L HOHE

SUPERSPRITES

For the
AMSTRAD
CPC 464/664/6128

© 1986 PRIDE UTILITIES LTD

Unit 14, 6 Union Street,
White Hill House,
Luton, Beds. LU1 3AN

WRITTEN BY R. POOLE

SUFERSFRITES
(MODE @
CPCs 464/664/6128

The program enables its user to design multi-coloured
animated sprites of various sizes. Any sprites designed using
the program are stored in the computers memory for future use
or modification. Included in the package are a suite of
machine code routines, these routines give the user control
over any sprites designed from additional basic commands
(R.S.X s} or they can be called from within an assembly
language program (machine code). The new commands include:-

Sprite positioning
Movement in eight directions
Animation control
Collision detection
Sprite swapping

and various other commands allowing split screen effects.
The program offers facilities to save, onto a disc drive or
tape recorder, a file consisting of all the available machine
code routines and information on any sprites designed.
The maximum number of animated sprites that can be
constructed is sixty, however each sprite can consist of up

to 4 frames.

The term "frames” simply means the number of picture elements

required to produce animation. From experience it has been
found that four frames is usually enough to create effects
such as rotating helicopter blades, walking characters and

the majority of animated effects seen in todays arcade games.
The information that follows is split into three sections:-
1. The main menu selections (1 - 7).
2. Basic Commands.

3. Using the routines from machine code.

To load the program type

RUN"SPRITE"

Page 1

THE MENU SELECTIONS

Selection 1: Creating a sprite.

This is simply a matter of plotting pixels within the sprite
grid of the right colour. The keys used for this process are
those on the Numeric Keypad. They are used to move the cursor
on the sprite grid and altl are direction keys with the
exception of key 5. Key 5, when held down, allows the pixels
to be plotted or erased depending on the mode selected (Plot
or Erase). There 1is an on-screen indicatiorn of the mode
selected represented by M=P or M=E. The mode is changed by
pressing the large blue Enter key. If key 5 is not held down
then the flashing cursor will skip over the sprite grid
without effecting any previously plotted pixels.

A joystick, it connected, may be used in addition to the
numer ic keypad, the fire button acting as key 5.

KEYS USED ON THE MAIN CONSOLE

Key 1: moves the position of the pen cursor(>). The pen
cursor 1is on the left of the screen display and
points to the current pen selection.

Keys 2/3: alter the ink colours in the current pen.

Key 4: changes the colour of the Border.

Enter key: toggles the mode between Plot and Erase.

Keys Z/X: increase/decrease the size of the sprite grig
selected.

Key C: used with the SHIFT key to clear any plotted pixel
in the sprite grid.

Key H: will horizontally mirror the contents of the sprite
grid.

Key Vi will vertically mirror the contents of the sprite
grid.

Key L locks the sprite grid size selected and disables
keys Z and X. Its purpose is to prevent accidental
changes in grigd size during the process of

producing a sprite.

Key S: used with the SHIFT key to store the pattern drawn
on the sprite gridg in the computers memory,
allocating to it the sprite number shown on the
screen display. The lock (key L) must be ON

otherwise no action is taken.

Key M: returns the user to the main menu aborting anything
drawn in the sprite grid.

Page 2

Selection 2: Modify a sprite.

The procedure used to modify a sprite is to set up the sprite
number and frame number , using keys 172 for
increasing/decreasing the sprite number and keys 3/4 to
increase/decrease the frame number. After setting up the
required sprite and frame number press key R, This will
reconstruct the sprite and may take over a minute if it is
large. The reconstruction is complete when the +lashing
cursor reappears at the bottom left hand corner of the
sprites grid. To make alterations to the sprite use the
facilities available under selection 1. After alteration the
sprite may be stored as previously described, it will,
however, overwrite the previous shape stored in the computers
memory.,

Selection 3: Select Tape or Disc.

The program automatically senses whether a disc drive it
connected to the computer. I+ one is connected all loading
and saving of files will use it until altered by by this
selection. On screen prompts allow selection of the following
combinations:

A. Disc: Saving/Loading carried out on the disc drive (if
connected).

B. Tape: Saving/Loading carried out to a cassette recorder.

C. Disc in/Tape out: All files loaded from the disc drive and
all files saved to the cassette recorder.

D. Disc out/Tape 1in: All files 1loaded from the cassette
recorder and all files saved to the disc drive.

Selection 4: Save/lLoad a file.

This selection allows the user to save or load files from/to
a disc drive or cassette recorder depending which is
currently selected. Any file saved consists of all sprite
patterns produced and the machine code routines. After a file
has been saved and the computer reset or switched off there
are two methods of loading a file back in. The method chosen
depends on whether the user wishes to modify the sprites or
work with them using the new commands. (EG perhaps to write a
game) .

Method A:

After switching the computer on load the Supersprites program
(RUN"SPRITES) and use selection 4 on the menu to load the
sprite file. When loading is complete all the facilities of
the Supersprites program are available. This method is
primarily used to modify sprites, however it is possible to
exit the program by using selection 7 on the menu.

Page 3

Method B:

After switching on the computer, type in the following
commands:
MEMDRY 19999
LOAD"FILENAME "
CALL 42472

The filename from cassette files is always "SPRITE.SPR". The
tilename on disc is that allocated to it during the saving of
the file. The file type is always .SPR. The CALL instruction
is necessary to log on all the additional commands. The
memory command is set at 19999 to allow room for the biggest
sprite file possible. However it is possible to find the
actual last byte of a file as show below. It is then possible
to alter the memory command to this value (-1) Qiving the
user the maximum amount of memory to use in Basic or assembly
language programs.

File last byte = PEEK(39999)*256+PEEK (39998)
Length of a sprite file = 42747 - last byte.

Selection 5: tList of all keys used.

This selection lists all the keys wused by the sprite editor
that are not given by on-screen prompts. A brief description
of each key’'s function is also given.

Selection &: Demo mode.
The demo selection from the main menu has two functions:

A. Will display any sprites that bhave been constructed,
either stationary or moving, and in both cases showing any
animated effects produced by multiple frames,

B. To load a demo .SPR file from the disc or cassette and
enter a short demonstration program. The demonst-ation is
in the form of a single screen game and it 1s written
completely in BASIC using the new commands. The purpose of
this demonstration is to show that it 1s possible to write
arcade games in basic with the help of the new commands.
However, it should be noted that i the routines that
perform the work of the new commands were to be called
from within a machine code grogram, a lot more could be
achieved.

The object of the game is to collect all the fruit on the
screen and ring the swinging bell. Good luck, because it is
not easy. The arrow keys are used tce move the man left or
right and the up arrow key toc make him jump The game may be
abor ted at any time by pressing key M, which will return the
user to the main menu. It 1s possible to load this DEMO.SPR
f1le using selection 4 on the menu, thus enabling the user to
look at and modify the sprites in the f1le. Care should be
taken when saving the moditied file to disc that a different
save name 1s used 50 as not to overwrite the original file.

Frage 4

Selection 7: Return to BASIC.

This last menu selection returns the user to BASIC after
asking for confirmation. Once in BASIC the sprite editor is
removed from the computers memory. However all the sprite
patterns and routines are still retained giving immediate
access to the facilities offered by the additional basic
commands (R.S.X's), I+ the wuser should accidentally find
himself in the BASIC environment prior to saving a sprite
file it is possible to save the file by the following command
sequence:

Enter as a direct command: PRINT PEEK(3F999) *256+PEEK (39998)
(This will give the Start address)

42747-(start address) will give the length

Enter as a direct command: SAVE"FILENAME.SPR",B,start,length

BASIC COMMANDS

€ach new basic command must be preceded by the bar symbol
(i), obtained by pressing SHIFT and "@". All the new command
names can be entered in either upper or lower case letters.
Several of the new commands have parameters associated with
them and if these are accidentally left out the command will
be ignored. If the parameters are outside the permissable
range then either the command will be ignored or the
parameters will be forced by the command routine to within
legal limits. After the list of new commands there is a brief
description of each command and any parameters associated
with it.

Page S

NEW COMMANDS

1POS,number ,x coordinate,y coordinate (sprite positioning)
iSPRITE ,number ,mode {sprite control)
I SWAP ,number ,number (swap one sprite for another)
I VMIRROR, number (vertically mirror sprite pattern)
iHMIRROR, number (horizontally mirror sprite pattern)

‘HIT,number ,number (collision detection between two sprites)

‘HTOP ,number (top collision with background scenery)}
{HBOT ,number (bottom collision with background scenery)
‘CLS (clear the screen)
{SCORE,x coordinate,y coordinate,value {prints a S digit
score)
IRESET,x coordinate,y coordinate (resets score to 5 zero's)
DI {disable interrupts during sprite movement)
ET (enable interrupts during sprite movement)
1SPLIT, top mode,bottom mode,size (operate screen in 2 modes)
ISPLITOFF (turn off split screen)
1 BOT (allow basic printing on screen during split screen)
' TOP (allow basic printing on screen during split screen)
‘COL,size,PEN @,PEN 1,PEN 2,PEN 3,BORDER (8 colours in
mode 1 only)
' COLOFF (turn off mode 1 split colour)

{POS command

This command is used to set up the sprite starting position.
The number of parameters can be any number referring to a
valid sprite between 1 and 68. The "x" coordinate can be any
number between @ and 159 and the "y" coordinate any number
between ® and 199. Coordinates 0.0 refer to the bottom left
corner of the screen.

SCREEN Note:
199 Incorrect coordinates will be
forced 1nto legal coordinates
A by the command routine. The
Y D coordinates in the 1POS
command reter to the top left
of the sprite as shawn by

) X 152 point A" in the diagram.

Fage &

0S continued.)

The user should note that this command does not allow
plotting of positions not on the screen and in practise any
“x" or "y" values set at the limits will automatically have
the width or height of the sprite deducted by the appropriate
command routine.

This example will position sprite number 1 in the bottom left
of the screen:

i1P0S,1,0,0 {sets up the position)
iSPRITE, 1,0 {puts sprite 1 onto screen)

iSPRITE command

{SPRITE ,number ,mode:

Number - any valid sprite number between 1 and 60.
Mode - decides what action the command will perform as
follows:

Mode ©: Place sprite on/off screen.
1 Animate, change next frame.
: Move sprite down two pixels.
3: Move sprite up two pixels.
4: Move sprite left two pixels.
: Move sprite right two pixels.
&: Move sprite up and right two pixels.
7: Move sprite up and left two pixels.
B: Move sprite down and right two pixels.
?: Move sprite down and left two pixels.

The sprite command calls the machine code routine "wait for
frame flyback” to allow flicker free movement. It is possible
to remove this by adding the value 16 to the mode parameter.

This can be very useful because if several sprites are to be
moved only one call to the "wait for flyback" routine may be

necessary.

Example: A. MODE ©

iSPRITE, 1,0 (put sprite 1 onto screen)
1SPRITE, 1,4 (move sprite 1 left 2 pixels)
B. MODE @

{SPRITE,1,0
1SPRITE, 1,20

Examples A and B are identical except that B is without frame
flyback and is therefore faster than A.

Page 7

i SWAP command

This command allows the user to swap one sprite for another.
The new sprite taking up the number and coordinates of the
old sprite.

Example: iSWaP,1,2

Sprite 2 becomes sprite 1 and takes up the coordinates of
number 1. Sprite 1 becomes sprite 2 but remains at the same
coordinates, When this command is wused the sprite concerned
should be removed from the screen before the swap takes place
and replaced afterwards if required.

Example: 1@ MODE @

20 ISPRITE,1,@ (put onto screen)

3@ FOR B=1 TO 50@@:NEXT (delay)

4@ SPRITE,!1,D (remove from screen)
5@ 1SWAP,1,2 (exchange sprites)

6@ SPRITE,1,0 {(put back onto screen)

{VMIRROR command

The number parameter can be any valid sprite number between 1
and 6@ as previously described. The command routine
vertically mirrors the specified sprite. In the following
example if sprite 1 was a triangle then this routine would
turn it upside down:

1@ MODE @

20 !SPRITE,1,@ (put onto screen)

3@ FOR B=1 TO 5@@8:NEXT (detay)

4@ 'SPRITE,1,0 (remove from screen)
50 IVMIRROR,1 (vertical mirror)

6@ ISPRITE,1,@ (put onto screen)

‘HMIRROR command

This command is identical to the IVMIRROR command except that
it horizontally mirrors the specified sprite. In the
following example if sprite 1 was ">" then the routine would
produce "<":

10 MODE @

20 !SPRITE,1,@ (put onto screen)

3@ FOR B=1 TO S@00:NEXT {delay)

40 :SPRITE,1,0 {remove from screen)
5@ HMIRROR,1 (horizontally mirror)
&0 SPRITE,1,0 {put onto screen’

Page 8

‘HIT command

This command checks for a collision between two sprites. It
ignores all background scenery and only checks for collision
between sprites numbered in the parameters. Information
concerning a collision is stored at memory location 398%4. It
is possible to PEEK this location to ascertain if a collision
has occurred. The routine does not allow collision detection
between sprites that are not on the screen. In the following
example two sprites are moved toward each other, when the
collision cccurs the routine will print on the screen THEY
HAVE COLLIDED:

(39874=0 no collision - 39894=1 collision)

10 MODE @
20 {PDS,1,0,100: |POS,2, 100,100

38 !SPRITE,1,0::!SPRITE,2,0

4@ FOR B=1 TO 3@:!SPRITE,1,S:!SPRITE,2,4
50 :HIT,1,2:1F PEEK(39894)<>@ THEN 70

50 NEXT:STOP

70 LOCATE 1,18:PRINT"THEY HAVE COLLIDED"

Note: The user must first construct sprites 1 and 2.

{HTOP command

This command checks for a collision between the top of the
sprite and the background scenery, It does this by comparing
the sprite pattern in memory with that on the screen,
therefore this command will not be able to check sprites off
the screen. Memory location 39894 is used to store the result
of the check as follows:

39894=0 (Top of the sprite has not collided with scenery)
398%4>0 (Top of sprite has collided with scenery)

The command routine treats anything that is not INK B as
background scenery, this also includes other sprites.

‘HBOT command

Identical to the ‘HTOP command except that it checks the
bottom of the sprite for collision. The demonstration program
in this package give an example of this command being used.
In the example it is wused to check whether the man is
standing on a platform. Once again the result of the check
is stored at 398%4.

39894=0 (Bottom of the sprite is not on scenery)
37874>0 (Bottom of the sprite is on scenery)

Page %

‘CLS command

1ais command must be used to clear the screen instead of the
BASIC command CLS. The reason +for this 1is that the hit
detection routines must know whether a sprite is on the
screen or not, to enable them to perform valid checks. The
iCLS command resets flags that indicate which sprites are
actually on screen. The BASIC command can be used as normal
because it has been intercepted to allow the +flags to be
reset.

! SCORE command

This command can be used in any screen mode and even in split
screen mode. The "x" and "y" coordinates are dependent on the
screen mode selected as follows:

MODE @ x = 1 to 2@ y =1 to 25
MODE 1 x = 1 to 402 y =1 to 25
MODE 2 x =1 to B2 y = 1 to 25

This routine will print a S digit score on the screen at the
"x' and "y" coordinates specified. Leading zero’'s are printed

The parameter "value" can be any number between 1 and 635535,
This value is added to the score before it is printed onto
the screen. The score is a running total until it is either
reset by the IRESET command or until it is reset by exceeding
the routines limit of 65535. This wupper limit is because the
score is held in two bytes of memory at locations 39468 and
39469. The maximum number that can be held in two bytes is as
follows:

Maximum = 255+ (255#256) = &5535
Example: {SCORE, 12,1,100 (prints @@108 on screen)
i{SCORE, 10,1 ,45 (prints @B145 on screen)

}SCORE, 10,1, 1000 {prints ©1145 on screen)

tRESET command
This command is associated with the !SCORE command. It resets
the score to zero and print S zero's at the coordinates

specified.

Example: JRESET, 10,1 (prints @@B@® on the screen)

‘DI command
This command disable all interrupts during sprite movement

and should not be used if the Amstrad real time clock is to
be maintained or if the split screen commands are to be used.

Page 10

‘EIl command

This command enables all interrupts during sprite movement.
It is only necessary to use this command if the interrupts
have been disabled during sprite movement with the DI
command and only then if the user wishes the interrupts to be
re-enabled.

PLEASE NOTE All the commands described so far have been
designed to be used in MODE ® except for the |SCORE command
which can be used in any mode. The commands that follow are
used to generate split screen operation (EG: half the screen
in MODE @ and half the screen in MODE 1 or 2). 1t is possible
to use the sprite commands in the split screen mode providing
the interrupts are not disabled and the sprites are kept
within the MODE B8 section of the screen.

iSPRITE command

This command allows the user to split the screen into two
modes at the same time. Any combination of the modes @,1 or 2
can be used. The command has 3 parameters. The first two "TOP
MODE" and "BOTTOM MODE" can be any mode (0/1/2). TOP mode
refers to the top of the screen and BOTTOM mode to the
remainder of the screen. The third parameter "SIZE" decides
how many quarters of the screen display the "TOP" mode
occupies. Only numbers between 1 and 3 are valid and numbers
outside this range will be altered by the command routine.

Examples: A. ISPLIT,1,0,2
B. iSPLIT,0,2,3

This will split the screen as follows:

A. The top two guarters (half of screen) in MODE 1 and the
remainder in MODE @.

B. The top three quarters in MODE @ and the remainder of the
screen in MODE 2.

The split command has two other other commands associated

with it to allow BASIC printing in either section of the

screen display. These commands are (TOP and (BOT.

' TOP command

This command has no parameters and is used during the split

screen operation to print in the top section of the screen

display.

Example: {SPLIT,0,1,2::TOP:LOCATE 5,5:PRINT"HELLD"

Page 11

iBOT command

This command 1is identical to the iTOP command with the
exception that it prints to the bottom section of the screen
during the split screen operation.

Example: ISPLIT,1,2,2: {BOT:LOCATE 20,20:PRINT"HELLO"

'SPLIT command

This command turns off any split screen previously selected.
The TOP mode now covering all the screen.

‘COL command

This command can only be used in MODE 1. It enables the user
to have eight colours on the screen at the same time, twice
the normal number. The command has six parameters:

Size: This can be any number between 1 and 3 and refers to
the number of guarters of the screen, starting at the
top of the screen that the new pen colours occupy. The
remaining quarters of the screen using the normal pen
colours.

PEN 1/PEN 2/PEN 3/BORDER: These can be of any ink number
between @ and 26, the numbers representing those used
by Amstrad and shown in the colour chart below.

Example: If the PEN © parameter was 26 then PEN 0 would
contain bright white ink.

COLOUR CHART

"} Black % = Green 18 = Bright Green

1 Blue 1@ = Cyan Sea Green

2 Bright Blue 11 = Sky Blue Bright Cyan

3 Red 12 = Yellow Lime Green

4 Magenta 13 = White Pastel Green

S = Mauve 14 = Pastel Blue Pastel Cyan

& = Bright Red 15 = DOrange 24 = Bright Yellow
7 = Purple 16 = Pink 25 = Pastel Yellow
8 = Bright Magenta 17 = Pastel Magenta 26 = Bright White
Example: ‘CcoL,2,11,8,9,16,13

Would set the colours for the top half of the screen:
PEN @ = Sky Blue PEN 1 = Black
PEN 2 = Green PEN 3 = Pink
BORDER = White
‘COLOFF command
This command turns off any previous split colour command.

This command must be used if a split colour screen has
already been defined before defining a second.

Page 12

MACHINE CODE SECTION

SUPERSPRITES MEMORY MAP

42747

Machine Code
38945

Sprite Tables
37500

Sprite pattern

Storage area
207900

Sprite Editor

The machine code routines associated with the additional
basic commands and the sprite editor are stored in memory
from 38945 to 42747. These routines are position dependant
and may not be moved elsewhere. The memory locations from
37500 to 38744 (labelled Sprite Tables), is storage area used
by the sprite editor to store information about each sprite
produced. Each sprite is allocated 24 bytes of memory, sprite
number 1 starting at 37500. The information stored is as
follows:

Byte 1 = x coordinate (@ to 159}

Byte 2 y coordinate (@ to 199}

Byte 3 Height of sprite in bytes

Byte 4 Width of sprite in bytes

Byte S = Points to which frame is active

Byte & = Animation (@ = no - 1 = yes)

Bytes 7 to 22 contain pointers indicating where in memory

the binary patterns for each frame of a sprite are
stored.

Byte 23 = Total number of frames in a sprite (1 to 4).

Byte 24 = Sprite grid size used by the editor.

Sprite pattern storage area: 37499 to 20899. The amount of
memory used to store sprite patterns depends on how many
sprites are produced. The sprite editor allocates memory
downwards from the upper limit of 37499 to the lower limit of
20899. This always leaves the programmer the maximum amount
of memory possible for basic or machine code. The last byte
of a sprite file can be found as previously described in Menu
selection 4.

Page 13

Using each command from machine code

As this section is not for beginners it will be assumed that
the user understands assembly language programs written in
mnemonic form. All programs listed will be in mnemonics.

Exit conditions

The exit conditions of all the commands called from machine
code are as follows:

AF corrupt, HL corrupt, DE corrupt, BC corrupt, IX corrupt,
1Y corrupt. Alternate register set as on entry.

{SPRITE,number ,mode (sprite control)

Table: Defw mode (valid sprite modes @ - 9
Defw number (valid sprite numbers 1 - 6@)
Start: 1d ix,Table
ld a,2
Call 4@766
ret

‘POS,number ,x,y (set up sprite position)

Table: Defw y (@ - 199
Defw x @ - 159
Defw number (1 - &@)

Start: 1ld ix,table
1d a,3

Call 40808

ret

i SWAP ,number ,number (swap one sprite for another)

Table: Defw number (1 - 6@
Defw number 1 - 6
Start: 1d ix,table
1d a,2
Call 38973
ret

1VMIRROR,,number (Vertically mirror sprite)

Table: Defw number a1 - 6@
Start: 1d ix,table

Call 39895

ret

Page 14

tHMIRROR,number (Horizontally mirror sprite)

Table: Defw number (1 - 6
Start: 1ld ix,table

Call 42538

ret

IHIT,number 1,number 2 (Check collision between 2 sprites)

Table: Defw number 2 (1 —- 6@
Defw number 1 (1 - &
Start: 1ld ix,table

1d a,2
Call 4180@
ret
The result is stored in memory location 39894 (@ = no
collision and 1 = collision)

tHTOP,number (check for collision at top of sprite)

Table: Detw number (1 - 6@
Start: 1d .x,table

1d a,t
Call 41885
ret
The result is stored in memory location 39894 (@ = no
collision and >@ = collision}. If a collision is registered
after returning from this routine then the value held in
location 39894 = value of the byte where the collision was

first detected.

{HBOT ,number (check {for collision at bottom of sprite)

Table: Defw number 1 - 60
Start: 1d ix,table
1d a,1
Call 41925
ret

The result is as described for HTOP.

‘CLS {(clear screen)

Call 39896
ret

Page 15

iSCORE,x,y,value (print 5 digit score)

Table: Defw value (@ — &5535)
Detw vy (@ — 199
Defw x (@ - 139)

Start: 1d ix,table
ld a,3

Call 39365

ret

Note that this routine will only hold scores up to 65535
correctly.

IRESET,x,Y (reset 5 digit score to zero)
Table: Defw y (8 - 199)
Defw x @ - 159
Start: 1d ix,table
Call 39428
ret
DI (disable interrupts during sprite movement)

Call 39252

ET (enable interrupts during sprite movement)

Call 39212

1SPLIT,top mode,bottom mode,size (split screen operation)

Table: Defw size (1 - 3
Defw bottom mode (@ - 2)
Defw top mode (@ - 2)

Start: 1d ix,table
Call 41100
ret

iTOP (allows printing in the top section of the screen using
the firmware routines)

Call 41314

1 BOT (allows printing in_ the bottom section of the screen
the firmware routines

Call 41238

Page 16

{SPLITOFF (turn off any split screen)

Call 41335

‘COL,size,PEN @,PEN 1,PEN 2,PEN 3,BORDER (select split colour

in MODE 1
Table: Defw border @ - 26)
Defw PEN 3 (B — 26)
Defw PEN 2 @ - 26)
Defw PEN 1 B8 - 26}
Defw PEN @ (@ - 26}
Defw size a1 - 3
Start: 1ld ix,table
1d a,6
Call 41477
ret

tCOLOFF _(turn off any split colour mede)

Call 41360

Demonstration Program - Basic Listing

A listing of the demonstration program appears on page 18.
This demonstration is contained within the SuperSprites
BASIC program from lines 65@ to 830. The listing has been
renumbered and reformatted it to suit this instruction book.

Page 17

1@ CLEAR:CALL 42689: !D1:CALL 47944:BORDER 3:MODE @

20 PEN 1:DRAW 639,B:FOR a%=1 TO S5:LOCATE 16,13+a%:PRINT CHRS (
151) 3 CHR$ (157) : NEXT: LOCATE 3,13:FOR a%=1 TO 13:PRINT CHR$ (254
)3 tNEXT:LOCATE 3,6

30 FOR a%=1 TO S:PRINT CHR$(254);:NEXT:LOCATE 10,6:FOR a%=1 T
0 7:PRINT CHR®$(254); :NEXT:LOCATE 18,6:PRINT CHRS (254) ; CHRS (25
4) ;CHRS (254) : LOCATE 6,19:FOR a%=1 TO 15:PRINT CHRS$ (254)3;:NEXT
:FOR a%=1 TO S:LOCATE 9,20+a%:PRINT CHR®(151);CHRS(157) sNEXT
4@ :P0S,8,8,199: iSPRITE,8,0: :POS,7,146,180: iSPRITE,7,8: :P0S,4
,128,175: !SPRITE,4,@: |POS,1,12@,72: | SPRITE, 1,0: |POS,2,0,0: i SP
R1TE,2,0: :POS,3,40,120: |SPRITE,3,0: !P0S,S,20,136: {SPRITE,S,d
50 :PDS,12,30,98: iSPRITE,12,0: {P0S,13,12,156: |SPRITE, 13,0: PO
S,11,140,58: :SPRITE,11,0: | P0S,14,60,160: {POS,9,150,12@: {SPRIT
E,9,0: |POS,18,120,199: {SPRITE, 10,0

6@ EVERY 4,3 BOSUB 23@:EVERY 3,0 GUSUB 26@:EVERY 48,1 GOSUB 3
30:EVERY 25,2 GOSUB 280

70 E1:1F g%=1 THEN 180

80 1IF g%=2 THEN 160

90 IF INKEY(1)=@ THEN GOSUB 12@ ELSE If INKEY(8)=@ THEN GOSUB
140

100 IF INKEY (38)=@ THEN STOP

110 IF INKEY (8)=@ THEN 208 ELSE DI: iHBOT,2:1F PEEK(39894)>@ T
HEN 7@ E£LSE 160

120 IF k%=1 THEN iSPRITE,2,@: {HMIRROR,2: !SPRITE,2,0: k%=0

13@ ISPRITE,2,21: {SPRITE,2,17:RETURN

140 IF k%=® THEN [SPRITE,2,®: iHMIRROR,2: iSPRITE,2,0:k%=1

15@ iSPRITE,2,20: i SPRITE,2,17:RETURN

168 EI:LOCATE 1,1:PRINT CHR$(7):FOR a%=1 TO 25:iSPRITE,2,18:N
EXT:DI:!CLS:IF k%=1 THEN :HMIRROR,2

178 CLEAR:EI:GOTO 1@

180 DI1:!CLS:LOCATE 6,10:PRINT"WELL DONE.":FOR a%=1 T3 S000:NE
XT:CALL 421@0S:STOP

190 DI:CALL 421@5:CALL 42698:STOP

208 E1:!SPRITE,2,®: |SWAP,2,6: (SPRITE,2,0:FOR a%=1 TO 16:!SPRI
TE,2,19:GOSUB 220:NEXT:GOSUB 35@:FOR a%=1 TO 16:FOR b%=1 TO 2
S:NEXT: iSPRITE,2,18: GOSUB 22@: {HBOT,2: IF PEEK (39894) >@ THEN 2
10 ELSE NEXT:!SPRITE,2,D@: !SWAP,Z,6: iSPRITE,2,8:G0TC 160

21@ iSPRITE,2,0: iSWAP,2,6: iSPRITE,2,0: GOTO 70

220 t%=(t%+1)MOD S:IF t%=4 THEN {SPRITE,2,17:RETURN ELSE RETU
RN

23@ DI:z%=(z%+1)MOD 70:IF 2z%<35 THEN :SPRITE,1,2@: SPRITE,3,2
1: !SPRITE,4,18 ELSE !SPRITE,1,21:!SPRITE,3,20: |SPRITE,4,1%9
248 y%=(y%+1)MOD 3:1F y%=2 THEN !SPRITE,1,17:!SPRITE,3,17

250 E1:RETURN

260 DI:x%=(x%+1)MOD 8@:IF x%<4® THEN !SPRITE,5,21 ELSE (SPRIT
E,5,20

270 EI1:RETURN

280 DI:iHIT,2,1:IF PEEK(39894)>0 THEN 320

29@ (HIT,2,3:1F PEEK(39894)>@ THEN 320

300 IF $%=0 THEN iHIT,2,4:1F PEEK(39894)>0 THEN 320

31@ E1:RETURN

320 g%=2:LOCATE 1,1:PRINT CHR$(7):EI:RETURN

330 Dl: !SPRITE,14,0: !SPRITE,7,17:SOUND 2,5,5,7,8: (HIT,2,7: IF
PEEK (39894) >@ THEN g%=1

348 E1:RETURN

350 FOR c%=8 TO 13:!HIT,2,c%:IF PEEK(39894)>@ THEN 360 ELSE
NEXT:RETURN

36@ DI:SPRITE,c%,@:E1:h%=h%+1::LOCATE 1,1:PRINT CHR$(7):IF
hZ=6 THEN #%=1:RETURN ELSE RETURN

370 LOCATE 1,1:PRINT CHR$(7):GOTO 31@

Page 18

	Page 00
	Page 01
	Page 02
	Page 03
	Page 04
	Page 05
	Page 06
	Page 07
	Page 08
	Page 09
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

