100 ED 7B 06 00 CD 30 01 0E m{ •. M0 ••

0108 11 18 02 OE 12 CD C9 01 ••••• MI.

0110 FE FF 28- 18 CD 4B 01 CD -. (.MK.M

0118 64 01 CD 80 01 30 08 CD d.M .• 0 .M

0120 3C 01 CD AC 01 18 E0 CD <.M, •• 'M

0128 36 01 18 DF CD 42 01 C7 6 .. MB.G

ProMON 2.7 (C) HiSoft 1987

Break Condition/Scale Count

The display is a snapshot of an 80-byte area of memocy, initially
centred on address # 1 o o. The addresses are shown down the left- hand
side with the contents of the next 8 bytes from the address shown to
the right of it (in hexadecimal). Following this, to the right, is the ASCII
representation of these 8 bytes with . being displayed if the code
cannot be usefully interpreted.

You will notice that one of the addresses on the memory display has a
> symbol to its left; this address is known as the Memocy Pointer - this
is a concept internal to ProMON and has nothing to do with the 280.
You may set the Memory Pointer independently by using the MA
command - see below.

Underneath the display of memory addresses and values comes the
copyright message and, under that, the various breakpoints,
conditional breakpoints and watchpoints that you have set are listed.
For full details, see the section on breakpoints.

ProMON HISoft Devpae80 ver. 2 Page MP-7

1.3 ProMON Commands

There is a wide range of commands that may be entered and executed
whenever the front panel is displayed and the command prompt
Command: is present at the bottom left of the screen

Before proceeding to describe these commands in detail, we shall
explain the powerful expression handler within ProMON since there
are many times when you will want to enter an expression when using
the debugger.

1.3. 1 Expressions

There are many times when you will find yourself wanting to enter a
expression when using ProMON e.g. modifying memory, searching for
a string, updating a register etc.

The expression handling in ProMON allows a wide range of operators
to be used, with full precedence which may be overridden by the use
of brackets; the expression handler is the same as that used in GENSO.

Curly brackets ({ and }) may be used to force indirection e.g. { 6}
returns the word held at memory locations 0006 and 0007.

Items in expressions are either symbols, in which case their current
value is used, registers known by their usual names (PC, SP, IX, HL etc.),
Reserved Words (MP for Memory Pointer, WP for watchpoint, HIGH and
LOW, described later) or numbers or characters.

Numbers are one of the following:

1) A decimal number. A sequence of decimal digits preceded by a
backslash(\) character e.g. \32768.

2) A hex number. Any sequence ofhex digits (0-9, A-F, a-f).You can
precede the number with a hash character (# or ASCII 35) if you
wish but this is not necessary. The default number-entry mode
in ProMON is hexadecimal since this is more natural when
debugging e.g. 4A2E #4A2E ae

Page MP-8 HISoft Devpac80 ver. 2 ProMON

3) A binary number. The % character followed by binruy digits e.g.
%11011111

Literal characters and strings are represented by enclosing them in
double or single quotes.

Arithmetic operations generally use signed 16-bit arithmetic, but the
result is given modulus 65536 and overflow is ignored. What this
means in real terms is that the result will almost always be · what is
expected. As an example:- 3 * #4000 = #COOO. Strictly speaking this
operation should lead to an overflow using signed arithmetic (#CO o o is
really -#4000), but the result returned is what would be expected (i.e.
3 * 4=12=#C).

The only exception to this rule is during division where the operand is
a negative number (i.e. greater than #7FFF). As an example:-

#COO O I 2 = #EOOO (i.e. -4/2=-2)

Logical false is represented by O and logical true by -1 (or #FFFF),
although other non-zero values will be treated as true in most cases.
The logical operators are performed bitwise.

A list follows of all the operators with their priority (1 is the highest
priority). Brackets () may be used to override the normal priority.

Curly brackets indicate indirection and the value of the expression
within the curly brackets ({ }) will be considered an address so that the
value returned by {x} will be the 16-bit word at location xand x+l, Intel
format i.e. low-order byte first. If you require only the 8 bits at location
x then you should use {x} .and.255 to return the low order byte
fetched.

The Reserved Words HIGH and LOW are described under Execute Single
below while the Reserved Word WP is described under Watchpoints.

ProMON HiSoft 0evpoc80 ver. 2 Page MP-9

Operator Precedence Table

1) Una:ry plus(+)
Unary minus (-)
Logical NOT (. NOT.)

2) Exponential (. EXP .)

3) Multiplication (*)
Division (/)
Remainder (. MOD .)
Shift left logical (. s HL .)
Shift right logical (. SHR.)

4) Binary plus (+)
Binary minus (-)

5) Logical AND(&) or (.AND.)

6) Logical OR (.OR.)
Logical EXCLUSIVE OR (.XOR.)

7) Equals(=) or (.EQ.)
Signed less than(<) or (.LT.)
Signed greater than (>) or (.GT.)
Unsigned less than (.ULT.)
Unsigned greater than (. UGT.)

The following are allowable expressions in ProMON:-

#5000-label
{ 16-%1110001}
labell-label2+label3
labell-(label2+label3)
2.EXP.label

These two expressions
are not the same

labell+(2*.NOT. ({label2}=-l))
"A"+l28
"A"-"a"

'A string'

Page MP-10 HiSoft Devpac80 ver. 2 ProMON

Notes on the operators

. NOT . is a unary operator. To produce the same effect as

(label:;t:label2) use the construct .NOT. (labell=label2)

.EXP. is used to raise a number to a power. Thus 3.EXP .4=81.
The expression following . EXP • is treated as unsigned and the
result will be modulus 65536 (i.e. overflow is ignored) .

. SHL. and . SHR. shift the first argument left or right by the
number of bit positions specified in the second argument. Zeros
are shifted into the low-order or high-order bits. Either operator
may have a second argument that is negative. Thus
labell.SHL.-2 is equivalent to labell.SHR.2

The five comparison operators (. EQ. • LT. • GT. • ULT. • UGT.)

will evaluate to logical true (-1 or #FFFF) if the comparison is true
and to logical false (0) otherwise. Thus (l .EQ .1) will return the
value -1 and (1> 2) will return the value 0. Toe operators . GT. and
• LT. deal with signed numbers whereas . UGT. and . ULT.

assume unsigned arguments. Thus (1. UGT. -1) is false (i.e. 1 is
not greater than 65535) but (1. GT. -1) is true (i.e. 1 is greater
than -1).

You may abort the entiy of an expression by using [ESCJ [RETURN].

Now for the commands available within ProMON.

1.3.2 The Commands Available

All ProMON commands are two-character commands designed to be
mnemonically significant and, hopefully, easy to remember.

After you press the first character of the command, a list of second
characters available, with a description of each command, will be
displayed to help your choice.

Having chosen the second character of the command, the command
description remains on the screen as confirmation: you can abort the
command at this stage by pressing [ESCJ followed by [RETURN].

ProMON HiSoft Devpac80 ver. 2 Page MP-11

If you wish to abort the command after entering part of an expression,
use [DEL] to delete back to the start ofyourent:cyand then press [ESCJ
followed by [RETURN].

Throughout the following, messages displayed by ProMON will be
shown in italics to distinguish them from your keyboard input.

Memory Commands

Set the Memory Pointer Address MA

Enter an expression. The Memory Pointer will be set to the value of the
expression and the memory display updated accordingly. Examples:

Memory - Address: pc+lOO [RETURN]
Nemory - Address: \32768 [RETURN]
Memory - Address: {1}+3*10 [RETURN]

Set the Memory Bank MB

Enter an expression. ProMON will now work on the contents of the
memory bank specified by the expression. Normally, values of O, 1 and
2 are useful. This only works in Banked CP / M Plus systems. Example:

Memory - Bank: 0 [RETURN]

Compare Memory MC

Enter a memory address and you will then be prompted With: and then
Length:. Enter an expression in each case.

The command then compares two blocks of memory given by the first
two addresses you specified and of the length you asked for. If any byte
does not compare, the addresses and contents in each block will be
displayed.

You can pause the display of mismatched bytes by hitting any key, then
hit to [ESCJ abort and return to the front panel or any other key to
continue the comparison. Example:

Page MP-12 HISoft Devpoc80 ver. 2 ProMON

Memory - Compare: Start [RETURN]
With: 8000 [RETURN]
Length: 1000 [RETURN]

Memory Fill MF

You are prompted for First: and Last: values, enter expressions
representing memory addresses between which you wish to fill.

Then you will be asked With:, enterthe8-bitvaluewithwhich youwant
to fill memory. All locations between First and Last inclusive will then

r be set to this byte value. Example:

r

First: 1000 [RETURN]
Last: lfff [RETURN]
With: 0 [RETURN]

Memory Move MM

You will be prompted to enter three addresses, First:, Last:, To:.
Assuming that you give valid expressions, the command will move the
block of memmy given by First and Last inclusive to the address you
enter after To.

The move is intelligent in that memory may be moved over itself,
forwards or backwards. Example:

First: Start+20 [RETURN]
Last: Start+30 [RETURN)
To: 5800 [RETURN]

Memory View MV

Simply displays memory in the Memory Display rather than registers.
Use Register View (RV) to display registers and indirections off them.

ProMON HiSoft Devpac80 ver. 2 Page MP-13

Memory Window MW

Moves the cursor into the Memory Display. You can now use your
cursor keys (or, by default, Wordstar-style cursor keys) to move the
cursor around the Memory Display. The keys available are shown
below.

i

J.

f-

([CTRL] -EJ
([CTRLJ-X)
([CTRL] -S)
([CTRLJ -D)
([CTRL]-R)
([CTRL]-C)

Cursor Up
Cursor Down
Cursor Left
Cursor Right
Page Up

�
[CTRL]-j
[CTRLJ-J.
[TAB]

Page Down
flip between ASCII and hex display

[ESC] returns to command mode

You can instal,your cursor keys into ProMON using the installation
program, PMONINS .COM (see the next section).

Wherever you are on the Memory Display you can modify the byte
under the cursor by typing in either a hexadecimal digit or an ASCII
value depending whether you are on the hex or ASCII display.

Be careful you don't corrupt ProMON or important system memory!

Press [ESCJ to exit this mode a."ld return to command mode.

Register Commands

Register Update RU

Enter a register name as displayed on the Register Display followed by
a space and then the value you want to assign to the register. As usual
this value can be any general expression involving literais, symbols and
other register names if required. Examples:

Register - Update: pc 100 [RETURN)
Register - Update: hl de+lOO [RETURN]
Register - Update: ix {Line_Nwnber}+2 [RETURN)

Be very careful updating the Stack Pointer!

Page MP-14 HISoft Devpac80 ver. 2 ProMON

Register View RV

Displays the registers and what they point to in the Memory Display,
use Memory View (MV) to flip back to memory addresses and their
values. The values on the Stack Pointer are shown as words while the
values on the other registers are shown as bytes with the ASCII
equivalent alongside.

This display is useful when single-stepping code where a number of
registers point to buffers whose contents you want to monitor. If there
is just one area of memory you want to keep on the screen while

r debugging, then it is more natural to display memory rather than
registers.

File Commands

File Read FR

This command will produce the prompt File Read: to which you
should give the filename you wish to read in followed by [RETURN].

The filetype will default to . COM. In response to First: give the address
you wish to load the file to. Pressing just [RETURN] here will load the
file to the standard CP /M base file address of# 1 o o. ProMON will inform
you of the address of the end of the last block of the file loaded and then
you should press a key.

If there is a corresponding . s YM file on the same disc as the file you have
loaded the message Load Symbols? will appear; answer Y to load the

r file's symbols for symbolic debugging or N otherwise. If symbols are
loaded successfully the message Symbols loaded will appear, press a
key to return the Front Panel. Example:

File - Read: test [RETURN]
First: [RETURN]
Load Symbols? Y

will load the file TEST. COM from the disc into location 1 o Oh onwards and
then load the TEST. SYM file ready for symbolic debugging.

ProMON HiSoft Devpac80 ver. 2 Page MP-15

File - Write FW

Type the filename of the program/ code you wish save from memory.
The default flletype is . COM.

In response to First: and Last: you should give the start and end
addresses (inclusive) of the block of memory you wish to write to the
disc. each followed by (RETURN J • If you press [RETURN J by itself to these
two questions then the relevant start and end addresses of the last file
read (using FR) will be used.

File Command line FC

Allows you to type in a command line that will be placed at address 8 Oh
which is where CP /M places a file's command line. The length of the
line is placed at 80h and the line itself from 81h onwards. For example
suppose you are debugging a program called UNERA that un-erases a file
and that this program expects to be run from CP /M like this:

UNERA MISTAKE.COM [RETURN]

When you run a program like this from CP /M, CP /M copies the
command line (in this case MI STAKE. COM) into locations 81 h onwards
and puts the length (11) in location 80h. If you are debugging UNERA
from within ProMON you can set up this command line by using the
FC command. type:

FC
File - Command line: MISTAKE.COM [RETURN]

Note that you should enter a space before MISTAKE. COM because this
is judged to be part of the command line.

The other way of setting up this location is to iridude the command line
when invoking ProMON e.g.

PMON MISTAKE.COM (RETURN]

this only works when ProMON is entered from CP /M & not from HDE.

Note that FC does not set up the default FCB at # Sc but just the
command line at #80.

Page MP-16 HiSoft Devpac80 ver. 2 ProMON

File - Zap syms

Clears the symbol table. TI:lis is useful if you have loaded a new file with
no symbols and you don't want the old symbols used.

Search Commands

Search Byte/string SB

Enter a series of expressions separated by spaces and then hit
[RETURN). This command will search memory (in the currently
selected bank) for the pattern so defined and then update the Memory
Display to point to the found pattern. Example:

Search - Byte/string: 3e "a" c9 [RETURN]

will search from the current memory pointer for the byte sequence
3e 61 c9.

As usual, you can enter any expression involving symbols or even
register names as part of your search string. Note, though, that this is
a byte search so that each expression is evaluated to its bottom 8 bits
i.e. modulo 256.

To search for the next occurrence of the pattern use Search Next.

Search Mnemonic SM

This command allows you to search memory for a pattern that you type
in as a line of assembly code e.g.

Search - Mnemonic: A, (HL) [RETURN]

Search - Mnemonic: JP Start [RETURN]

The only restriction on what you type in is that it must obey the
disassembler's syntax so that you must use capital letters and use a
before hex numbers e.g. LD HL, #8000 rather than LD HL, 8000h etc.

While the search is going on you may press any key to interrupt the
search and return to the front panel. The search may take some time.

ProMON HISoft Devpac80 ver. 2 Page MP-17

Search Next SN

Search for the next occurrence of the pattern you defined with the
Search Byte/string command. As a short-cut. you can use just the
character N (or n) from command mode to do this.

Breakpoints

Breakpoints allow you to stop the execution of your program at
specified points within it. ProMON has a wide range of such commands
and we'll spend a little time now explaining the different types of
breakpoints within ProMON and how to use them.

What is a Breakpoint?

A breakpoint consists quite simply of a Z80 restart instruction; this
restart instruction is one byte long and causes execution to be
transferred to low memoxy. There are 8 restart instructions on the ZBO.

RST o to RST 7; RST o goes to address o (which is warm boot under CP /
M). RSf I to address 8, •... , RST 7 to address 3 Bh. You can choose which
restart is used for breakpoints by running the installation program; by
default RST 7 is used except on Amstrads when RSf 6 is used.

When your program executes the breakpoint restart, control is passed
to ProMON because the debugger has patched the low memoxy address
to which the restart goes. ProMON then decides whether or not to halt
execution of your program or continue; this depends on the type of the
breakpoint. There are four types of breakpoint:

Hard Breakpoints

If you have set a hard breakpoint (using the BS or EB commands) then
execution will always halt at the breakpoint and the front panel will be
displayed showing the current state of all your registers, the PC, flags
etc.

When the breakpoint is encountered the message Hard Break will
appear in the top left of the screen, now hit a key; Y will keep the
breakpoint set, any other key will reset it before returning to the front
panel.

Page MP-18 HiSoft Devpac80 ver. 2 ProMON

Conditional Breakpoints

A conditional breakpoint will only cause an interruption if a particular
condition is true at the time of the breakpoint.

When setting a conditional breakpoint (using BC) you define the
condition to be tested; it can be any general expression involving
registers, symbols, literals etc. E.g. you can set a breakpoint that will
only break when the condition {Count }=hl i.e. the contents of the
symbol Count in your program is equal to the contents of register HL.

Conditional breakpoints are veiy powerful but do slow down execution;
note, though, that this type of conditional breakpoint only involves
testing of the condition at the breakpoint itself; there is another tpye
of conditional execution available that does not involve breakpoints,
continuous conditional execution, more of this under Execution
Commands.

If the condition tested at the conditional breakpoint is true then the
message Conditional Break is displayed in the top left corner of your
screen, now hit any key; Y will keep the breakpoint set, any other key
will reset it. The front panel now appears with the state of the computer
as it was when it hit the breakpoint.

Watch points

Watchpoints are not really breakpoints although they use the same
restart instruction. A watchpoint simply keeps a watch over your code,
it counts how many times a particular instruction has been executed.

When you set a watchpoint (using the BW command) you specify the
location at which you need a watchpoint together with a scale for this
watch point, the scale affects the counting rate; a scale of 2 increments
the count eveiy second time that you go through the watched
instruction, a scale of 10 increases the count only eveiy tenth time etc.
The count cannot go above 65535 so it is often useful to apply a scale
if an instruction is to be executed many times.

Of course, a watch point slows down the execution of your program but
it can be an invaluable aid to profiling your code. A watchpoint never
causes the front panel to appear and can only be reset by you, manually
(using the BR or BZ command).

ProMON HISoft Devpac80 ver. 2 Page MP-19

The Reserved Word WP holds the count of the most recent watch point
and thus, if you set just one watchpoint at the place that you want to
go through a number of times, and then either Execute Conditional,

or set a conditional breakpoint, to stop when WP equals the relevant
count, then your section of code will be executed just that number of
times. Note that you cannot set two breakpoints on top of each other
so that a conditional breakpoint cannot be set at the same address as
a watchpoint.

Warm Boot

Most CP /M programs terminate by jumping to location O either with
a jp 0 or rst 0 instruction, this reloads CP /M in a clean fashion.

When debugging, you do not usually want this to happen so we have
placed a breakpoint at location O so that any attempt to go there will
result in the message Warm Boot Break appearing in the top left of the
screen, hit any key for the Front Panel.

If address O was reached by a rst 0 instruction then the address of the
instruction after that rst 0 will be on the stack and you can investigate
the code (use Memory - Address: { sp} [RETURN J). However, if O was
jumped to, then you will have no idea where the jump occurred
although you can try searching for it using:

Search - Byte/string: c3 00 00 [RETURN].

If you don't want this breakpoint at address O then change location 0
to c 3 which is what it is normally but remember that, if you do this and
a program inadvertantly finishes, you will return to CP /M.

Breakpoint Display

To help you keep tabs on the various breakpoint/watch points that you
may have set in your program, the Breakpoint Display underneath the
Memory Display shows all the breakpoints and watchpoints that are
set at the moment.

Page MP-20 HISoft Devpac80 ver. 2 ProMON

r

The breakpoint display looks like this:

Break

1 loop

0 0D12

1 432A

ProMON 2.0 (C) HiSoft 1987

Condition/Scale Count

{Count}=hl

06 0000

This tells us the following about whafs set:

There is a hard breakpoint at location loop in bank I. a conditional
breakpoint at address d12h in bank O with condition {Count} =hl and
a watch point at 4 3 2ah in bank I with a scale of 6 and a current count
of 0.

Breakpoint Commands

Breakpoint Set BS

Enter an expression. A hard breakpoint will be set at the address to
which the expression evaluates. The Breakpoint/Watchpoint display
will be updated to show that a breakpoint has been set.

When you execute your code, subsequently, and this breakpoint is
encountered, the message Hard Break will appear at the top of the
screen, hit a key; press Y to keep the breakpoint or any other key to
reset it. Control returns to the Front Panel.

Example:

Breakpoint - Set: loop [RETURN]

sets a hard breakpoint at the address of loop.

ProMON HiSoft Devpac80 ver. 2 Page MP-21

Breakpoint Reset BR

Enter an expression. The breakpoint at the address given by the
expression will be reset so that it will not cause a program break.

You can reset any type of breakpoint with this command.

Example:

Breakpoint - Reset: loop [RETURN]

resets the breakpoint at location loop.

If you press [RETURN J only then the Execute Conditional condition will
be reset, see the EC command.

Breakpoint Conditional BC

Firstly, you should enter the address of the breakpoint, as usual you
can use a generalised expression here. After this you will be prompter:I
to enter the Breakpoint condition:, type in an expression that you
want evaluated evecy time this breakpoint is encountered.

On execution, when this expression is true, the message Conditional
Break will appear, top left, and you should hit a key; Y will keep this
conditional breakpoint set whereas any other key will reset it. The
Front Panel will now appear.

Obviously, conditional breakpoints slow down the execution speed of
your program but, since the condition is only evaluated at the marked
instruction, this decrease is normally acceptable. If you wish to run
every instruction under a condition then you should use the Execute

Condition instruction (EC), see below.

Breakpoint - Conditional: 402a [RETURN]
Breakpoint condition: hl=de+l [RETURN]

will set a breakpoint at address 4 O 2 ah and only break when register HL
is one more than register DE at that address.

Page MP-22 HISoft Devpac80 ver. 2 ProMON

Breakpoint Watchpoint BW

Firstly enter the address for the watchpoint as usual. Now you will be
prompted to enter the Watchpoint scale:. here you enter a number
which is used to scale the watchpoint count.

Whenever a watchpoint breakpoint is encountered the watchpoint
count will be incremented according to the scale; if the scale is 1 then
the count is incremented by one every time that the watchpoint is
encountered, if the scale is 4 then the count will be incremented by one
only every fourth time that the watchpoint is met etc. Thus, the scale
allows you to scale down the count, useful if you are going to execute
an instruction more than 65535 times, which is the limit to the value
of count.

Watchpoints can only be reset manually with the BR or BZ commands.

Breakpoint - Watchpoint: Label20 [RETURN]

Watchpoint scale: 2 [RETURN]

Sets a watchpoint at address Label20 with a scale of 2.

Breakpoint Zap BZ

Simply clears all breakpoints except for the continuous conditional
condition. Use with care!

Execute Commands

You can execute your program in a variety of ways, at full speed up to
a breakpoint, at reduced speed so that you can interrupt it with a key
press, at reduced speed checking a condition on every instruction or
by single-stepping each instruction (optionally skipping call

instructions and the like).

In every case, you initiate the execution using one of the following
commands. Execution·will start from the address in the Program
Counter (PC) and with all the registers set up as displayed on the
Register Display.

ProMON HiSoft Devpac80 ver. 2 Page MP-23

Execute Breakpoint EB

Allows you to set a hard breakpoint before beginning full-speed
execution, useful if you simply want to execute up to a particular point.
Example:

Execute - Breakpoint: Finish [RETURN]

will set a hard breakpoint at location Finish and then execute from the
address held in the PC. Execution will only return to the Front Panel
when a breakpoint is encountered.

Execute Miss EM

Allows you to single-step a call instruction in one move. Normally, if
you single-step a call instruction you will be transferred into the
called subroutine to single-step that. However, if you don't want to do
this but want to execute the whole of the subroutine instead then you
should use this command.

In fact, the command effectively places a breakpoint after the current
instruction and then executes the instruction. So it is not restricted to
executing calls but can be used at any time. Be careful when using it
on jumps that may never return to the instruction after the jump.

Execute Long EL

Begins execution from the address held in the Program Counter (PC)

but at reduced speed, allowing you to press any key to interrupt the
execution and return to the front panel.

The most common use for EL is when you suspect that your code is
entering an infinite loop; use of this instruction will allow you to break
out of the loop by pressing any key.

The execution speed of your program is substantially reduced when
running like this which can, at times. be useful especially with fast
running games. using EL you can see exactly what happens at any
particular time.

All breakpoints are recognised by this instruction and will be obeyed.

Page MP-24 HISoft Devpac80 ver. 2 ProMON

r

Execute Quick EQ

Simply start execution from the address held in the Program Counter
(PC) and continue until the program finishes or a breakpoint is
encountered.

This command runs your code at full speed and normally should be
used only in conjunction with breakpoints.

Execute Single ES

Single-step the current instruction i.e. the one at the address in the
Program Counter (PC).

Normally an instruction will be executed exactly as the 280 chip would
execute it so that call-type instructions will transfer execution to the
called subroutine for continued single-stepping; if you do not want this
then use the EM instruction above.

However there are two Reserved Words, HIGH and LOW, which affect
single-stepping. If execution is to be transferred (e.g. by a call or a jp
instruction) to an address above HIGH or below LOW, then the code will
not be single-stepped. instead the instruction will be executed in one
go just as if you had performed an Execute Miss (EM) instruction.

The reason for this is that it is unwise to single-step the CP /M B10S or
BOOS or ProMON itself because of unpredictable keyboard interaction
and other non-re-entrant code within these areas.

The Reserved Words HIGH and LOW may be used in any expression and
may be assigned to using the Register Update command. Be careful
single-stepping if you do change HIGH and LOW, unpredictable and
potentially disastrous results may follow.

Single-step is used so often that it is also available by typing z (or z)
from the Command: prompt.

ProMON HiSoft Devpac80 ver. 2 Page MP-25

Execute Conditional EC

With this command you can execute you code, at reduced speed, until
a particular condition becomes true. You are prompted to enter the
Breakpoint condition:, type in an expression that specifies the
condition under which you wish execution halted and then press
[RETURN].

Execution will then take place, from the Program Counter, at an
interpreted speed (rather as if you had used the Execute Long
command) and, after the interpretation of each instruction, the
condition will be evaluated to see if it is true. If the condition becomes
true then the message Continuous Break will appear, top left; hit any
key to enter the front panel with all registers etc. updated to reflect their
state when the condition became true.

Example:

Execute - Condition:

Breakpoint condition: hl=de+2 [RETURN]

will begin execution from the PC and continue, at a reduced speed, until
the value in register HL is two more than the value in register DE.
Execution will also be halted if any other breakpoints are encountered
or if any key is pressed.

If, instead of entering a condition, you just hit [RETURN] then the
current condition (displayed on the Breakpoint Display with no
breakpoint address) will be used. To abort this command, enter [ESC]
as the first character of the condition.

If you wish to erase the condition use the BR command and simply press
[RETURN].

Page MP-26 HiSoft Devpac80 ver. 2 ProMON

Disassembly Commands

Disassemble Address DA

Prompts you to enter an address, as usual you can type in any general
expression involving symbols, registers and numbers. The Llst Display
will then be updated with the disassembled instrnctions starting from
the address you entered. Example:

Disassemble - Address: hl+offset [RETURN]

shows a page of disassembly from the address specified by adding the
value in register HL to the value of the symbol offset.

Disassemble File DF

Disassemble a block of memory to screen, printer or disc. The
command first prompts you (First: Last:) to enter the start and end
(inclusive) addresses of the block of memory that you wish to
disassemble; these may be entered in hexadecimal or decimal and if the
start address exceeds the end address then the command is aborted.

Then the question Disc? appears; answer Y if you wish to produce a
disc file of the disassembly - this disc file may be loaded by our editor
(ED80 or HDE) and assembled by our assembler (GEN80) as a normal
text ftle.

If you answer this question in the affirmative then you will be prompted
,-.. for the filename that you wish the file to have on disc - this should be

of normal CP /M format i.e. 8 character filename, then a dot and a three
character filetype, although the dot and the filetype may be omitted and
will then default to . GEN.

Now (whatever you answered to the last question) you will be asked
whether you want the output to go to your Printer?; answer Yto direct
the listing to the printer or any other key for screen output.

Workspace : appears next - the disassembler needs some workspace for
its primitive symbol table and its disc buffer (if you have told it to
produce a file on disc).

ProMON HISoft Devpac80 ver. 2 Page MP-27

Simply replying [RETURN J to this question will make a workspace of 2K
immediately under ProMON. If this response produces an error or you
lrnow in advance that more than 2Kis required then you should specify
the workspace to be some other area.

Finally, you are repeatedly asked to specify the First: and Last:
addresses of any areas of memory within the disassembly that you wish
to be treated as data areas. Data areas are blocks that you do not wish
to be treated as 280 instructions, they might be text messages among
other things. Any memory contents within a data area will be
disassembled as a sequence ofDEFB xxx where xxx is the relevant store
contents. xxx will be displayed in ASCII (as a character between quotes)
if its value is between 32 and 127 or otherwise in hexadecimal (as two
hex digits preceded by a hash). To terminate your list of data areas
simply press [RETURN] in answer to both the First: and Last:
questions.

Having answered, or defaulted, all the above questions, the screen will
be cleared and there will be a pause . while the first pass of the
disassembly builds up the symbol table of labels.

You may pause the listing at any stage by hitting a key; then hit [ESC J
to go back to the front panel or any other key to continue the listing.

Labels are generated, where relevant (e.g. in #C3 #00 #98), in the form
LXXXX where xxxx is the absolute hex address of the label; if this
address lies outside the limits of the disassembly then the assembler
pseudo-mnemonic EQU is generated to define the label - this is for
compatibility with our assembler GENS0.

Example block disassembly:

DF [RETURN]
First :0 [RETURN]
Last:10 [RETURN]
Disc: [RETURN]
Printer:Y [RETURN]
Workspace: [RETURN]
First:3 [RETURN]
Last:4 [RETURN]
First: [RETURN]
Last: [RETURN]

Page MP-28

(Disassemble from # o o o o)
(to #0010)
(Don't make a disc file)
(Do send to the printer)
(Use the default workspace)
(Data area starting at #0003)
(and ending at #0004)

HISoft Devpoc80 ver. 2 ProMON

the above might produce the following output on the printer:

JP LE203
DEFB #D5,#00
JP LB906
JP L0545
LD A,#01
OUT (#E4) ,A
LD A,B
OUT (#E2),A

L0545 EQU #0545
LB906 EQU #B906
LE203 EQU #E203

Disassemble Memory DM

This command produces a disassembly on the List Display whose start
address is taken from the current value of the Memory Pointer - useful
if you are grubbing about memory looking at code.

Disassemble Program DP

Produces a disassembly on the List Display whose start address is
taken from the current value of the Program Counter (PC) -useful if you
have been grubbing about memory looking at code and then want to
return to single-stepping. You can achieve the same effect with the DA
PC command i.e. Disassemble Address PC.

Disassemble Next DN

Produces a disassembly of the next block of instructions following on
from the current page of disassembly displayed on the panel.

Disassemble Window DW

Takes the cursor into the middle of the List Display. You can now use
your cursor keys, if you have installed them using the installation
program or, if you haven't installed your cursor keys, the Wordstar-like
cursor keys to move around in the List Display. This is most useful for
looking at the previous or next page of disassembly.

ProMON HiSoft Devpac80 ver. 2 Page MP-29

In fact, this is so useful that it is available from Command: mode using
the Page-Up and Page-Down commands.·

[ESC J takes you out of the List Display and back into command mode.

The keys available under this command are:

l

t

[CTRLJ-i
[CTRLJ-J.
[ESC)

([CTRLJ-E)
([CTRL]-X)
([CTRL]-R)
([CTRL] -C)

Cursor Up
Cursor Down
Page Up
Page Down
returns to command mode

Miscellaneous Commands

Print Expression PE

Displays the hexadecimal and decimal values of the expression that
you type in. Ve:ry useful as a quick calculator. Example:

Print - Expression: hl+de*2 [RETUR.�] = a5ed 42477

Print Screen PS

Simply clears the whole screen and redraws all the displays. This is
useful if output from the program being debugged has corrupted parts
of the front panel display.

Quit Q

Asks you Quit - Yes,No?; type Y (or y) to return to CP/M or HDE

(depending which ProMON was called from) or N/n to abort the
command. [ESCJ performs the same function.

Page MP-30 HiSoft Oevpoc80 ver. 2 ProMON

ProMON Command Summary

MA

MB
MC
MF
MM

MV
MW

RU

RV

FR

FW
FC
FZ

SB

SM

SN

BS

BR
BC
BW

BZ

EB
EM
EL
EQ
ES
EC

DA
DF
DM
DP
DN
DW

PE
PS

Q
N

z

ProMON

Go to memory address
Change memory banks (CP /M Plus only)
Compare memory blocks
Fill memory with byte
Move a block of memory
View the hex/ ASCII display
Enter the Memory Display to edit memory

Change the value of a register /Reserved Word
View the registers and memory addressed by them

Read a file into memory
Write a file from memory contents
Enter a CP /M command line
Clear the symbol table

Search for a byte sequence or a string
Search for a Z80 mnemonic
Search for next occurrence

Set a breakpoint
Reset a breakpoint
Set a conditional breakpoint
Set a watchpoint
Reset all breakpoints

Execute up to a certain address
Skip this instruction
Execute slowlv with keyboard checks
Execute at full-speed
Single-step
Execute until condition is met

Show disassembly from address
Disassemble a block of memory
Show disassembly from the memory pointer
Show disassembly from the program counter
Show next page of disassembly
Enter disassembly window

Print an expression in hex and decimal
Clear and redraw screen
Quit to CP /M or HDE
Search for next occurrence
Single-step

HiSoft Devpac80 ver. 2 Page MP-31

Page MP-32 HiSoft Devpac80 ver. 2 ProMON

SECTION 2
Installing, ProMON

The process of installing ProMON involves three phases, ProMON is
frrst read in from the disc. Then, see.lions of the program are modified
and fmalProMON is written back out to the disc (as a .MONftle). Thus,

1 the process involves a permanent change to ProMON.

r

There are two reasons that you might want to install ProMON.
Prima:rily. it may be that there are problems with the screen layout and
ProMON seems not to work at all. This will be due to incorrect terminal
codes and in this case you should read the section on Terminal
lnstall:ation Alternatively, you may wish to modify the cursor
commands to. suit your keyboard. 'fll:is procedure is covered in the
section Redefining ProMO,N. Commands.. In either case you should
fiirst read the next section.

ProMON Installation HiSoft Devpac80 ver. 2 Page Pl-1

2. 1 Starting up the Install Program

To nm the installing program. insert the suplied disc and type:

PMONINS [RETURN]

You will now see the PMONINS copyright message and some general
information. When you're ready. press any key. The purpose of the
installation process is to alter the copy of ProMON on the disc. To this
end, some copy of the program (called the working copy) is read in from
the disc into the machine. The first question is thus:-

Normally the working copy of PMON is
read in from a file called PMON.MON
Use another file instead (Y/N)

The reply will normally be N, the exception being when you have
renamed a version of ProMON. A reply of Y will produce the prompt:

[ESC] to abort
Omit file type (.MON assumed)
Enter filename

to which a filename should be typed in (omitting the filetype). Whether
you replied N to the opening question or Y and then specified a filename
the working copy will now be read in to the machine from the disc and
the ProMON installation Menu will appear.

There is now a copy of ProMON in the memory of your machine ready
to be altered. The ProMON Installation Menu is on the screen.

ProMON INSTALLATION MENU

1. Return to CP/M
2. Alter screen codes
3. Save ProMON as <working copy filename> (normally PMON. MON)

4. Saved ProMON as another file
5. Alter command codes
6. Load installation from .P80 file
7. Save installation to .P80 file

Type desired number:

Page Pl-2 HISoft Devpac:80 ver. 2 ProMON Installation

r

If you are a first-timer using the installation program because the
screen codes in ProMON wre wrong then turn first to the section
Terminal Installation and then to Leaving the Install Program. The
other sections in this chapter are Redefining ProMON Commands
and Use of Installation Files.

2.2 Terminal Installation

Select options 2 from the main menu to alter the screen codes. You will
be asked:

Screen at least 90 columns wide

(Y/N/[RETURN])?

in anwser to the question you should type either Y (if your screen is 90
columns wide or greater) or N (if your screen i� less than 90 columns
wide). Your screen must be at least 80 columns wide for ProMON to
work effectively. Pressing [RETURN] alone is equivalent to giving the
answer shown in brackets.

Next, you are asked:-

Number of screen lines (?

Enter the number of lines on your display and then press [RETURN].
pressing [RETURN] by itself will be the same as entering the number in
brackets. Your screen should have at least 24 lines for ProMON to work
well.

The rest of the questions concern how the screen controller works on
your computer. If you are in doubt about any of the questions, consult
the manual for your computer. You are now asked for the:-

Cu r so r position lead-in sequence

(

When ProMON is in operation it has to be able to tell the screen
controller to put the cursor at a certain postion on the screen. To do
this, ProMON tells the controller the row and the column required.

ProMON lnstallatlon HISoft Devpac80 ver. 2 Page Pl-3

Most screen controllers require a special sequence of codes to indicate
that the values to follow represent a row and a column. Thus, inside
the firest set of brackets there will be the sequence as it is currently
defined with the decimal values of the codes in that sequence in the
second set of brackets. If the sequence is correctly set up then just
press [RETURN) and move on to the next question. If the sequence is
incorrect then it must be changed.

You should enter the cursor positioning sequence code by code (up to
a maximum of four codes) terminated by [RETURN]. Each code may
either be entered as a single keypress or as its decmal value terminated
by [RETURN J . As an example, if the correct sequence for your contoller "

was [CTRLJ-K=. You could enter this either by typing:

[CTRL]-K=[RETURN] or by typing
1 1 [RETURN] 6 1 [RETURN] [RETURN]

([CTRLJ -K is ASCII 11 and= is ASCII 61

note the two [RETURN)s at the end; the first is to terminate the 61 and
the second is to terminate the whole sequence.)

The next question asked is:

Is the row sent before the column

(Y/N/ [RETURN])?

The screen controller may require the row before the column, or the
column before the row. As above, pressing [RETURN} is equivalent to
giving the answer in brackets.

You are now asked:

Offset for column

Offset for row ()?

) ? and then

When the values for the row and the column are sent, many screen
controllers require an offset to be added to each.

Page Pl-4 HiSott Devpoc80 ver. 2 ProMON Installation

r

The values required for the offsets are those required to position the
cursor at the top left of the screen (i.e. if the correct offsets for your

, machine were both 32 then sending the Cursor Position lead-in
sequence, then 32, then 32 will put the cursor at the top left of your
screen).

If the value in brackets is correct thnjust press [RETURN] otherwise
type in the correct value terminated by [RETURN J • As above, you should
consult the manual for your machine if in any doubt.

The next text to appear is:-

Clear Screen sequence

()

The layout is identical with that for the cursor positioning sequence
detailed above. Press [RETURN] alone if the sequence for clearing the
screen is correct or type the correct code terminated by [RETURN] as
above. If your controller does not recognize a sequence to clear the
screen (possible but unlikely) then press D.

Use lead-in ()

Use lead-out ()

(Y/N/[RETURN])?

These questions concern the use of lead-in and lead-out sequences.
These options allow you to use ProMON to send a command to the
screen controller or run a small program at the start and end of a
session.

For example, this facility might be used to put your machine into 80
column mode on entry to ProMON and reset back to 40 column mode
on exit. However, unless you have an important reason for wanting to
use this facility, it is advisable to answer N to both questions. If you
answer Y to either you will be asked to specify a code sequence to send
to the screen controller which you should return as described above.

ProMON Installation HISoft Devpac80 ver. 2 Page Pt-5

Which RST (1-7)) ?

This question concerns which Z80 restart instruction ProMON should
use as a breakpoint. This will, on entirely standard CP /M systems, be
RST 7, but many modern systems use this restart for interrupts and
in that case another restart should be used. (See the manual for your
computer).

You will now be returned to the main menu.

2.3 Redefining ProMON Commands

Pressing 5 from the main menu will allow you to assign your own
particular keys to some important ProMON commands. The
commands will be shown and you have the opportunity to change the
definition or accept it and pass on to the next command. After the last
command you are returned to the main menu. For each of the
commands the display format is:-

Command name

(keystroke definition) (decimal definition) -

where the keystroke definition is the key you press to give the
command and the decimal definition is the decimal ASCII value of that
key.

At any stage you have the option to retain the current definition or to
change the current definition.

1) To retain the current definition press [RETURN]. The process
then repeats for the next command. At the end you are returned
to the main menu.

2) To change the current definition the new key should be pressed
after which the new defmition is deplayed. Then the whole
process is repeated for the next command.

Page Pl-6 HISoft Devpac80 ver. 2 ProMON Installation

3) Definition elements are of two types. The first type 1s simply a
keystroke and the second type 1s a sequence of digits terminated
by [RETURN] . For example, the two ways to define cursor-left as
[CTRL] -Q (ASCII value 17) are:-

a) Simply press [CTRLJ-Q

b) press 1 then 7 then [RETURN]

If the defmition given is the same as that of a previous command tllen
this message will appear:-

WARNING: There is a conflict between

this and another command.

Do you wish to continue anyway (Y/N)?

A response of Y will ignore the duplication and N will allow the current
command to be re-defined. Note that if ProMON is saved to the disc
with two commands identical, the use of one of the commands will be
lost.

It is recommended that you consult the reference section of the manual
if in any doubt as to the meaning of some of the commands. After the
last command, you are returned to the main menu.

2.4 Use of Installation Files

There are many features of ProMON that are alterable by the user.
Every copy of ProMON naturally contains one set of these options.
There is a type of file, however, called an Installation File that consists
solely of the set of the alterable options. An Installation File 1s of type
• P 8 o. Note that installation files for ProMON are not compatable with
those of MONS0.

To save the current installation information in a file, select option 6
from the main menu. You will then be prompted for a filename which
you should type in terminated by [RETURN).

To load an installation file. select option 7 from the main menu. As
above, you will be prompted for a filename. If the file you give does not
exist then the prompt will be repeated.

ProMON Installation HiSoft Devpac80 ver. 2 Page Pl-7

You can press [ESCJ to quit. When the installation file is loaded into
memory. it will overwrite the alterable options already present in the
copy of ProMON in memory.

The main use of Installation Files is ·when you are in the long-term
process of tailoring your version of ProMON to suit your own
preferences. If you save each successive change you make to the
installation of ProMON then any changes you find undesirable can be
overwrttten by using the last installation me rather than going all the
way through the commands. You may also fmd it useful to save your
fmal installation in a file as a reminder of how your commands etc. are
defined. r--,

2.5 Leaving the Install Program

You can leave the install program by selecting option l from the main
menu, but BEWARE! If you select option l then nothing will be
changed on the disc. Thus, if you are satisfied with the changes you
have made in the last installation session, you should first use either
option 3 or option 4.

Both will save a copy of ProMON (as a .MON file) on the disc. Option 3
will save Pro MON under the name you specified at the beginning of the
session (normally PMON) whereas option 4 allows you to change the
name by which you will invoke ProMON. You may have more than one
copy of ProMON on the disc at the same time (under different names,
of course).

Thus, the normal method of leaving the install program will be first to ,.---..,.
select option 3 and then option 1. If you don't wish to save the results
of your installing labours then select option l alone.

Page Pl-8 HISott Devpac80 ver. 2 ProMON lnstallatlon

SECTION 3
MON80 Debugger

This section describes the compact version of the debugger which is the
same package as was released with Devpac80 version 1. The purpose
of including this version is to provide facilities for debugging very large
programs; the compact model is just over 7K in length. compared with
a little over 12K for the professional version, ProMON. Thus, an extra
5K of the TPA is available with the compact model and this can be
crucial in some cases.

The command set of the compact model is very different from that of
the professional version although the underlying concepts are very
similar. If you intend to use the compact model then please study the
rest of this section carefully before proceeding. Of course, if you have
upgraded from Devpac80 version 1, you will be able to use this version
immediately.

Throughout this section we shall refer to the compact version simply
asMONS0.

3.1 Getting Started

r Your supplied disc will hold the two programs required to run the
compact model: MON80 .COM and MON80 .MON. To activate simply type:-

MON80 [RETURN]

MONS0 will now be loaded into the memory of your computer and it
will then run itself and produce what is called a Front Panel on the
screen.

Mon80 Compact HiSoft Devpac80 ver. 2 Page MC·l

As can be seen, the screen display is composed of three main sections:-

a) The Register Display
b) The List Display
c) The Memory Display

The Register Display

PC 0100

SP B906

IX 0000

IY 0000

0000 HL 0000

0000 DE 0000

0000 BC 0000

0000 AF OOFF

.MR 0100

the program counter
the stack pointer
the IX register
the IY register
the HL' and HL registers
the DE' and DE registers
the BC' and BC registers
the AF' and AF registers
the pseudo memory register

IR 007A

I SZ H VNC

the interrupt and refresh registers
the interrupt status and flags

This display shows the values held by the various internal Z80 registers
including the flag register. Remember that the HL, DE and BC registers
(plus the alternate equivalents) may each be regarded as one 16 bit or
two 8 bit registers. A pseudo-register (i.e. register that does not exist
within the Z80 chip) has been included; the memory register (MR). This
is a useful place for storing addresses that you may wish to go back to
later, think of it as being rather like a pocket calculator's memory.

To the left of the register display is the list display:

List Display

)0100 LD HL, (#0006)
0103 LD DE,#lBOO
0106 OR A

0107 SBC HL,DE
0109 LD SP,HL
010A PUSH HL
010B LD A, (#0004)
OlOE LD E,A
OlOF LD D,#00
0111 LD C, #OE
0113 CALL #0005

Mon80 Compact HiSoft Devpac80 ver. 2 Page MC-3

In 40 column mode the list display consists of a disassembly of 11
instructions initially starting from address #100 (in 80 column mode
the disassembly is 22 instructions long). This disassembly may be
updated at any time to start at the address held by the program counter
(PC) by using the L command. If any of the instructions disassembled
is at the same address as held by the program counter (PC) then that
instruction will be marked on the display with a right curly bracket } .

Below the list display is the memory display:

Memory Display

OOEO FF 00 FF 00 FF 00 FF 00

OOE8 FF 00 FF 00 FD 00 FF 00 } . . .

OOFO FF 00 FF 00 FF 80 FF 00

OOF8 FF 00 FF 00 FF 20 FF 00

0100>2A<06 00 11 00 1B B7 ED * 7m
0108 52 F9 ES 3A 04 00 SF 16 Rye: •• _.
0110 00 OE OE CD 05 00 11 SE ••. M •..•
0118 01 OE OF CD 05 00 3C 20 •.. M •. <
0120 19 21 DD 01 7E B7 28 OB . ! l • 7 (.

-

0128 SF OE 02 ES CD 05 00 El •. eM •. a

The display is a snapshot of an 80 byte area of memory, initially centred
on address #100. The addresses are shown down the left- hand side
with the contents of the next 8 bytes from the address shown to the
right of it (in hexadecimal). Following this, to the right, is the ASCII
representation of these 8 bytes with . being displayed if the code
cannot be usefully interpreted.

You will notice that one of the bytes on the memory display is enclosed
in angle brackets (> <); the address of this byte is known as the Memory
Pointer - this is a concept internal to MON80 and has nothing to do
with the Z80. The Memory Display (unless set independently) is tied to
the address held in the currently- addressed register (the one with a
to its left) and if the value in this register changes or you change the
pointer to point to another register then the Memory Pointer (remember
the angle brackets) will change to the new address held by the register.
You may set the Memory Pointer independently by using the M
command - see below.

Page MC-4 HiSoft Devpac80 ver. 2 Mon80 Compact

The following two sub-sections descrtbe the commands available to
you within MON80; there are 2 sets, the standard set and the advanced
set. The standard set of commands is descrtbed in Section 3.3 while
the advanced set is detailed in Section 3.4. You should read Section
3.3 first and may find that you never need to dip into Section 3.4, you
can drtve MON80 adequately by using the standard command set.

3.3 Standard MON80 Commands

There is a wide range of commands that may be entered and executed
whenever the front panel is displayed and the command prompt > is
present at the bottom left of the screen. Before proceeding to describe
these commands in detail, we shall give details of how numbers are
entered when using MON80.

3.3. 1 Entering Numbers

There are many times when you will find yourself wanting to enter a
number when using MON80 e.g. a memory address. Numbers may be
either decimal or hexadecimal (base 16) and you distinguish between
the number base by starting a decimal number with a \ symbol.

A decimal number may have a maximum of 5 digits whilst a
hexadecimal number has a maximum of 4 digits; if you enter more than
the relevant number of digits then the most significant digit will be lost
e.g. if you enter \123456 then the display will show \23456 and this is
the number that will be accepted.

To terminate the entry of a number simply press any character that is
not valid within the context of the number i.e. any character other than
0-9 when entertng a decimal number or any character other than 0-9
and A-F (or a-f) when specifying a hex number. If the character pressed
is a valid command then that command will then be executed.

You may specify negative numbers by using a minus sign before the
number and you should note that all numbers entered will be taken as
modulo 65536 or modulo 256 depending whether the context allows for
words or bytes respectively.

You may abort the entry of a number by using [ESCJ.

Mon80 Compact HiSoff Devpoc80 ver. 2 Page MC-5

Now for the commands available:

3.3.2 The Commands Available

The key used to abort all operations is (E SC] and the key used to delete
the last character entered is (DEL]. The keys used to invoke the
commands can be changed by running the installation program and we
have left a blank space before each command for you to fill in your own
choice of command key.

Set the Memory Pointer M

This prompts you with a colon to enter a memory address. Once you
have entered the address the Memory Display on the screen is updated
so that it is centred around the specified address. You may abort the
command by pressing [ESC] at any time.

Increase the Memory Pointer by 1

Add 1 to the Memory Pointer so that the Memory Display advances.

Decrease the Memory Pointer by 1

Subtract 1 from the Memory Pointer so that the centre of the Memory
Display is decreased by 1.

Increase the Memory Pointer by 8 >

Add 8 to the Memory Pointer so that the centre of the Memory Display
is increased by one line.

Decrease the Memory Pointer by 8 <

Subtract 8 from the Memory Pointer so that the centre of the Memory
Display is decreased by one line.

Page MC-6 HISoft Devpac80 ver. 2 Mon80 Compact

Memory Pointer addre$s to Register T

Copies the current Memocy Pointer address into the register that is
pointed to by the register pointer. This is a second way of changing the
contents of a register, the other being to enter the required value
followed by a period (see next command).

Advance Register Pointer full stop

Advance the pointer (.) on the register display by one from top to
bottom (i.e. PC to MR). When the pointer reaches the bottom of the
display (MR) then on the next execution of this command it will step
back to the top of the display (PC).

Note that, if this command is used to terminate a number, then the
number will be entered into the register currently addressed by the
Register Pointer. Remember that the Memocy Display is tied to the
address held in the currently-selected register and therefore the
Memocy Display will change as you use this command.

Read in a file R

This command will produce the prompt Name: to which you should give
the filename you wish to read in followed by [RETURN] • The flletype will
default to . COM. In response to First: give the address you wish to load
the file to. Pressingjust [RETURN] here will load the file to the standard
CP /M base file address of # 1 o o. MON SO will inform you of the address
of the end of the last block of the file loaded and then pressing a key
will return to the front panel.

Write out a file w

This command will produce the prompt Name: to which you should give
the name you wish to call the file. The default flletype is .COM. In
response to First: and Last: you should give the start and end of the
block of memocy you wish to write to the disc, each followed by
[RETURN].

Mon80 Compact HISoft Devpac80 ver. 2 Page MC-7

Single Step a Program z

Executes instructions one at a time from the current state of the
computer as shown by the Register Display. After each instruction is
obeyed, the Register Display and Memory Display are updated to reflect
the new state of the machine.

Jump to PC J

Continue execution of a program from the register state currently
displayed on the register display (top right). Execution will start from
the address held in the PC and continue indefinitely or until a
breakpoint is encountered; to set a breakpoint you may specify the
address at which you want the breakpoint to be placed after the colon
with which J prompts you - if you do not wish to set a breakpoint then
simply hit [RETURN] after J e.g.

J:BB00 [RETURN]
J: [RETURN]

will execute until address #BB00
will execute indefmitely

To abort the command hit [ESCJ before hitting [RETURN].

If you wish to set more than one breakpoint then use the Set
Breakpoint routine [CTRLJ -B detailed in the next section.

List from PC L

Update the List Display with a disassembly starting from the address
currently held in the program counter (PC). The list display marker (})
will point to the first instruction on the display and will move as the
PC address changes.

Page MC-8 HiSoft Devpac80 ver. 2 Mon80 Compact

Show Alternate Display s

This displays an alternative Memory Display of the form:

SP IY IX HL DE BC AF

DB85 0000 0000 0000 0000 0000 OOFF

3297 F3 s F3 s F3 s F3 s F3 s 00

F427 C3 C C3 C C3 C C3 C C3 C 2A *

4C73 D7 W D7 W D7 W D7 W D7 W 06 .

0006 BF ? B7 ? B7 ? B7 ? B7 ? 00

4891 02 02 . 02 • 02 . 02 • 11 •

08AA 1B lB . lB . lB . 1B 00 .

8006 98 98 . 98 • 98 . 98 lB .

4601 98 . 98 . 98 . 98 98 • B7 7

This display shows the contents of the registers (at the top) and,
underneath these, either the contents of the 8 words (for the SP) or the
8 bytes (for IY to AF) that are addressed by the register.

For registers IY to AF the ASCII equivalent of the byte addressed is also
shown. This display is useful if you know that one of the registers is
addressing a table or if you want to inspect the state of the stack.

This command is a toggle and thus repeated uses will flip between the
normal Memory Display and the above alternative display.

Go to Relative Offset 0

Go to the destination of a relative displacement. This command takes
the byte currently addressed by the Memory Pointer, treats it as a
relative displacement and updates the Memory Display accordingly.
Example:

Assume the Memory Pointer is set to #8800 and that the contents of
locations #87FF and #8800 are #20 and #16 respectively- these 2 bytes
could be interpreted as a JR NZ, $ + 2 4 instruction. To find out where this
branch would go on a Non-Zero condition, simply press o when the
Memory Pointer is addressing the displacement byte #16. The display
will then update to centre around # 8 81 7. the required destination of the
branch.

Mon80 Compact HISoft Devpac:80 ver. 2 Page MC-9

Remember that relative displacements of greater than #7F (127) are
treated as negative by the ZBO processor, The command takes this into
account.

To return to the branch instruction address, see the following
command.

Reverse Relative Offset u

Remembering that o updates the Memoiy Display according to a
relative displacement i.e. it shows the effect of a JR or DJNZ instruction,
then this command is used to update the Memoiy Display back to the
address at which the last o command was issued.

Go to Extended Address X

This command takes the 16 bit address specified at the current
position of the Memory Pointer and then updates the Memory Pointer
so that it is centred round this address. Remember that the low order
half of the address is specified first, followed by the high order half.
Example:

Assume you wish to look at the routine that the code #CD # o 5 # 8 3 calls;
set the Memoiy pointer using M so that it addresses the #0 5 within the
CALL (#CD) instruction and then press x. The Memoiy Display will be
updated so that it is centred around location #8305.

To return to the address at which the x was used see the following
command.

Reverse Extended Address V

This updates the Memory Display to where it was before the last x
command was issued.

Page MC-10 HISoft Devpac80 ver. 2 Mon80 Compact

r

Get a Pattern G

Search memory from the Memory Pointer for a sequence of bytes or
characters or a mnemonic. This command prompts you with a colon
to enter the pattern for which you want to search. This pattern may be:

a) A sequence of bytes, specified in decimal (start with a \) or
hexadecimal and separated with spaces.

b) A string of characters, in this case you should start the string
with a double-quote character (") and then simply type the
string, character by character.

c) A mnemonic (e.g. LDIR) or operand from a disassembly (e.g. A, C),
you should start by typing a % sign followed by the mnemonic or
operand that you want. Letters will be converted to upper case
as you type them and you must obey the syntax of the
disassembler e.g. HL, #AOOO and not HL, AOOO or HL, AO OOH.

While MON80 looks for the requested disassembled instruction
it displays the message Wait ..• on the screen; you can abort the
search by pressing [ESC].

Examples:

G:21 00 00 7E FE 55 [RETURN]

G:"SYNTAX ERR [RETURN]

G:%LD A, (HL) [RETURN]

Next Pattern N

Searches from the Memory Pointer for the next occurrence of the
pattern that you previously specified using the G command. When the
pattern is found the Memory Display is updated to centre around the
start of the pattern.

Mon80 Compact HISoft Devpoc80 ver. 2

Fill (Put) Memory p

Fill memozy between specified addresses with a specified byte. This
command prompts for the start and end addresses (First: Last:),
inclusive, of the block that you wish to fill and then for the byte with
which you wish to fill the block (With:) e.g.

>P
First:A000 [RETURN)
Last:ASFF [RETURN)
With:55 [RETURN]

will fill memozy between #AO00 and #ASFF (inclusive) with the byte #55
(The character U).

If the start address is greater than the end address or if you press [ESC l
then the command will be aborted and no action taken.

Intelligent Copy I

Copy a block of memozy. You are prompted for the start address and
end address (First: Last:) of the block that you wish to copy; these
addresses are inclusive and if the last address is smaller than the first
address then the command is aborted. You are then prompted for the
destination address (To :) after which the block will be moved. The copy
is intelligent in that the destination address may be anywhere in
memozy, even within the block that you are moving. You can abort the
command at any stage by pressing [ESC J •

Toggle Extended mode [CTRL]-E

This command changes the screen layout so that the memozy display
appears top right and the list display is extended to 22 instructions
forming a vezy useful long dissassembly with no loss of other
information. This command is a switch or toggle and thus using it
repeatedly switches between 80 and 40 column mode. Note that in
either mode, this command may be used to clear the screen.

Page MC-12 HiSoft Devpac80 ver. 2 Mon80 Compact

Return to CP /M [CTRL]-C

Simply returns you to CP /M.

This concludes the section on the standard commands available under
MONS0; in the next section you will find details of other commands
which enhance the power and flexibility of the package but which are
not essential for simple debugging purposes. For most purposes you
should fmd that the standard commands will serve perfectly
adequately.

Here is a summary of the standard commands and theirdefaultvalues:

Modifying Memory

M to set the Memory Pointer
to step the Memory Pointer forward 1

; to step the Memory Pointer back 1
> to step the Memory Pointer forward 8
< to step the Memory Pointer back 8.

Any hexadecimal or decimal number (preceded by \) terminated with
an invalid digit (often [RETURN] or the cursor ke-;s) to modify the RAM
memory at the current Memory Pointer.

A string of ASCII characters beginning with " and terminated with
[RETURN].

Modifying Registers

(full stop) to move the Register Pointer round the registers.
Any hexadecimal or decimal number (preceded by \) terminated
by a full stop will be entered into the currently addressed
register.

T to enter the Memory Pointer address into the currently �
register.

Mon80 Compact HiSoft Devpac80 ver. 2 Page MC-13

Program debugging

R to read in a file from the disc.
w to write out a file to the disc.
z to single-step with all register values as displayed.
J to continue from current macWne state up to optionally specified

breakpoint.
L to produce a page of disassembly from the PC.
s to obtain an alternative Memory Display of the register values

and what they address.
0
u to inspect relative and absolute jump and call
> instructions and then return to the source instruction.
<

Memory Search

G to defme a pattern (bytes, ASCII(") or mnemonic(%)) and
for the first occurrence.

N to search for subsequent occurrences after G.

Memory Copy

P to fill an area of memory with a specified byte.
I to intelligent copy a block of memory.

3.4 Advanced MON80 Commands

In this sub-section we detail 9 further commands which extend the
power and flexibility of MONS0: you can debug your programs
adequately using the standard set of commands given in Section 3.3
but the following so-called advanced commands allow you more
control over the debugging process - you may feel that you do not need
this extra power and in that case you need never read this section
again. However, we recommend that you at least browse through this
section once.

Page MC-14 HiSoft Devpac80 ver. 2 Mon80 Compact

3.4. 1 Disassembly Commands

Disassemble from Memory Pointer [CTRL]-L

This command produces a disassembly on the List Display whose start
address is taken from the current value of the Memory Pointer - useful
if you are grubbing about memory looking at code. Use command L to
restore the List display to disassembly from PC.

Disassemble Next Page [CTRL]-N

Produces a disassembly of the next block of instructions following on
from the current page of disassembly displayed on the panel. Use the
commands [CTRL J -L and L to recover the original page of disassembly
at any time.

Block Disassembly [CTRL]-D

Disassemble a block of memory to screen. printer or disc. The
command first prompts you (First: Last:) to enter the start and end
(inclusive) addresses of the block of memory that you wish to
disassemble; these may be entered in hexadecimal or decimal and if the
start address exceeds the end address then the command 1s aborted.

Then the question Disc? appears; answer Y if you wish to produce a
disc file of the disassembly - this disc file may be loaded by our editors
(ED80 and HDE) or assembled by our assembler (GEN80) as a normal
text file.

If you answer this question in the affirmative then you will be prompted
for the filename that you wish the file to have on disc - this should be
of normal CP /M format i.e. 8 character ftlename, then a dot and a three
character filetype. although the dot and the filetype may be omitted and
will then default to . GEN.

Now (whatever you answered to the last question) you will be asked
whether you want the output to go to your Printer?; answer Y to direct
the listing to the printer or any other key for screen output.

Mon80 Compact HISoft Devpac80 ver. 2 Page MC-15

Workspace: appears next - the disassembler needs some workspace for
its primitive symbol table and its disc buffer (if you have told it to
produce a file on disc).

Simply replying [RETURN) to this question will make a workspace of 2K
immediately under MON80. If this response produces an error or you
know in advance that more than 2K is required then you should specify
the workspace to be some other area.

Finally, you are repeatedly asked to specify the First: and Last:
addresses of any areas of memory within the disassembly that you wish
to be treated as data areas. Data areas are blocks that you do not wish
to be treated as Z80 instructions, they might be text messages among
other things. Any memory contents within a data area will be
disassembled as a sequence ofDEF'B xxx where xxx is the relevant store
contents. xxx will be displayed in ASCII (as a character between quotes)
if its value is between 32 and 127 or otherwise in hexadecimal (as two
hex digits preceded by a hash). To terminate your list of data areas
simply press (RETURN] in answer to both the First: and Last:
questions.

Having answered, or defaulted, all the above questions, the screen will
be cleared and there will be a pa se while the first pass of the
disassembly builds up the symbol table of labels.

You may pause the listing at any stage by hitting [ESC J ; then hit (ESC J
again to go back to the front panel or any other key to continue the
listing.

Labels are generated, where relevant (e.g. in #C3 #00 #98), in the form
LXXXX where xxxx is the absolute hex address of the label; if this
address lies outside the limits of the disassembly then the assembler
pseudo-mnemonic EQU is generated to define the label - this is for
compatibility with our assembler GENSO.

Page MC-16 HISoft Devpac80 ver. 2 Mon80 Compact

r

Example block diSassembly:

>[CTRL]-D

(Disassemble from #0000)

(to #0010)

(Don't make a disc file)
(Do send to the printer)

First:0 [RETURN]

Last:10 [RETURN]

Disc: [RETURN]
Printer:Y [RETURN]

Workspace: [RETURN]

First:3 [RETURN]

Last:4 [RETURN]

First: [RETURN]

Last: [RETURN]

(Use the default workspace)

(Data area starting at #0003)

(and ending at #0004)

might produce the following output on the printer:

JP LE203

DEFB #D5,#00
JP LB906
JP L0545

LD A,#01

OUT (#E4),A
LD A,B

OUT (#E2) ,A

10545 EQU #0545
LB906 EQU #B906

LE203 EQU #E203

3.4.2 Breakpoint Commands

Set Breakpoint [CTRL]-B

Set a breakpoint at the current address held in the Memoiy Pointer.
The byte at this address is saved and replaced with a RST instruction
which, when executed, restores the byte to its orginal value, waits for
you to hit a key and then enters the front panel displaying the current
state of the machine. The RST normally used is RST #38 (equivalent to
RST 7 or #FF). This can be changed with the installation program.

You will only use this command when you wiSh to set multiple
breakpoints within a program; the standard command J. which allows
you to set one breakpoint, will be sufficient.

Mon80 Compact HISoft Devpac80 ver. 2 Page MC-17

The number of breakpoints that may be set at any one time is ve.ry large
-and limited only by memo.ry considerations.

Reset All Breakpoints [CTRL]-R

,.

This resets all the breakpoints previously specified and restores your
code to its virgin state.

3.4.3 Execution Commands

Three commands exist to add flexibility while single-stepping your
program; one of these uses interpretation of the 280 code to perform
their task. During interpretation, you may interrupt the execution by
pressing [ESCJ - this will immediately break back to the front panel
display, showing the state of the machine when you stopped it.

This powerful feature has the disadvantage that your code will run
slowly while being interpreted and you must therefore compromise
between the advantages of being able to break out of your program and
the disadvantage of a slow, unrealistic execution - the standard
command J and the advanced commands [CTRLJ-S and [CTRLJ-Z do
not interpret and thus your code will run at normal speed.

Interpret to Breakpoint [CTRL]-J

Interprets your program from the current PC value up to any
breakpoint that may have previously been set. You may also set a
breakpoint with this command by specifying the breakpoint address
following the colon prompt that [CTRL J -J produces. If you do not wish
to set a breakpoint here then simply press [RETURN J in response to the
colon.

This command interprets your program and thus runs fairly slowly;
you may, however, hit [ESCJ at any time to enter the front panel.

Page MC-18 HISoft Devpac80 ver. 2 Mon80 Compact

Execute Loop Repeatedly [CTRL]-Z

This command prompts you with a hash to enter a number (in
hexadecimal or decimal). Once you have entered this number,
terminated by [RETURN]. execution of the program starting from the
address held in the PC talces place. Execution will halt only when the
address at which execution was initiated has been encountered the
number of times specified by the number that you entered after the
hash. For example, consider the following code:

844F CD4690 CALL
8452 2B DEC
8453 lOFA DJNZ
8455 21FFFF LD

L9046
HL
L844F
HL,#FFFF

Say that the PC contains 8 4 52 and that register B contains #2 o and you
wish to see what happens when you go round the DJNZ loop until
register B equals UO i.e. another 16 (decimal) times. Use the [CTRLJ

z command and type 10 [RETURN] or \16 [RETURN] in response to the
hash. The front panel will reappear after the loop has been repeated 16

times.

Skipover Instruction [CTRL]-S

Sets a breakpoint at the end of the Z80 instruction currently addressed
by the Program Counter (PC) and executes the instruction, non
interpretatively. This is useful for skipping over CALL instructions if you
do not wish to step through the whole of the subroutine.

r This command is equivalent to J:X+N where x is the address of the
current instruction and N is the length of the instruction - and as such
is provided merely for convenience.

Mon80 Compact HISoft Devpac80 ver. 2 Page MC-19

Page MC-20 HISoft Devpac80 ver. 2 Mon80 Compact

SECTION 4 INSTALLING

MON80

The process of installing MON80 involves three phases. \1ON80 is first
read in from the disc. Then, sections of the program are modified and
finally \1ON80 is written back out to the disc (as a .MON file). Thus the
process involves a permanent change to MON80.

There are two reasons that you might want to install MON80. Primarily,
it may be that there are problems with the screen layout and \ION80

seems not to work at all. This will be due to incorrect terminal codes and
in this case you should read the section on TERMINAL INST ALLA

TION. Alternatively, you may wish to modify some of the commands or
options to suit either keyboard or taste. This procedure is covered in the
section RE-DEFINING MON80 COMMANDS. In either case you
should first read the next section.

4.1 STARTING UP THE INSTALL PROGRAM

To run the installing program, insert the supplied disc and type:-

MON801NS (ENTER]

You will now see the MON80INS copyright message and some general
information. When you're ready, press any key. The purpose of the
installation process is to alter the copy of MON80 on the disc. To this
end, some copy of the program (called the working copJ) 1s read in from
the disc into the machine. The first question is thus:-

Normally the working copy of MON80 is
read in from a file called MON BO.MON
Use another file instead (Y /N) ?

The reply will normally be N. the exception being when)OU have
renamed a version of \10�80. A reply ofY will produce the prompt:-

[ES CJ to.abort
Omit file type (.MON assumed)
Enter filename

to which a filename should be typed in (omitting the filetype). Whether
you replied N to the upening question or Y and then specified a filename,
the working copy will now be read in to the machine from the disc and
the .\10�80 Installation Menu will appear.

Mon80 Installation HiSoft Oevpac80 ver. 2 Page Cl-1

There is now a copy ofMON80 in the memory of your machine ready to
be altered and the MON80 Installation Menu on the screen.

MON80 INSTALLATION MENU

1. Return to CP /M
2. Alter screen codes
3. Save MON80 as < working copy filename > (normally

MON80.M0N)
4. Save MON SO as another file
5. Alter command codes
6. Load installation from .M80 file
7. Save installation to .M80 file

Type desired number:

If you are a first-timer using the installation program because the screen
codes in MON80 were wrong then turn first to the section TERMINAL
INSTALLATION and then to LEAVING THE INSTALL PRO
GRAM. The other sections in this chapter are USER PATCHES.
REDEFINING MON80 COMMANDS, and USE OF INST ALLA
TION FILES.

4.2 TERMINAL INSTALLATION

Select option 2 from the main menu to alter the screen codes. You will be
asked.

Screen at least 80 columns wide ()
(Y /N/(ENTER]) ?

in answer to the question you should type either Y (if your screen is 80
columns wide or greater) or N (if your screen is less than 80 columns
wide). Pressing (ENTER] alone is equivalent to giving the answer shown
in brackets. If you answered N to the last question then the question
below does not appear, otherwise the next question is:-

Enter MONS0 in extended mode ()
(Y /N/[ENTER]) ?

If you wish MON80 to start ih extended mode (ie .. with long disassembly
utilising the full width of an 80 column screen) then you should press Y,
otherwise press N. As before, pressing (ENTER] is equivalent to giving
the answer in brackets.

The rest of the questions concern how the screen controller works on
your computer. If you are in doubt about any of the questions, consult
the manual for your computer. You are now asked for the:-

Page Cl-2 HISoft Devpac80 ver. 2 Mon80 Installation

Cursor rosition lead-in sequence
(()-

When MON80 is in operation it has to be able to tell the screen con
troller to put the cursor at a certain position on the screen. To do this,
MON80 tells the controller the row and the column required. Most
screen controllers require a special sequence of codes to indicate that the
values to follow represent a row and a column. Thus inside the first set of
brackets there will be the sequence as it is currently defined with the
decimal values of the codes in that sequence in the second set ofbrackets.
lfthe sequence is correctly set up then just press [ENTER] and move on
to the next question. lfthe sequence is incorrect then it must be changed
and there are two ways to change it.

I) If your screen controller does not have a special sequence of codes
then you will have to write a program in assembly language to do it
instead. In this extremely unlikely event, press D to delete the current
sequence.

2) If, as is much more likely, your screen controller does have a Cursor
Position lead-in sequence then you should enter it now code by code (up
to a maximum of four codes) terminated by [ENTER). Each code may
either be entered as a single keypress or as its decimal value terminated
by [ENTER). As an example, if the correct sequence for your controller
was [CTR L]-K =. You could enter this either by typing

{CTR L)-K = [ENTER) (ie .. 4 keypresses) or by typing
1 1 [ENTER] 6 1 [ENTER) [ENTER)
([CTRL]-K is ASCII 11 and= is ASCII 61 and note the two [ENTER]s at
the end. The first is to terminate the 61 and the second is to terminate the
whole sequence.)

The next question asked is

Is the row sent before the column ()
(Y /N/[ENTER)) ?

The screen controller may require the row before the column, or the
column before the row. As above,_pressing [ENTER] is equivalent to
giving the answer in brackets.

You are now asked

Offset for column () ?
Offset for row () ?

and then

When the values for the row and the column are sent, many screen con
trollers require an offset to be added to each. The values required for the

Mon80 Installation HiSoft Devpac80 ver. 2 Page Cl-3

offsets are those required to position the cursor at the top left of the
screen (ie .. if the correct offsets for your machine were both 32 then
sending the Cursor Position lead-in sequence, then 32, then 32 will put
the cursor at the top left of your screen). If the value in brackets is correct
then just press [ENTER) otherwise type in the correct value terminated
by [ENTER]. As above, you should consult the manual for your
machine if in any doubt.

The next text to appear is:-

Clear Screen sequence
() ()-

The layout is identical with that for the cursor positioning sequence
detailed above. Press [ENTER] alone if the sequence for clearing the
screen is correct or type the correct code terminated by [ENTER] as
above. If your controller does not recognize a sequence to clear the screen
(possible but unlikely) then press D.

Bell character
() ()-

If your computer has a bell or beep then you should press the key that
normally rings it. This is almost always [CTRL]-G. If your computer
doesn"t have a bell then press D to delete the code. As before, pressing
[ENTER] is equivalent to giving the answer in brackets.

Which RST(1-7) (?

This question concerns which 280 restart instruction !\1ON80 should
use as a breakpoint. This will, on entirely standard CPiM systems, be
RST 7, but many modem systems use this restart for interrupts and in
that case another restart should be used. (See the manual for your
computer).

Use lead-in ()
Use lead-out ()

(Y /N/[ENTER]) ?

The final questions concern the use of lead-in and lead-out sequences.
These options allow you to use MON80 to send a command to the
screen controller or run a small program at the start and end of a session.
For example, this facility might be used to put your machine into 80
column mode on entry to MON80 and reset back to 40 column mode on
exit. However, unless you have an important reason for wanting to use
this facility, it is advisable to answer N to both questions. If you answer Y
to either you will be asked to specify a code sequence to send to the
screen controller which you should enter as described above. If however,
you wish.to do something more complicated than just send a sequence

Page Cl-4 HISoft Devpac80 ver. 2 Mon80 Installation

then you should press D to delete the current sequence and prepare to
write a program for the patch file!

Normally you will now be returned to the main menu. If. however. you
do not see the main menu now then read on!

4.3 USER PATCHES

A user-patch is a program written by you in assembly language to
perform a function not within the capabilities of your screen controller.
They will be needed if your response to certain questions from option 2
of the main menu has been to press D ie .. the screen controller cannot
perform certain functions. The functions which may need user patches
are:- Cursor Position, Clear Screen, Lead-in, and Lead-out. If you have
answered D to any of these then after the last question of option 2. you
will see the message

Please read the manual (Section 4) ! (which you are. Good)
Read in a new Patch file

(Y /N) ?

The normal process by which you can write a user-patch is to use an
assembler (GEN80 I hope) to write and assemble the program and create
a .COM file, which is the form needed for the patch. Included in this
manual is an assembly language source file that is extensively com
mented to illustrate the general format for a patch-file. If you need to
write a patch-file then reply N to the question for the moment and study
the example patch-file closely. If you have already written and assembled
the patch-file then reply Y to the question above and then in response to
the prompt type in the f1Iename. The machine-code in the patch-file will
then be incorporated from the disc into the memory copy of MON80 and
you will then be returned to the main menu.

4.4 RE-DEFINING MON80 COMMANDS

Pressing 5 from the main menu will allow you to alter the command
definitions. All of the commands will be shown and you have the oppor
tunity to change the definition or accept it and pass on to the next
command. After the last command you are returned to the main menu.
For each of the commands the display format is:-

Command name
(keystroke definition) (decimal definition) -

where the keystroke definition is the key the user presses to give the
command and the decimal definition is the decimal ASCII value of that
key.

Mon80 Installation HISoft Devpac80 ver. 2 Page Cl-5

At any stage you have the option to go back to consider the previous
command, to retain the current definition or to change the current
definition.

I) To backtrack to the previous command, press B

2) To retain the current definition press [ENTER]. The process then
repeats for the next command. At the end you are returned to the main
menu.

3) To change the current definition the new key should be pressed after
which the new definition is displayed. Then the whole process is repeated
for the next command.

4) Definition elements are of two types. The first type is simply a key
stroke and the second type is a sequence of digits terminated by
[ENTER]. For example, the two ways to define a command as I (which
has an ASCII value of73) are:-

a) Simply press I
b) press 7 then 3 then (ENTER]

If the definition given is the same as that of a previous command then
this message will appear:-

W ARNING: There is a conflict between this and another
command.
Do you wish to continue anyway (Y /N) ?

A response ofY will ignore the duplication and N will allow the current
command to be re-defined. Note that if MON80 is saved to the disc with
two commands identical, the use of one of the commands will be lost.

It is recommended that you consult the reference section of the manual if
in any doubt as to the meaning of some of the commands. After the last
command, you are returned to the main menu.

4.5 USE OF INST ALLA TI ON FILES

There are many features ofMON80 that are alterable by the user. Every
copy of �ON80 naturally contains one set of these options. There is a
t:,pe of file, however, called an Installation File that consists solely of the
set of the alterable options. An Installation File is of type .M80.

To save the current installation information in a file, select option 6 from
the main menu. You will then be prompted for a filename which you
should type in terminated by (ENTER].

Page Cl-6 HISoft Devpac80 ver. 2 Mon80 Installation

To load an installation tile, select option 7 from the main menu. As
above, you will be prompted for a ftlename. If the tile you give does not
exist then the prompt will be repeated. You can press [ESC) to quit.
When the installation file is loaded into memorv. it will overwrite the
alterable options already present in the cop) ofMO!'i80 in memory.

The main use of Installation Files is when you are in the long-term
process of tailoring your version of \1ff\80 to suit your own prefer
ences. If you save each successive change you make to the installation of
\-ION80 then any changes you find undesirable can be overwritten by
using the last installation tile rather than going all the way through, the
commands. You may also find it useful to save your fmal installation in a
file as a reminder of how your commands are defined.

4.6 LEAVING THE INST ALL PROGRAM

You can leave the install program by selecting option I from the main
menu, but BEWARE! If you select option I then nothing will be changed
on the disc. Thus if you are satisfied with the changes you ha,e made in
the last installation session. you should first use either option 3 or option
4. Both will save a copy of "1ON80 (as a .MON tile) on the disc. Option
3 will save MON80 under the name you specified at the beginning of the
session (normally MON80) whereas option 4 allows you to change the
name by which you will invoke MON80. You may have more than one
copy of "1ON80 on the disc at the same time (under different names, of
course).

Thus the normal method of leaving the install program will be first to
select option 3 and then option I. If you don't wish to save the results of
your installing labours then select option I alone.

Mon80 Installation HiSoft Devpac80 ver. 2 Page Cl-7

Page Cl-8 HiSoft Devpac80 ver. 2 Mon80 Installation

r

APPENDIX EXAMPLE

PATCH-FILE

1fh1s •• •n •...:••Pl• P•tch-t1J• tor u•• •1tn Ell8•.1 or P'ION81.,.
:The p•tch-+11• for NON8•.1 11ust b• pos1t1on 1ne2ep.,,dent • ...,,.,. ••• th•t
ttor E081., need not be. Thas •.c•,-pJe as wr1tt•n ta be poa1t1an and•p...,dwnt
:ao th•t at c•n be us•d for bath progr•••·

:Jf t.n1a •• • P•tcn-tale for E08(1 t...,.,1ch do•s not have to b• poa1t1on·
11ndPpe>nd•nt> and th• file 1nciud•• so .. p0s1t1on-depe,ndant cod• eq •. •
tCALL to w1th1n ataelf or • LD 1nstruct1on Addressing •n area w1th1n
; 1 t s.e,J f t h.-n th•,.• ahoul d be •n ORG st.at•NPnt ner• at tne head of t � •• t 1 I e.
1Th• value for the Qf(G •• th•t qaven bv the 1natall1n9 pro9ram an th• lin•

U••r f'·•tch Ar•• st•rts at •J.•Xt
1•0 •••u•1n0 the •xlXJ ••• •24'3-8 the atat.-.nt should be
I tlf<G •=438
1Note th•t th• v•lue 01v.,, 1a· adJustltd for the 1n1t1•l lenqth by·t•
;••••••••••••••••••••••••••c••

LENGTH C,Ef'E< FINISH-SfART
Jlh• first bvte of the file Must b• th• tot•I 1.-nqth
1of th• P•tch-f1l• •:�clud1nq 1tsalf <25:5 ••::ieu•J.

STAf<T
JR CLEHf<_SCREEN

1Jump r•l •t 1 va to the roL•t1ne to cl••r thO' screen

JR CU'<SOFc_POSITJON
1JuMp r•J•tiv• to the routin• to pos1t1on th• cursor

DEf'S ::?
: Th• v•ctor to vour lead-in r0\.1t1ne would QO h1tr•. but an ttus e::•apJ•
Jnone as r•qu,r•d. The l•o bvt•• should be tailed how.v..,-.

DEFS ::?
;A l••d-out routin• 1s not L,•ed tfl this •>·•aple. 5.,. •t>o"•·

: Thtt file •ho1.tld •t•rt with four two-bvt• •r••• th•t •r• a1tt'l•r vectors
::to th• routsn•s concttrn•a or unin1t1•l•••d sp•c• tDEFS ':!I. lh• ••v lDd11
i•nd NOf'\lf:I(, u••• the .. ectors •• s1,aplv to CALL the f"'equ1s1te loc•t•on
11• .• wher• th• vector"' to th• rout,n• •• p0s1t1on•d. It tha u••r h••
1spec1t1•d 1n the 1nst•ll1nq proqr•� that • cert••n P•tch 1• not r�u1red
;thttn tt,e v•ctor w111 nev•r b• c•1J•d. ConuftC'lt"II ••n•• ••v be us•d; •• •n
1e:.a,npte. 1f th• onl"· P•tcti r•c,1..11,.•d ..,.,. to cl••r the scr-..,,. than tn• P•tct\
;t1J• n••d onlv cont•1n t"•• 1•nqth bvte to11owed bv the ,..out1ne 1ts•lt ••
:U•• ,ectors for CUf<SOF<_POS!T!ON. LEAD __ lN •nd LEAC,_OU1 •r-• ne..,..,. c•lled.

Mon80 Installation HiSoft Devpac80 ver. 2 Page Cl-9

CLEAi< _ SCF<EEN
tTh1• routine •ust cl••r th• llllhole acr..,,, but n..,d not ad;uat th•
scuraor po51t1on. or do anyth1no •••• nor .. llv •••ocaated w1tt1 •
••cr••n-cl••r-1ng routine. It take• no para .. ter• and �Y corrupt •11
1re91wt•r• •�cept IX. U•• of IY and th• alt.,.-n•t• raoast.,... .. t as not
1•dv1aeDI• •• tne 8105 of•- -cninea corrupt tn

CALL
LD
SET
RET

eFOO(•
HL,eFFCS
�. «HL>

CUl''SOf<. F-OSJTION

aThi• •• en e•e,opl•
10'f • possible acr-n
1cl••ran9 routine. Not• tnet
1it ahould fana•n with • •a,ople RET

: Th,a ro1..1t1ne mu•t set the cursor poa1t1on on th• 9creen.
;lh• ro1..1t1ne t•••• two p•r•111•t•rs. the colu111n •nd the row thL1a1-

1� holds the desired row + of•••t for row
aC holds the desired column • offset for column

1Th• ..-0ut1n• .,. • .,. corrupt •11 r•g1st•r• •�cept 11. Us• of l'Y and th•
:•lternate set as not Advisable for the reason given abava.

LD A.f<
LD ••F'FOO>,A 1An •>-•"'Pl• routine
LO i..c :to pos1t1on the cursor

LD ,•FF0.:1 ,A fNote tnet th•
PUSH D Jro1..it1na tne IX
CALL •F"-'-'t:> ;r•91st•r which ••

POF- D 1deatroved bv the CALL
f<ET 1•nd th•n doe• • •1•01• RET

:Le•d-Jn •nd l••d-out •r• not r•qu1rad an th1• •;·•mple. Code ntt•d
J not. of co1..1rse. be 1 nc l ud•d. Th• onl v req'-. .u r•••nt 1 • th•t tt,•r• t>e
s two b·,-t•• wner• the vector OUQht to be. StHt •bov•

:N� th• code 4or tha l••d-tn and le•d-out ••v corrupt all r•g1sters
a•nd should •nd with • •1aple RET

F'INISH

PogeCl-10

EC'l.1 •

HISoft Devpoc80 ver. 2 Mon80 Installation

H iSoft Devpac80
Full Tutorial

System Requirements:
Z80 disc system running CP/M 2 or CP/M 3 with at least 36K TPA.

Copyright© HiSoft 1987
Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™ .

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording.
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of mSoft Devpac80.

It is an infringement of the copyright pertaining to msoft Devpac80 and its
associated documentation to copy, by any means whatsoever, any part of msoft
Devpac80 for any reason other than for the purposes of making a security back
up copy of the object code.

Devpac80 Tutorial

Introduction

This chapter is a tutorial in the use of Devpac80. It assumes that you
have a working relationship with the editor (you should have worked
through the editor tutorial) and a passing knowledge of Z80 assembly
language, but requires very little knowledge of CP /M, and introduces
you both to use ofDevpac80 and programming under CP /M in general.
Although the tutorial looks long, it is broken up into logical sections so
that it doesn't have to be taken in one dose. At the end of the tutorial
you will have a useful utility program that will clean up your discs,
ridding them of files with illegal fllenames.

Printing on the screen

First things first. This section will build up a flexible routine that will
print messages on the screen. The best place to start is to write a
routine that will print a single character. This routine can then be
called repeatedly to p1int a message.

Activate HDE by using your Devpac80 work disc and typing:

HDE PRINTl [RETURN]
s

and then type

now type in the routine at the top of the next page exactly as written
(the space at the start of the lines is a [TAB] character). It will often be
useful to go immediately into AUTO-INDENT mode at the start of a
session (see the editor manual). Also, you should normally leave a
blank line at the front of your program, do this by pressing [RETURN]
alone.

Oevpoc80 Tutorial HISoft Oevpac80 ver. 2 Page T-1

;Write the character in A to the screen
; with all registers preserved
PUTCHAR

PUSH HL
PUSH DE
PUSH BC
PUSH AF
LD E,A
LD C, 2
CALL 5
POP AF
POP BC
POP DE
POP HL
RET

;Use the BDOS

As a word of explanation, there is a set way of getting CP /M to perform
functions for you. You first load the c register with the number of the
function you want (see any CP /M technical manual) and then call CP /
M. CP/M is set up so that there is a jump to it at location #0005, so that
you only ever need CALL 5 to use the BOOS functions in CP/M.

The call number used above is 2, which is the standard function for
writing a character to the screen.

The last complication in the routine above is the LD E,A instruction.
This is because function 2 requires that the character to be written is
present in the E register and we shall always be calling PUTCHAR with
the character to print in the accumulator (i.e. A).

Having typed in the primitive routine above, we need some way of
testing it. Move the cursor to the top of the screen and type the following
three lines:-

LD A, "Z"
CALL PUTCHAR
RST 0

This routine loads A with a character to print and calls the routine we
wrote to output the character. The final instruction is the standard way
of returning to CP /M safely. A RST (short for restart) instruction
performs exactly the sameas the equivalentCALL(e.g. CALL O). but only
occupies one byte.

Page T-2 HISoft Devpac80 ver. 2 Devpac80 Tutorial

Now save the program and assemble it. Do this by typing

[CTRL]-K X [RETURN]

A

and then, from the menu

Of course, if you have installed the editor commands to suit your
tastes, the save command may not be [CTRL]-K x; so from now on we
will give the name of the editor command rather than specifying how
to get it.

The assembly should work correctly and create a file PRINTl .COM. If
there is some mistake then the assembler will report the error and
fmish by saying Error (s) found, hit a key for the editor:, hit
a key and then use the Goto Next Error command to find the error,
correct it and then re-save and re-assemble PRINTl. When all is well,
and you are back at the HDE menu type:

R

to execute your program. Lo and behold the letter Z appears on the
screen and an orderly return to the menu is made .

. Now types to resume editing and delete the three line test program.
We'll now develop an all-purpose message-printing routine. Type in the
following text:-

;Print the message pointed to by HL

; and terminated by an ASCII 0

MOUT

LD A, (HL)

INC HL

OR A

RET NZ

CALL PUTCHAR

JR MOUT

MOUT stands for message out.

As you can see the routine should be entered with HL pointing to the
desired message and puts the message out character by character
until it encounters a zero and then returns.

Oevpac80 Tutorial HiSoft Devpac80 ver. 2 PageT-3

To test this routine. type in the following short test routine. Note of
course that the main routine (in this case called the test routine) must
appear at the start of the file. CP /M works by loading in the specified
program (assuming it is of type .COM) to location #100 and thenjumping
to location #100. Thus execution is transferred to the first instruction
in yourftle.

MESSAGE

:SD HL, MESSAGE
CALL MOUT
RST 0

DEFM "Hello world"
DEFB 0

Thus HL points to the start of the message, the message-printing
routine is called and the return to CP /Mis made. Note the zero marking
the end of the message.

Save this program and assemble it from the menu. Now run it using the
R command from the menu.

Oops, it does not work but returns to the menu having done nothing.

The first of the deliberate errors has occurred! This is a good
opportunity to use the debugger. type

D from the menu

ProMON (assuming you have PMON. COM and PMON. MON on your work
disc) will now load in PRINTl. COM, automatically load its . SYM file and
then say Symbols loaded. Now press a key for the front panel.

PRINTl has now been loaded into memory starting at #100. Note also
that the PC (program counter) is at #100.

You can see on the left of the screen the instructions making up your
program with a curly bracket at the top left marking the position of the
PC. Let's start to step through the program instruction by instruction
to try and see where things are going wrong.

Page T-4 HiSoft Devpac80 ver. 2 Devpac80 Tutorial

Press z to execute one instruction. Note that the value in the PC:
becomes #103, the curly bracket addresses the next instruction, and
the value in HL becomes # 1 O 7 which is the start of the message. All this
is to say that the instruction LD HL,MESSAGE has been executed.

Now press z again. 1b.is does not execute the CALLed subroutine but
follows the code into the subroutine. Thus the PC Jumps to the start of
the subroutine.

You are now at the start ofMOUT. Single-step the next instruction (z)
and notice that the accumulator (A register) becomes loaded with #48
which is the ASCII value of H, the first byte of the message. The next
instruction increments HL and then A is tested for zero with the OR A
instruction. Single-step both of these and note that the flags do not
show zero (there would be a z if so).

When you single-step the next instruction you can easily see the
mistake. The return has been made already, even though A does not
hold zero. 1b.is instruction should be RET z not RET NZ. 1b.is is why
none of the message was printed.

ProMON has done its work for the minute so quit (Q and Y).

Edit the text (press s at the menu) to change the RET NZ to a RET z and
save it, then assemble and run from the menu; this should now print
your message on the screen and then return to the menu.

Now we can return to the editor and edit PRINTl. GEN to make a useful
library file of it. Delete the three line test program and the message, so
that you're Just left with MOUT and PUTCHAR. Now we11 make the
assembler do a bit of work and make the program easier to understand.

Change PUTCHAR so that the instruction LD c, 2 becomes LD c, WRITE
and the CALL 5 becomes CALL BDOS . In the main ftle we will include
the two instructions BDOS EQU 5 and WRITE EQU 2. These last two types
of instructions are called equates and while they don't change the code
generated, they do make the source code easier to read and
understand. Having made those changes, save the new ftle as MOUT. LIB
by editing the name as you save it.

Devpoc80 Tutorial HISoft Devpoc80 ver. 2 PageT-5

Accessing the disc directory

It may seem like rather a large Jump from prtnting on the screen to
accessing the disc, but the way CP /M is designed makes handling the
disc reasonably easy. One just calls CP /Min exactly the same way as
for writing characters as we've seen above. This section will be
concerned with designing a routine to access the disc directory to get
at the names of files on the disc.

Obviously when dealing with files on the disc, there must be some
method of knowing which file or files are being dealt with and a place
to store file information such as:- the disc the file is on, the filename,
the position on the disc where the file is stored, and which section of
the file has just been read or written. The way CP /M handles this
problem is by means of a 33 byte data area called a File Control Block

(or FCB). An FCB for a file can reside in memory and when operations
on the file in question are finished, the act of closing the file writes the
memory FCB into the disc directory.

An FCB contains all the relevant information for a file, but all that need
concern us here is that bytes 2 to 12 contain the ftlename and filetype.
If the filename is less than 8 characters or the file type is less than 3 then
the remaining bytes of the name or the type are padded out with spaces
(ASCII 32).

The two functions we are going to be mainly concerned with here are
the CP /M functions 17 and 18, which are FIND FIRST and FIND NEXT
respectively. You use them by making DE point at an FCB and they
search the disc directory for a file whose name matches the one in that
FCB. These functions are going to be useful to us because the memory
FCB is allowed to be ambiguous. This means that the filename and
filetype can have ?s (ASCII 63) in them. This character is a wild-card,
meaning that it will match with any character. The upshot of all this
is that if the filename and filetype in the memory FCB are filled with ?s,
FIND FIRST and then FIND NEXT used repeatedly will find all the files
on the disc.

Right, after all that theory, let's get down to using Devpac80. From the
menu, type E to edit a new file and type in the name of this new Edit
file as FILES [RETURN].

Page T-6 HiSoft Devpac80 ver. 2 Devpac80 Tutorial

This program is going to be the main file, so let's put some useful
equates at the top (maybe you want to put a couple of comments in
concerning function and date etc).

Type in the lines:-

;Some CP/M addresses
BDOS EQU 5
DMA EQU #80

;CP/M function numbers
WRITE EQU 2

FINDFIRST EQU 17
FINDNEXT EQU 18

;ASCII values
NULL EQU O ;Message terminator
LF EQU 10 ; Line feed
CR
BLANK

EQU 13
EQU 32

;Carriage return
;Space

Now we'll skip the main program for a minute and write a couple of
FCBs. So type in the following at the end of the program:

ambigFCB

workFCB

DEFB NULL ;Byte 1 is the drive number
DEFM"??????????? ;11 chars.Ambiguous filenarne
DEFS 20, 0 ; The rest

DEFB NULL
DEFM"
DEFS 20, 0

"

There are two FCBs: one to be used for the matching process and the
other to be used as a working area.

Note the use of the pseudo-operands allowed by GENSO. DEFB is used
for single bytes, DEFM for a strtng of ASCII characters, and DEFS for
space reservation (the space is actually filled with zero's).

Devpoc80 Tutorial HISoft Devpac80 ver. 2 Page T-7

Now we'll write a general-purpose routine to use the ambiguous FCB.
Type the following text in between the equates and the two FCBs.

CPMFCB

;C holds the desired CP/M function number on entry
;which will be either FIND FIRST (17) or FIND NEXT (18)

PUSH HL
PUSH DE
PUSH BC
LD DE, ambigFCB ; Set up DE
CALL BDOS
POP BC
POP DE
POP HL
RET

Note that we haven't saved AF in this routine. This is because A holds
valuable information after using CP /M calls 17 and 18. Let's now write
a simple test routine to see if we're doing things half-way correctly.
Immediately after the equates include the following:-

LD C,FINDFIRST
CALL CPMFCB
RST 0

As you may gather, this routine provides no output, but first things
first. Save the program and then assemble from the menu.

The deliberate mistake strikes again (be of good cheer! u·s the
penultimate one) and the assembler reports a String not terminated
error on the first pass. Press a key to get the editor up and then issue
the Goto Next Error command. You will see that the question marks
begin with a " to signal a string but there is no finishing ". Go to the
end of the question marks and type a " so that the line looks like:

DEFM "???????????" ; 11 chars .Ambiguous filename

then save and re-assemble.

Page T-8 HiSoft Devpac80 ver. 2 Devpac80 Tutorial

All should be well, so go right ahead and execute the program from the
menu. The disc should have been accessed, and the return to the menu
is made, but nothing very exciting happens. At least the machine didn't
fall over, so let's use ProMON to try and see what happened.

1ype D from the menu and press a key· once the symbols have been
loaded.

Single-step (Z) the program up to but not including the CALL #0005

instruction. At this point, type RV and note that DE points to the
ambiguous FCB. The first byte is zero and the next eleven are all

,. question marks.

r

Execute the whole of the subroutine, which goes into the heart of CP /
M, at one go by pressing EM (to miss the subroutine) or simply z again
(since location 5 is below LOW and therefore will not be single-stepped
unless you change LOW).

The disc drives should spring into action as CP /M function 17 is
executed and the curly bracket and the PC value will change. Now just
step through the POPS and the RET at the end of the subroutine.

The important register at this stage is A. After a call to FIND FIRST or
FIND NEXT, A can hold one of five values: #FF indicates that no match
has been found (i.e. no file in the disc directory matches the ftlename
in the FCB addressed by DE), and o, 1, 2 or 3 give information as to
where you can find the disc FCB.

As a word of explanation here, if FIND FIRST or FIND NEXT are
successful in the search, they copy the matching FCB from the disc into
memory and specifically into the Direct Memory Access area or OMA.
Suffice it to say for the purposes of this program, the DMA is 128 bytes
long and the default OMA used by CP/M is at address #80 and thus
extends to #FF or just below where programs sit.

Now, to fmd out where the matching FCB is, one has to multiply the
value in A by 32 (the length of an FCB) and add this to the address of
the current OMA. Do this in your head and you11 come up with an
address #80 (for A=O), #AO (for A=l), #CO (for A=2) or #EO (for A=3). Look
at the A register on the front panel and work out this address now.

Devpac80 Tutorial HiSoft Devpac80 ver. 2 PageT-9

There are a few methods of grubbing around in memory, but perhaps
it is best at the moment to use the simplest, the MA command. Having
worked out the address you want to look at (#80, #AO, #CO or #EO) type:

MV to recover the hex and ASCII display
MA and then the address you want. you don't need the #

If you now look to the right of the memory block where the ASCII values
of the bytes in memory are displayed, you will see that there is a zero
and then a ftlenarne. This is the first part of a disc FCB. So FIND FIRST
works! The use of FIND NEXT is identical in operation, except that you
can use FIND NEXT repeatedly to get all subsequent files (i.e. until it
returns a value of #FF in A).

Printing out filenames

Now we can get down to the meat of the program. Delete the 3 line test
program and type in the main structure of the program as below:-

ONE TIME

NEXT TIME

TIME 1

NAME OK

FINISH

Page T-10

LD SP, (6)

CALL TITLE
;See below
;Print a title

LO C, FINDFIRST ; The first time
JR TIME 1

LD C, FINDNEXT ;Other times
CALL CPMFCB ;Do the search
CP #FF
JR Z, FINISH ; If no more

CALL GET TO NAME
CALL PRINT FCB
CALL CHECK-NAME
JR NC,NAME_OK

CALL BAD MESSAGE
CALL DELETE BAD
JR ONE TIME

;Locate the FCB
;Print the filename
;Is the name legal
;If legal

;Show its bad
;Delete the offender

;Back and start again

CALL GOOD MESSAGE; Show its good
JR NEXT-TIME ; Back for the next

CALL CONCLUDE
RST 0

;Print an end message
;Back to CP/M

HISoft Devpac80 ver. 2 Devpac80 Tutorial

This could be written in a much more compact way, but the listing given
has the benefit of being sufficiently modular to be able to develop the
program easily section by section. The first instruction in the program
deserves some explanation. What it does is to set up the stack
immediately under CP/M (i.e. in a safe place).

Before writing the first of the subroutines, read in the message-printing
library file (MOUT. LIB) from the disc. Make sure it sits below the main
program. Now type in the following text (in between the main program
and the printing routines) to take care of all the messages:-

TITLE

GOOD MESSAGE

BAD MESSAGE

CONCLUDE

OUT MESS

TITLE M

GOOD M

BAD M

END M

Oevpac80 Tutorial

PUSH HL
LD HL,TITLE_M
JR OUT MESS

PUSH HL
LD HL,GOOD_M
JR OUT MESS

PUSH HL
LD HL,BAD_M
JR OUT MESS

PUSH HL
LD HL,END_M

CALL MOUT
POP HL
RET

CR,LF DtFB
DEFM
DEFB
DEFM
DEFB

"DELETE ILLEGAL FILES (C) HiSoft"
CR,LF

DEFB

DEFM
DEFB

DEFB

"Written by R. Teller 14/2/85"
CR,LF,CR,LF,NULL

"Ok",CR,LF,NULL

"Erased"
CR,LF,CR,LF,NULL

CR,LF
DEFM "Program finished. Disc files Ok."
DEFB CR,LF,NULL

HISoft Devpac80 ver. 2 Page T-11

Note that to save space. all the message-printing routines jump to the
same point to print the message and exit. Note also that it is quite
possible to print carriage returns and line-feeds as any other character.

Now, as the final task in this section, the two routines GET_ TO _NAME and
PRINT_FCB will be developed, so that the filenames got by FIND FIRST
and FIND NEXT can be located and printed out.

Type in the following routine that will take the value in A returned by
FIND FIRST and FIND NEXT and point DE and HL at the found FCB.

GET TO N.l'IME
LD HL,DMA
ADD A,A
ADD A,A
ADD A,A
ADD A,A
ADD A,A ;A=A*32
ADD A,L
LD L,A ;HL=DMA+(A*32): the FCB
INC HL ;Filename starts at 2
LD DE,workFCB
PUSH DE
INC DE ;Skip the first byte
LD BC, 11 ;Filename(8)+filetype(3)
LDIR ;Copy filename from the

;OMA to the working FCB
POP HL
LD D,H
LD E,L

;DE and HL now point to the working FCB
RET

Now to address the problem of printing the filename. It can be done in
two parts. First print the filename, remembering that this is always 8
characters long and padded with spaces. Then print a full-stop,
followed by the filetype printed in exactly the same way as the filename.

Having inwardly digested the strategy, type in the following subroutine
to implement it.

Page T-12 HISoft Devpac80 ver. 2 Devpac80 Tutorial

,,,---._

;Print the filenarne from FCB addressed by HL

PRINT FCB
LD B,8 ;Length of the filenarne

PFCBNAME
INC
LD
CALL
DJNZ

LD
CALL

LD
INC
LD
CALL
DJNZ

LD

JP

HL
A, (HL)
PUTCHAR
PFCBNAME

A " " , .

PUTCHAR

B,3 PFCBTYPE
HL
A, (HL)
PUTCHAR
PFCBTYPE

A,BLANK
PUTCHAR

Note that a space is printed at the end and an exit is made through the
character printing subroutine.

Now. that would seem to complete bulk of the program. The final
problem of checking the filename for illegal characters will be tackled
in the last section. For the minute, therefore, make the two remaining
subroutines null i.e. just RET thus:-

CHECK NAME
DELETE BAD

RET

A lot has been typed in this session, and mistakes of one sort or another
are quite likely. Thus, before assembling, type the following command
line as the very first line in your program and then save it (still as
FILES .GEN):

*F,N,W [RETURN]

Devpoc80 Tutorial HISoft Devpac80 ver. 2 Page T-13

This says to GEN80, assemble the source file FILES.GEN: if there are
any mistakes in the first pass then press on to second pass (F stands
for Force pass 2): send all output to a file called FILES. PRN (w stands
for Write a print file) and do not generate the object file FILES. COM (N
stands for No object file).

This is a fairly typical set of options for checking syntax of a source file.
Assemble using A from the menu, any errors occurring will appear on
the screen: at the end of the assembly get to the menu and correct any
errors using the Goto Next Error command repeatedly.

When all errors have been corrected, assemble FILES properly (i.e. ,-----_
generate a .COM file, remove the N from the first line).

When you execute the program all should go well and what amounts
to a disc directory will be given with a message printed at the beginning,
the message Ok printed after every file and a message printed at the
end.

Parsing the filename

The final important routine is CHECK _NAME. We are going to enter this
routine with DE pointing to an FCB and want it to parse the filename
and return with carry flag set if the name is illegal in some way. It is
necessary, of course, to define what is an illegal filename. For present
purposes, any of the following characters is illegal:-

a)

b)

c)

Control characters (i.e. values less than #20)

Characters in lower-case. These should never be found in
filenames anyway.
Any character in the following list:-

<>.,;: =?* [] %1 ()/\

Characters with their top bit set (i.e. value more than #7F) will have it
reset and will not be treated as a bad character, as CP /M sets the top
bit of some characters in the filename to indicate the status of the file.

Page T-14 HISoft Devpac80 ver. 2 Devpac80 Tutorial

The following subroutine will perform the function so insert it between
the labels CHECK_NAME and DELETE_BAD that were typed in before:-

;Parse the filename and return C if illegal

CHECK NAME

DO NEXT

NEXT CHAR

LD
LD
LD

INC
LD
RES

H,D
L,E
B, 11

HL
A, (HL)
7,A

;Reset HL to point to the FCB
;Check all 11 characters

;1 is not checked (drive number)

;Ignore the top bit

CALL CHECK CHAR ; Is, it in the table
RET C ;If so
CP BLANK
RET C ; If a control character
CP "z"+l
JR NC, NEXT_ CHAR
CP "a"
RET C ;If between a and z inclusive

DJNZ DO_NEXT ;For all 11 characters

OR A
RET

;Give no carry=OK

As you can see the most difficult section of the program i.e. is the

character in the table of illegal characters has been turned into a
subroutine which is generally good practice in cases like this. From the
context, the subroutine CHECK_ CHAR must preserve HL, preserve A, and
return carry or not as appropriate. Type in the following subroutine:-

Devpac80 Tutorial HISoft Devpac80 ver. 2 Page T-15

;Preserves HL and A. Gives carry if the character in A is
;present in the table of illegal characters.

CHECK CHAR

CH LOOP

END CHECK

PUSH HL
LD HL, BAD_CHARS ;The table
LD C,A ;Keep the original

;character in C

LO A, (HL)
INC HL
OR A

JR Z,END
-

CP C

J,<. NZ,CH_
SCF

LO A,C
POP HL
RET

CHECK

LOOP

;An illegal character

�If at end of table return NC

;If no match
;If it does match

;Restore A
;Restore HL

;Table of illegal characters in filenames
BAD CHARS

DEFM"<>.,;:=?*[] %1 ()/\"

DEFB NULL ; At end of table

The program is very nearly finished now. As a safety precaution, we'll
still leave the actual deleting of the ftles until the parsing is seen to be
correct.

Save this version and assemble and run it. As you can see, things do
not quite go according to plan. All the ftles have the message Erased
after them! This bug is actually quite obscure, and a final opportunity
to use ProMON in this tutorial.

Activate ProMON (type D from the menu) and step the first instruction.
This sets up the stack and need not concern us.

There was no problem with the opening message so execute the whole
subroutine using EM. Use PS to clear the message from the screen. The
next three instructions load c with # 11 and then jump to the
subroutine. The searching also appeared to be all right so execute the
whole subroutine again here (EM).

Page T-16 HiSoft Devpac80 ver. 2 Devpac80 Tutorial

The drive should be activated and then the return to ProMON made.
Note the value in A which should not be #FF. Step the comparison and
the jump (which will not occur). The next subroutine points HL and DE
to the found FCB 'and should be all right as should the next one which
prints out the fllename (remember the filenames appeared OK when the
program was executed).

We want to execute both subroutines GET TO NAME and PRINT FCB. We
- - -

can do this most easily by using EM twice. However, another way is to
set a breakpoint after the second routine and we'll do this now to see
how to set breakpoints.

Enter BS (Breakpoint Set) and type llA. the address at which we want
a breakpoint. Note that the breakpoint display is now updated to show
that we have set one. Now, to execute up to this breakpoint press EQ
(Execute Quick). When the breakpoint is reached (which will be
instantaneous), press a key to return to the front panel, the breakpoint
will have been reset.

It is almost certainly the next subroutine which is wrong and so single
step into it. Before executing any instructions. verify that DE points to
an FCB. use the RV command.

The first two instructions set HL pointing to the FCB and then the first
character is loaded into A and the top bit stripped. Now the routine
CHECK_ CHAR is called. Just as a preliminary test, execute it in one go,
EM. It returns no cany as it should and both A and HL are preseived so
press on with the main routine.

The next comparison is for control characters and this gives no cany
r, as expected. Then the test is made for lower-case characters. The value

in A will be lower than z + 1 so a cany will be generated here. The
comparison is then made with a and . as expected, the value in Ais lower
and thus a cany is generated again. This is where the problem is. We
must return with cany if that last comparison gave no cany and vice
versa. The answer is surely to insert a CCF instruction here.

Quit ProMON and change the source to include the instruction CCF
(complement the cany flag) between CP "a" and RET c. Save, assemble
and run. This time there should be no problems with executing the
program and all the filenames should have Ok after them.

Devpac80 Tutorial HiSoft Devpac80 ver. 2 Page T-17

The final touch is thus to Wiite the rout.me DELETE_ BAD. Use the label
already put into the file and type simply:-

DELETE BAD
LO C, ERASE
JP CPM

and then add the equate

ERASE EQU 19

after the others at the top of the ftle.

As a word of explanation, CP /M function 19 requires that DE points at
the FCB of the file to be deleted. 1bis it already does (from GET_ TO _NAME)
and, as no registers need be preseIVed at this stage, the two lines above
will suffice.

Save and assemble this final version. On testing it you will fmd a slight
problem in that after a file is deleted, the routine terminates. This is
because FIND NEXT will return #FF in A if the directory is altered (i.e.
a file deleted). There are many solutions to this problem. None is
particularly the right one, but one suggestion would be that after a file
is deleted, the jump is to the LO c, F INDF instruction which would keep
running through the directory until all files were legal.

A further suggestion is to write routines that instead of deleting a file
with an illegal name, ask the user for a name (get characters from the
keyboard using CP/M function 1) and then rename the file (CP/M
function 23).

Hopefully, this tutorial has done the three things it set out to do.

Firstly it introduced the use of GENS0 and Prol\lON in the
development of assembly language programs.

'

Secondly it illustrated (although by no means exhaustively) how to
program under CP /M.

Lastly, it has provided a useful utility program, together with some
ideas on how to improve it.

Page T-18 HISoft Devpac80 ver. 2 Devpac80 Tutorial

Making an RSX under CP/M Plus

An RSX is a special type of program available only under CP /M Plus
(e.g. on the Amstrad CPC6128 and PCW 8256/8512/9512
computers).

You can install an RSX into your CP /M by using GEN80, LINK and
GENCOM (the last two utilities will be supplied with your CP/M Plus
system). When an RSX is installed, it sits in high memory Just under
the BOOS and lowers the top of your TPA. If you install more than one
RSX then each can be chained to the next RSX up.

The most-recently installed RSX intercepts all BOOS calls and has the
chance of processing them or ignoring them and passing them on to the
next RSX in the chain and, ultimately, to the BOOS.

Thus, RSXs, once installed and until removed, sit permanently in your
CP /M system intercepting and possibly processing all BOOS calls. So,
common uses for RSXs are printer buffers, key conversion routines, file
loaders and the like.

RSXs can be attached to ordinary programs so that they are loaded
automatically whenever the program is executed. Alternatively they
can be attached to null programs so that Just the RSX is loaded. Both
these functions (of attaching RSXs to programs) are performed by the
GEN COM utility.

GENCOM takes a command line involving one . COM file followed by a
number of . RSX files (page relocatable ftles with . RSX extensions), each

r being an RSX, and then attaches the RSXs to the . COM ftle so that the
RSXs are loaded automatically when the . COM file is invoked.

To GENCOM only RSXs (i.e. produce a ftle that Just loads the RSXs and
does nothing else) you include the option [NULL] (including the square
brackets) after the files. Some examples of GENCOM:

GENCOM LANG,FRENCH,SPANISH,GERMAN [RETURN]

takes the ftles LANG.COM, FRENCH.RSX, SPANISH.RSX and GERMAN.RSX

and produces LANG. COM with the three RSXs attached to it.

Devpac80 Tutorial HiSoft Devpac80 ver. 2 Page T-19

GENCOM PBUFFER [NULL) [RETURN)

takes. PBUFFER.RSX and produces a dummy ftle PBUFFER.COM which
simply loads the RSX.

So how do you produce the . PRL files that GENCOM uses? The answer is,
with GEN 8 o and LINK; you use GEN8 o to produce a relocatable me (a . REL
ftle) and then use LINK with the [op J option to convert this to a page
relocatable me (a . PRL file) and then rename this ftle to have an
extension of . RSX, ready for GENCOM.

There is a further complication in that RSXs must start in a particular ('-
way so that CP /M can identify them and link them together; the first
27 bytes of every RSX should look like this:

The RSX Header

serial ds 6,0 ;serial number
start jp begin ;start of RSX
next jp 0 ;the next RSX

prev dw 0 ;the previous RSX
remove db -1 ;the remove flag
nonbank db 0 ;a bank flag
name defm "RSX NAME" ;8-character name
loader db 0 ;the loader flag

dw 0 ;reserved

serial The CP /M loader loads the operating system's serial
number into serial when the RSX is loaded, so you just
need to reserve 6 bytes here.

start

next

Page T-20

This location is executed when the RSX is called so,
normally, this should go to the beginning of the RSXcode.

The jump to the next RSX in the chain, this will be filled in
by the loader when this RSX is loaded. This RSX should
normally finish by jumping to next, also all its BDOS calls
must go through next so that the other RSXs have a chance
of intercepting them.

HISoft Devpac80 ver. 2 Devpac80 Tutorial

prev The address of the previous RSX, if any. Again, this is filled
in by the loader and will not normally be useful.

remove If this is set to #ff (-1) then, on the next call to the CP/M
loader, this RSX will be removed. A warm start (RST O or
jump to location 0) always calls the loader so that, if remove
is -1, then this RSX will be removed after the program that
calls it finishes. The only exception to this is when an empty
file with an attached RSX has been loaded; this is so that you
can install an RSX in the system without running a
progr--dill. Note that removing the RSX lowest in m e m o r y
frees the memory occupied by that RSX but that removing
an RSX that is not lowest in memory only removes it from the
chain and does not free the memory it occupies until all the
RSXs beneath it have been removed.

nonbank If #ff (-1) then this RSX will only be loaded on non-banked
CP /M Plus systems, otherwise the RSX will always be
loaded. You would set this flag to -1 if the RSX code is not
capable of running in a banked system.

loader Should always be O since a value of-1 identifies the last RSX
in the chain which is always the loader RSX.

Right, how about an example of producing and installing an RSX?

Type in the following two programs using HDE, the first one is an RSX
to print out the time and the second one is a small program to call the
RSX.

Program 1 TIMERSX.GEN

;produce a .REL file
*r+

ds 6, 0

jp start
next jp 0

prev dw 0

remove db -1

;serial
;RSX beginning
;loader will fill in
;loader will fill in
;remove

Devpoc80 Tutorial HISoft Devpoc80 ver. 2 Page T-21

nonbnk db
db
db

0
"PRTIME
0 IOI 0

;all systems
" ;RSX name

;not last RSX

;the beginning of this RSX
start ld

cp
jr
ld
cp
--\r
J�

;the code to print
ld
ld
call

ld
call
ld
call
ld

a,c
#3c
nz,next
a, (de)
43
nz,next

out the time
c,105
de,time
next

. a, (time+2)
byteout
a, " ·"

charout
a, (time+3)

;BOOS number
;call RSX function?
;no, finished
;get required RSX #
;is it us?
;no, finished

;get-time function
;buffer for time
;call the BOOS via any
;other RSXs
;get hours
;and print them
;print a colon

;get minutes
;and print them

;subroutine to print out BCD number in a
byteout

digout

push
rra
rra
rra
rra
call
pop

and
add

af

digout
af

%1111

a, "0"

;divide by 16
;to get low digit

;put out low digit
;and then high digit

;only 4 low bits
;get ASCII number

;subroutine to print character in a to screen
ld e,a ;BOOS needs it in e
ld c, 2 ;BOOS flinction #
jp next ;go through other

;RSXs and return

;storage buffer for time (actually date and time)
time ds 4

Page T-22 HISoft Devpac80 ver. 2 Devpac80 Tutorial

Program 2 CALLTIME. GEN

;A small program to call the TIMER RSX. Normally, the RSX
;will be bound to this program.

ld sp, (6) ;safe place for stack

ld c,#3c ;call RSX function #

ld de,rsxpb ;parameter block for
call 5 ;call the BDOS
rst (r ;warm boot, removes

;RSX if remove=-1

rsxpb db 43 ;the RSX number
db npara the number of parameters

; dw paraml,param2,etc. the actual parameters

RSX

the

You can assemble the above programs either from within the HDE
menu or by using:

GEN80 TIMERSX [RETURN]
GEN80 CALLTIME [RETUR.1\1]

to produce TIMERSX.REL
to produce CALLTIME. COM

Now link TIMERSX.REL to produce TIMERSX.RSX by using:

LINK TIMERSX (op] (RETURN)
ERA TIMERSX.RSX [RETURN)
REN TIMERSX.RSX=TIMERSX.PRL (RETURN]

and, fmaily, bind the RSX to the CALLTIME program with:

GENCOM CALLTIME. TIMERSX [RETURN]

That's it. You can now get the time by typing CALL TIME [RETURN J which
will load the RSX, call it and then remove it.

We hope that the above introduction to the production of RSXs has
been useful; you can get more information from any good book on the
CP /M Plus operating system.

Devpac80 Tutorial HiSoft Devpac80 ver. 2 Page T-23

Bibliography

The following books are recommended for CP/M assembly-language
programming:

Programming the Z80 Rodney Zaks Sybex 1982

Z80 Assembly Language Zilog Zilog. UK
Programming Manual (0628} 39200

CP /M The Software Bus Clarke. Eaton & Sigma 1983
Powys Lybbe

CP /M User Guide Digital Research Digital Research
CP /M Plus Handbook (0635) 35304

The Amstrad CP /M Plus Powys-Lybbe. MMLSystems
Clarke (01) 2470691

Page T-24 HISott Devpac80 ver. 2 Devpac80 Tutorial

,----,.

	p.001
	p.002
	p.003
	p.004
	p.005
	p.006
	p.007
	p.008
	p.009
	p.010
	p.011
	p.012
	p.013
	p.014
	p.015
	p.016
	p.017
	p.018
	p.019
	p.020
	p.021
	p.022
	p.023
	p.024
	p.025
	p.026
	p.027
	p.028
	p.029
	p.030
	p.031
	p.032
	p.033
	p.034
	p.035
	p.036
	p.037
	p.038
	p.039
	p.040
	p.041
	p.042
	p.043
	p.044
	p.045
	p.046
	p.047
	p.048
	p.049
	p.050
	p.051
	p.052
	p.053
	p.054
	p.055
	p.056
	p.057
	p.058
	p.059
	p.060
	p.061
	p.062
	p.063
	p.064
	p.065
	p.066
	p.067
	p.068
	p.069
	p.070
	p.071
	p.072
	p.073
	p.074
	p.075
	p.076
	p.077
	p.078
	p.079
	p.080
	p.081
	p.082
	p.083
	p.084
	p.085
	p.086
	p.087
	p.088
	p.089
	p.090
	p.091
	p.092
	p.093
	p.094
	p.095
	p.096
	p.097
	p.098
	p.099
	p.100
	p.101
	p.102
	p.103
	p.104
	p.105
	p.106
	p.107
	p.108
	p.109
	p.110
	p.111
	p.112
	p.113
	p.114
	p.115
	p.116
	p.117
	p.118
	p.119
	p.120
	p.121
	p.122
	p.123
	p.124
	p.125
	p.126
	p.127
	p.128
	p.129
	p.130
	p.131
	p.132
	p.133
	p.134
	p.135
	p.136
	p.137
	p.138
	p.139
	p.140
	p.141
	p.142
	p.143
	p.144
	p.145
	p.146
	p.147
	p.148
	p.149
	p.150
	p.151
	p.152
	p.153
	p.154
	p.155
	p.156
	p.157
	p.158
	p.159
	p.160
	p.161
	p.162
	p.163
	p.164
	p.165
	p.166
	p.167
	p.168
	p.169
	p.170
	p.171
	p.172
	p.173
	p.174
	p.175
	p.176
	p.177
	p.178
	p.179
	p.180
	p.181
	p.182
	p.183
	p.184
	p.185
	p.186
	p.187
	p.188
	p.189
	p.190
	p.191
	p.192
	p.193
	p.194
	p.195
	p.196
	p.197
	p.198
	p.199
	p.200
	p.201
	p.202
	p.203
	p.204
	p.205
	p.206
	p.207
	p.208
	p.209
	p.210
	p.211

