FOR THE AMSTRAD
CPC464, CPC664, CPC6128

TOOLKIT

Basic

Programmer's Aid

BE)|
|y
[L[y
BE)
=l
&)

i)
i)
]
L |

BEERUGSO

TOOLKIT

FOR THE AMSTRAD
CPC 464, CPC 664
& CPC 6128

By D. Pilling

© BEEBUGSOFT 1985
Dolphin Place, Holywell Hill, St. Albans, Herts.

All rights reserved. No part of this product may be reproduced in whole or
part by any means without written permission of the publisher. Unauthorised
hiring, renting, loaning, public performance or broadcasting of this product
or its constituent parts is prohibited. While every care is taken, the publisher
cannot be held responsible for any errors in this product.

CONTENTS

INTRODUCTION

Conventions used
Fitting or loading Toolkit
Calling Toolkit
Parameters

Escape

Screen modes

THE COMMANDS

HELP
TOOLS
TOOLSOFF
BMOVE
DUMPA
DUMPE
EMEM
FORMAT
FREE
KON
KOFF
KEY
KEYDEF
LIST
LCOPY
LMOVE
PACK
PARTSAVE
PMEM
PRON
PROFF
RENUM
REPLACE
RESET
ROM
RSX
SEARCH
START
TRON
TROFF
XREF

COMMAND SUMMARY

Coo~NoOO (4]

INTRODUCTION

Beebugsoft’s Toolkit is a sophisticated piece of software designed to assist
programming on the Amstrad CPC464, CPC664, and CPC6128 range of
computers. It is supplied on cassette, disc or rom, and provides the user with
more than 30 new commands which not only speed up the process of
programming, but assist in the task of debugging, and generally streamline
the activity of computing.

For simplicity of use, all commands may be entered with a unique command
name directly from the keyboard, or from within your own Basic program. A
special option also allows nearly all commands to be selected from a main
menu, providing extreme ease of use. A special Help call has been
incorporated to give the user immediate information on the syntax of Toolkit
commands, and as a further aid, parameters required by the various Toolkit
routines are prompted for, if not supplied by the user. Extensive error
checking routines are also incorporated, and the user is given a range of error
messages if commands have been incorrectly entered etc.

Conventions used in this manual

In this manual specific key presses required by Toolkit (such as the “Enter”
key) will be indicated thus: ISYIId3}.

All parameters are shown in this manual enclosed in angled brackets. Single
sets of brackets <> are used to indicate essential parameters, while double
brackets <<>> indicate optional parameters.

Fitting or Loading Toolkit

Cassette: If Toolkit is supplied on cassette, you should simply insert your
cassette into the player, type:

runtoolkit
then press the “Play” button on the recorder as instructed. When loading is
complete, the familiar “Ready” message will appear.

Disc: If you have purchased Toolkit on disc, simply insert the disc into your
drive, and type:

run'"disc ENNI;

Again, when the “Ready” message appears, Toolkit is ready for use.

Cassette and disc versions of Toolkit will remain in memory until you switch
off your machine, unless they are overwritten in memory by other programs.
Because Toolkit must reside in memory when run from cassette or disc, the
amount of memory available to Basic is reduced. This will not normally cause
problems, but with very long Basic programs, there may not be enough room

5

in memory for Toolkit. To assist you when this occurrs, we have provided
two further files on cassette and disc called toolkit1 and toolkit2. These each
contain approximately half of the Toolkit routines, and will each function on
their own occupying around half the memory of the full Toolkit.

To find in which half a given routine is located you should run the file Info. To
do this type:

run "info
Cassette users should note that the files toolkit1, toolkit2 and info are located
on the reverse side of the cassette.

Rom: If Toolkit is supplied on rom, you will need an external rom socket
attachment. These may be purchased from a number of suppliers, and you
should consult the instructions which accompany your rom socket about its
connection to your computer, and the insertion of Toolkit into it. Once fitted
in this way, Toolkit will remain on call at all times without the inconvenience
of having to load it from disc or cassette.

Once Toolkit is resident in your machine {(whether on rom orin memory), you
may use your computer as normal, except that where Toolkit has been
loaded into memory from cassette or disc, less memory will be available to
the user for his Basic programs.

For most purposes, you will probably be using Toolkit to work on a program
in Basic. This may be loaded and/or run in the normal way from cassette or
disc once Toolkit is resident in your machine.

Calling Toolkit

Whether Toolkit is on rom or has been loaded into memory from cassette or
disc as described above, it is called in exactly the same way using “I” (bar)
commands.

For example if you type the following:

lhe lp IHNIES

you will see Toolkit’s help screen appear.

Although each Toolkit command has a unique command word associated
with it, you may find that some of these clash with the names of commands
of other roms in your machine (if your machine is fitted with an external rom
board). Toolkit has a special feature to avoid command name clashes. If any
command name clashes, simply preface the command name with a “b” - for
Beebugsoft — (eg type “Ibhelp” instead of just “Ihelp”). This will ensure that
the command is intercepted by Toolkit rather than any other rom.

Another way to call a Toolkit command is to type:

{tools [HNII:

This calls a menu from which almost all of Toolkit’s routines may be selected.

6

Parameters

All Toolkit commands must be entered in lower case; and if parameters are
being entered with the command, the command should be followed by a
comma, and each parameter separated by a comma. In fact most of Toolkit's
routines require one or more parameters to be entered to specify how they
are to be executed. For example the renumber routine needs to know how
many lines to renumber, what line to start at, and so on. These may be
entered immediately following the command name as one or more numbers
separated by commas. Thus for example the command lImove which will
move a block of Basic lines within a Basic program, might be called as
follows:
[Ltmove ,50,100,2000

In this case the routine will move those program lines from 50 to 100, and
relocate them starting at line 2000.

If you had selected “LMOVE” from the Tools menu, or had simply entered:

itmove IENIIH]]

Toolkit would have prompted you for parameters.

Addresses

The numeric parameters so far introduced have been program line numbers.
With other commands, parameters may take the form of one or more
addresses in memory. Where addresses are required they may either be
entered in decimal or in hex. Hex addresses should be preceded by an
ampersand character “&". Thus to move your entire Basic program to a new
address in memory starting at 1000 hex, you could use either of the
following:

Ibmove ,&1000 ENE; or

Ibmove ,4096
since 4096 is the equivalent of 1000 hex.

Optional Parameters

Some parameters are optional, such as the number used with the Irom
command. Optional parameters are indicated in this manual with a double
angle bracket thus:

from,<<rom number>>
If you wish to call the command without the parameter, simply type

TOINNENTER
Strings

Four of the Toolkit routines also require text (or strings) to be entered.
Partsave is one of these: the Partsave routine needs to know what filename
to save a segment of your program under. The correct syntax for this is

7

illustrated by the following example. To save lines 300 to 5000 of the Basic
program in memory under the new filename “partone”, you could type the
following:

Ipartsave,'"partone” ,300,5000
There are three important points to note here:

a. String parameters are always entered before numeric ones.

b. You must always enclose string parameters between quotation

marks.
c. String parameters may not be entered in a bar command on the
CPC464.

This last point needs some elaboration. It is feature of the CPC464 (though
not the CPC664 or the CPC6128) that strings (ie text) may not be entered in a
“1” (or bar) command. So if you have a CPC464, you should not try to enter
any parameters for any of the four commands:

search

replace

list

partsave.
Simply enter the command name, and you will be prompted for the
parameters. Users of the 664 and 6128 have the option of entering all text and
numeric parameters directly following the command name.

Thus for example to Partsave lines 10 to 300 of your Basic program, under
the new filename “progpart’, you could enter the following on a CPC664 or
CPC6128:

lpartsave,"progpart”,10,300

On a CPC464, you could only enter:

Ilpartsave
Toolkit would then prompt you with a request for the filename and the two
line numbers.

By contrast of course, if a Toolkit routine has been called from the main Tools
menu, there is no opportunity to directly enter any parameters (since you are
simply selecting one item from a menu screen), and all parameters will be
prompted for regardless of which computer you are using.

Escape

The key may be used at any time to exit a Toolkit routine, or to exit
the main Tools menu. On pressing you will see the “Ready”
prompt appear signifying that you have been returned to Basic. Toolkit will
remain resident in your machine and may be called at any time.

During scrolled screen displays, such as those generated by the XREF
command, the key has a different effect. Again it operates exactly
as in Amstrad Basic. A single press of the key will halt a scrolling
display, and any other key will reinstate it.

8

Screen Modes

Toolkit will work in all screen modes, though you will find its output clearest
in mode 1. When a Toolkit routine is called individually using a bar
command, no changes will be made to the currently selected screen mode or
ink and pen colours. If on the other hand you call the Tools menu, mode 1 will
be selected, and the colour palette will be specifically defined in order to
obtain the clearest display.

THE COMMANDS

In the bulk of this manual, each command will be treated in alphabetical
order. But there are three commands which deserve special attention out of
strict order. These are lhelp, Itools and Itoolsoff.

HELP

Syntax: |help
Function: General help page giving command list, and syntax.

The help command will give a list of all of Toolkit's keywords, and their syntax.
As in this manual itself, essential parameters are enclosed in single angular
brackets <>, while optional parameters have a double bracket<<>>,

The amount of information displayed by this command requires two screen
pages, and on the first screen the user is prompted to press any key to
display the second.

TOOLS

Syntax: |tools

Function: Displays a menu from which almost all of Toolkit’'s commands may
be selected, and sets the function keys for use with Toolkit.

The Tools menu provides the easiest way of calling Toolkit commands. When
ltools is entered, mode 1 is first selected, and the colour palette adjusted if
necessary for a clear display. The following menu then appears:

AMSTRAD TOOLKIT from BEEBUGSOFT

Select option:

10

A BMOVE M PACK

B EMEM N PARTSAVE
C FORMAT 0 PMEM

D FREE P RENUM

E HELP Q REPLACE
F KON R ROM

G KOFF S RSX

H KEY T SEARCH
I KEYDEF U START

J LIST V TRON

K LCOPY W TROFF

L LMOVE X XREF

The user selects a routine by letter (or returns to Basic by pressing [EJJXd=
). if the routine selected requires the entry of any parameters, these will be
prompted for.

Seven of Toolkit's commands do not figure on the menu. These are as
follows:

Itools
Itoolsoff
Ipron
Iproff
Idumpa
Idumpe
ireset

The reason for this is simply that in each case the command would serve
little or no purpose if called from the menu. For exampie, calling the
screen dump from the menu would just give you a graphics dump of the
menu each time!

Function keys

Calling ltools will also set the function keys to the following functions for
ease of use:

fO Set mode 0
1 Set mode 1
f2 Set mode 2
f3 Ireset

fa lheip

5 Ifree

f6 Irom

7 fpron

8 Iproff

f9 Itools

Thus once Itools has been called, the main tools menu may be recalled at any
time by pressing the [E] key on the keypad at the right hand side of the
keyboard. The other defined keys work in a similar way. Press [l and you will
set up mode 1, and so on.

Also together with the small key on the numeric keypad will
be defined:

run“disc
This will automatically ‘boot” start programs where the first file is called
‘disc’.

1

TOOLSOFF
Syntax: |toolsoff
Function: Clears Toolkit from memory.

This command is for use on cassette and disc versions only, and is used to
reclaim space for Basic, shouid the need ever arise, by clearing Toolkit from
memory. The operation leaves resident Basic programs intact. To use Toolkit
routines after this command has been used, Toolkit will need to be reloaded
into the machine.

As a safety precaution whenever this command is called, the user is asked to
confirm his intention before Toolkit is cleared.

BMOVE
Syntax: Ibmove,<address>
Function: moves a Basic program in memory to a different address.

This routine carries out a block move of the whole of the current Basic
program to a new address in memory. It also resets the “start” address (used
by Basic to find the user’s program) to the new start address which you have
chosen.

Toolkit allows you to alter this “start” address separately. See the command
Istart.

The most likely reason for wishing to move a Basic program in this way is to
leave room for a second Basic program to be held in memory at the same time.

The routine requires an address to be entered. This is the new start address
of the memory biock that will hold the program. Like ail address parameters
required by Toolkit, it may be entered in decimal or in hex. If it is entered in
hex, it should be preceded by a “&” character. For example:

ibmove ,&1FF0@

When you are using bmove, you should take great care in determining the
relocation address, since an ill-chosen address could corrupt your Basic
program; though Toolkit will make checks on the viability of your proposed
new address, and prompt with the message:

Address out of range
if problems are envisaged.

DUMPA / DUMPE

Syntax: |[dumpa
or Idumpe
Function: 16 tone screen dump for Amstrad or Epson printers.

These commands will produce a screen dump to either the Amstrad DMP1
printer (Idumpa) or to an Epson type MX or FX printer (idumpe). The dump

12

will work in any mode, and will represent up to 16 different ink colours by
using different types of shading.

As suggested earlier, you obviously need to call this routine when the screen
which you wish to dump is actually on-screen. For this reason it cannot be
called from the Tools menu: that would just give you a dump of the Tools
menu each time! You also do not, in all probability, wish to type the
command ldumpa or whatever, directly to screen for the same reason: your
carefully prepared screen will have the word “ldumpa” written across it.

The way to avoid this is to call the dump routines from the same Basic
program which has put onto the screen the contents which you wish to
dump.

If for example the screen was produced by a file on disc, then the following
program could be used to ioad the screen from cassette or disc, and then
dump it to the printer — without corrupting it by overprinting command text
across it.

18 Lload"filename
20 !dumpa

The feature which makes this possible is the ability to embed Toolkit's bar
commands within a Basic program, as opposed to always executing them
directly from the keyboard in the so-called “immediate mode”. In practice any
of Toolkit's commands may be called in this way.

EMEM

Syntax: lemem,<address>,<<rom number>>
Function: Display and allow editing of the contents of memory.

Calling lemem followed by an address in memory (preceded by “&" if in hex)
will display the contents of a block of memory starting at the address given.

For example:
iemem, &1F20 [N

The range of directly addressable memory on all three Amstrad computers
covered in this manual is from 0 to 65536 decimal (&0000 to &FFFF hex).

The display gives the contents of memory in both hex and Ascii (with all
codes outside the printable range represented by dots). To edit memory,
simply overwrite at the current cursor position, either in hex or Ascii. A
banner at the top of the screen indicates which mode you are in (ie hex or
Ascii), and in any case this is also indicated by the position of the reversed
editing cursor. An example is given below.

Once inside the editor the following keys are operative:

13

Tab: This key switches between editing the hex and Ascii parts of the display

Arrow keys: The cursor keys move the editing cursor around the block of
memory on display. This will cause the display to scroll if you attempt to
move the cursor beyond the top or bottom line of the display.

Shift/Arrow keys: Pressing [EIflIalll at the same time as the up or down arrow
keys will move the display by a whole screenful.

Escape: This will exit the editor.

To edit memory, simply type in the new values that you require, either as a
pair of hex digits if you areediting in the hex area, or with a character from
the keyboard if you are editing in Ascii. The digit or character typed will
immediately appear on-screen, and be placed into memory at the same time.
The cursor will also move on to the next position.

As an example of using the editor, enter the following:

lemem,&1000
The display produced by this command is clearest in mode 1, where the
screen is split into three blocks: A column of hex addresses at the far left of
the screen incrementing in units of eight; a block consisting of 23 lines each
containing 8 pairs of digits — probably all zeros; and a block of 8 by 23
characters, probably all dots.

The top left hand zero of the hex block will be reversed out, indicating that the
cursor is currently at that position. If you press “5” on the keyboard, the 5 will
appear in the cursor position; and together with the 0 to its left makes up 50
hex. This is equivalent to the letter “P” on the so-called Ascii code; and for
this reason you will see a “P” appear in the first position in the Ascii block to
the right.

if you now enter a “1" in the position adjacent to the 5, you will produce a 51
hex, and the “P” will change to a “Q". And so on.

So far we have dealt only with cases in which emem is called with only a
single parameter. A second parameter may be used in any call to emem to
indicate that you wish to look at a particular rom in your machine. The default
is rom 0, as you will see from the upper banner whenever you call emem with
only a single parameter.

The rom number may be anything from 0 to 255 decimal; but of course, you
cannot alter roms by writing to them with an editor, so emem will only allow
you to look at them; but this can still be extremely useful.

If you do wish to examine the roms in your machine, you will need to look at
memory in the range &C000 to &FFFF.

14

FORMAT

Syntax: |format
Function: Format a disc

This command is used to format a disc ready for use with the CPC464, 664 or
6128 computers.

New discs must be formatted before use, but you should note that formatting
a disc will irretrievably erase its entire contents, so be careful!

When the format command is called the user will be prompted as follows:
Drive A/B:
You should press [EX if you have a singie drive. You are then asked:
Type S-System D-Data I-IBM:
These are the three formats available on the Amstrad disc system, and are
detailed in the user manual (or in the disc drive manual if you have
purchased the disc drive separately). For most purposes you will probably be
using the System format; and will therefore reply with an .
You are then asked to confirm your intention
Are you sure Y/N:
Pressing [0 at this point will abort with no damage done.

Once formatting begins, you will see an updated report of the track
currently being formatted. When the process is complete, you will be
asked if you wish to format another disc; and a reply of will cause a
repeat of the routine.

FREE

Syntax: Ifree
Function: Gives a set of status information.

On calling Ifree, the user is presented with a screen similar to the following:

Program Start : 367 (B16F)
Program End : 414 (B19E)D
Program Size : 47 (@02F)
Himem 1 22499 (57E3)
Last Location : 41971 (A3F3)
Free Memory : 22085 (5645)

Each parameter, as you can see, is given in both decimal and hex for
convenience. All but Himem are fairly self-explanatory terms, each of which
has its particular significance to the Amstrad programmer. The most
obviously important to the newcomer is Free Memory. This is simply the
amount of memory remaining for a Basic program. As the program size
increases, so this will decrease. “Last Location” is the address of the last free
location at the top of memory.

The term Himem is a pseudo variable of Amstrad Basic, and is explained in
the User Manual.

15

KON / KOFF

Syntax: lkon

or |koff

Function: Turns on or off Toolkit’s abbreviated keyword entry feature.

This feature can save the programmer a great deal of time when entering
Basic from the keyboard. Once lkon has been input, Basic keywords can be
entered in a highly abbreviated form. The abbreviations are generally
speaking obvious ones, and therefore easily remembered; and once you list
your program, Basic prints out all keywords in full, so that you do not have to
try to decipher your program listings when you have used this feature.

As a simple example, if you wish to edit line 150, you need only enter the
following:

e. 150EME:A
Note that you do not even need to leave a space after the “e”, since Toolkit
handles all this for you.

The command lkoff simply turns off the feature should it not be required for
any reason.

For convenience, a table of abbreviations used is given below:

a. auto
b. border
c. chr$
cl. clear
d. data
dr. draw
del. delete
€. edit

f. for

d. goto
gr. graphics (CPC 664 & CPC 6128 only)
gos. gosub
h. hex$
hi. himem
i. input
in. inkey$
k. key

. list

lo. load
loc. locate
m. mode
mo. move
n. next

p. plot
pa. paper
r. return
re. renum

16

s. step

sa. save

SO. sound

t. then

W. window
KEY

Syntax: lkey,<<first key>>,<<last key>>
Function: Lists the function key defintions in a form in which they can be
edited.

This command lists the function keys and their contents. You may if you wish
supply the number of the key at which listing starts and ends. If no numbers
are supplied the standard 13 keys are listed.

The list is produced in such a way that you may use the cursor and Copy keys
to edit a particular key definition.

If no parameter is given with the command, Toolkit will just print out all those
keys that are set.

Note that the first and {ast key parameters used with this command must be
the so-called “expansion character” numbers, and lie in the range 128 to 159.
You are referred to the machine user manual in the section dealing with the
Basic keyword “KEY” for further details.

KEYDEF
Syntax: ikeydef,<<first key>>,<<last key>>
Function: Lists what codes any key or group of keys have been set to.

This command is used to read the code value of any of the Amstrad’s keys.
The key number following the command may specify a single key, or a range
of keys. The number used is the so-called key number of the key to be
investigated.

The printed result for each key will contain five numbers as follows:
Key number
Auto repeat (1=set, 0=unset)}
Ascii code of key
Ascii code of key when used with
Ascii value of key when used with

If for example you enter:

lkeydef , 4 6JdYHI]]
the following will be printed:

KEYDEF 46,1,110,78,14
This shows that the ‘N’ key (key number 46} has auto repeat set {1=set,

17

O=unset), and prints ‘n’ (Ascii code 110) when pressed. When pressed
together with ElLlIdll it prints ‘N’ (Ascii code 78) and with [EIH it prints
Ascii character 14.

If an asterisk is displayed before the word KEYDEF e.g.
* KEYDEF 46,0,110,78,14
then it indicates that the definition has been aitered from its default setting.

As with the lkey command above, lkeydef prints the key codes in a manner
suitable for Copy editing. To edit a key definition printed by Toolkit, use the
cursor and copy keys as you would when copy-editing a line of Basic.

LIST

Syntax: |list,<filename>,<<start line no>>,<<end line no>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Lists a program directly from cassette or disc without affecting
any program in memory.

This routine is particularly useful if you are working on one program, and
wish to lock at the listing of another. The parameters are used as follows:

Filename: This is simply the filename of the program on cassette or disc
which you wish to list.

Start line number: This optional parameter is the start line for the list.
End line number: This is the line number at which listing terminates.

If only one numeric parameter is given, Toolkit will take this to be the start
line number.

To pause the listing, press IE&YJA as normal with the ordinary List
command, and resume with a press of the EIYIHLXZY. Alternatively, a
second press of [will terminate the routine.

LCOPY

Syntax: licopy,<start line>,<end line>,<new start line>
Function: Copy a set of Basic lines to a new position.

You may sometimes wish to duplicate a set of lines within a Basic program.
This routine streamlines the operation. Though it should be said here that in
many cases where groups of lines might be duplicated, it will probably prove
more efficient to put them into a subroutine which may be called as many
times as you wish without the need for duplication. Having said that, there
are some occasions where duplication is the most efficient course of action.

18

To copy a section of Basic lines, simply specify the three addresses with the
command as follows:

Start line: This is the number of the line at the start of the block to be copied.
End line number: This is the line number at the end of the block to be copied.
New start line: This is the new line at which the copied block will start.

Once the copy is made, the program is automatically renumbered, to keep
the number sequence intact; and if necessary, Toolkit will even create space
in which to insert the new lines.

LMOVE

Syntax: lImove,<start line>,<end line>,<new start line>
Function: Move a set of Basic lines to a new position.

This routine is similar to the licopy routine above, except that the source lines
are deleted from their old position, thus effecting a move rather than a copy.
Imove will thus enable you to pick up a block of Basic lines and physically
move them to some other position in your program. The parameters which
the command requires are the same as those for Icopy:

Start line: This is the number of the line at the start of the block to be copied.
End line number: This is the line number at the end of the block to be copied.
New start line: This is the new line at which the copied block should start.

As with the previous command, Toolkit creates any space necessary for the
moved lines, and renumbers the program after the move has been made to
keep the sequence intact.

PACK

Syntax: |pack
Function: Compacts a Basic program.

When this routine is called the user is prompted for the program compacting
options which he requires. Toolkit prints the following:

Enter options:
1. Rems
2. Spaces
3. Variables
4. Concatenate
5. Print Output
Press ENTER to pack

19

Options 1 and 2 simply remove all rem lines, and unused spaces. This is
performed in an intelligent fashion, avoiding for example removing rems
which are the subject of a GOTO command elsewhere in the program, and of
course avoiding the removal of spaces when they appear within strings of
text.

Option 3 scans the program, replacing all variable names with ones of the
shortest possible length.

Option 4 takes groups of Basic lines, and rewrites them as single
multi-statement lines.

Once you have been prompted for your selection of options, pressing
causes the pack routine to run all four packing options.
Alternatively, any combination of the four may be specified by simply
entering the numbers required, followed by IIXIIH:l. Toolkit itself provides
the separating commas.

Thus to compact rems and variables only, you would type:

K1 ENTER

When packing begins, Toolkit prints out the original length of the program
with a continuously updated display of bytes of memory saved. When
packing is complete, the new program length is also displayed.

Before using the pack routines you are advised to make a backup copy of
your full program, because compacted versions are not easy to read or to
modify. It is a good policy to only compact a program once it is in the form in
which you wish to use it.

PARTSAVE

Syntax: |partsave,<filename>,<<start line>>,<<end line>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Saves a specified part of a program to cassette or disc.

As its name suggests, this routine allows you to save to cassette or disc any
part of a program resident in memory.

The filename is essential, and may be any legal name. The start and end line
numbers are both optional. But obviously if neither are specified, Toolkit will
save the whole program. If only one of the two line number parameters are
entered, Toolkit will assume it to be the start line number, and will save all
lines starting at that number.

20

PMEM

Syntax: |pmem,<start address>,<end address>,<<rom number>>
Function: Dumps memory block to printer.

The function of Ipmem is similar in many respects to that of lemem. The
same parameters are required, and the display takes a similar format, but
Ipmem does not allow editing of memory, and simply dumps the whole
block specified to the printer. In this way you may obtain the complete listing
of a machine code program for example.

PRON / PROFF
Syntax: |[pron
or |proff
Function: Turns printer on or off.

Although the Amstrad allows the simple listing of Basic programs to a
printer, it is not so easy to specify that normal screen output during the
running of a particular program should be sent to the printer. To do this you
must replace all PRINT statements within a program with PRINT[#].119. This
can be quite tiresome, since it does not allow you to specify at the time of
printing whether you require hardcopy or not.

Toolkit incorporates two simple commands which control screen output. If
Ipron is active, all output goes to both screen and printer. Printer output is
turned off with Iproff.

Like other Toolkit commands these may be incorporated within your own
programs. For example you may wish to use a routine similar to the
following:

180 print”Do you require hardcopy ?"
110 a$=get$
120 if a$="Y" or a$="y" thenlpron

Of course you may aiso use Ipron to print the output from Toolkit.

RENUM

Syntax: Irenum,<<new start line>>,<<old start line>>,<<new
increment>>,<<old end line>>

Function: Wholly or partially renumber a Basic program.

The Irenum command in Amstrad Basic allows for three parameters to be
used when renumbering a program. These are the same as the first three
used in this Toolkit command; and in fact supplying less than the four
parameters required causes a default to the renumber options provided by
that command.

The extra facility provided by Toolkit's renumber is the ability to specify a last
line number to be renumbered; thus uniquely defining any block that the

21

user requires. The original three-parameter Amstrad command does not
allow you to specify the last line number to be renumbered, and the routine
always takes this to be the last line number of the entire program.

Toolkit's four-parameter renumber has built-in error checking, and will
inform you if you have asked it to renumber in a way which would overwrite
existing lines.

REPLACE

Syntax: lreplace,<search string>,<<replace string>>,<<start
line>>,<<end line>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Search for occurrences of a given string and replace it with
another.

This routine will search for all the occurrences of the specified search string
and replace it'with the specified replace string. If the optional line numbers
are supplied, it will operate only on the specified range of Basic lines.

Once the command and parameters have been supplied, Toolkit will prompt
as follows:

Press K for keywords:

Global or selective:
Enter [d if you wish to search for Basic keywords, otherwise press [ENIIE:}
Then reply with [€] or] to denote a global or selective search. Pressing
at this point defaults to a global search.

In a global replace, Toolkit will replace all the occurrences of the search string
with the replace string within the range of program lines specified (or the
whole program if no line numbers are given).

In a selective search, as each find is made the routine prints the line to the
screen, and prompts whether the particular string should be replaced or not.
Only if the user enters “Y”, will the swap be made. In either case, the routine
continues its search untii it reaches the end of the program, or the last line
number if specified. Any further finds will again give rise to the prompt, and
the user will be able to specify whether that particular occurrence should be
replaced.

All searches are case specific. This means that if you specify a search string
of “File”, the routine will ignore any occurrences of “FILE", or “file” etc.

Two types of wildcard are however allowed:
"?" may be used to match any single character
"*" may be used to match any group of characters.

Thus if you search for b?g$, then the routine will find big$, bug$ and so on.
Alternatively, using the other wildcard, a search for b*g$ would throw up all

22

the finds above, plus many more, including beebug$, etc. Used intelligently
this system of wildcards makes the replace (and the search option, in which
they also feature) a very powerful one.

If you wish to use Ireplace to delete the occurrences of a certain string, you
should enter a null string for the replace string; ie just press [SNIIH3] when
the replace parameter is requested.

Please note that because of the way in which Amstrad Basic (quite correctly)
tokenises all Basic keywords, you may not use the Toolkit Ireplace routine to
work on strings within a Basic keyword.

For example, if you request all occurrences of INT to be replaced with say
OGRAM, you will not find any PRINT statements altered; though if the word
PRINT appeared as text, then it would indeed be altered to PROGRAM.

Having said this, it is possible to search for Basic keywords in their entirety by
selecting L4 when prompted after the command has been called.

RESET

Syntax: [reset
Function: Resets the chief machine parameters to their value at start-up.

This command produces a soft reset, resetting machine parameters such as
mode, pen and ink colours to their value at start-up, and clears the screen.
But it does not clear Toolkit or any Basic program resident in the machine.

ROM

Syntax: [rom,<<rom number>>
Function: Gives details of roms present in the machine.

If used without a following parameter, the utility displays on the screen a
table of all roms present in the machine. This takes the following form, giving
the socket number, the name of the rom, its version number, the rom type
{whether foreground or background), and its size:

Rom @ BASIC 1.0

) 16k
Rom 7 CPM ROM @.50)

16k

If a rom number is supplied as a parameter, the routine will display all
commands listed within that particular rom.

You should note that not all roms have a command listing that is readable by
this routine.

23

RSX

Syntax: Irsx
Function: List resident system extensions.

This command lists the so-called resident system extensions. These are the
bar commands which are resident in your machine’s ram memory. Thus if
you have loaded Toolkit from cassette or disc, this command will list Toolkit's
commands. If Toolkit is in rom, and you have other extension routines in
memory, then Irsx will list them.

SEARCH

Syntax: Isearch,<search string>,<<start line>>,<<end line>>

CPC464 users should enter the command name only; parameters will be
prompted for.

Function: Display all occurrences of a given string.

This option works in exactly the same manner as the Ireplace option
described above. The parameters are the same, and have the same effect,
except that no replace string is required, since matching strings are
displayed, but left untouched.

The two wildcards described under Ireplace, above may also be used, and
have exactly the same effect.

START
Syntax: Istart,<address>
Function: Alters the start address of a Basic program in memory.

Amstrad Basic normally assumes that any resident Basic program will be
located at &170. By altering this address using the Istart command, it is
possible to persuade Basic to use a location of your choice.

Of course you cannot have a program resident in your machine, and then
alter Istart and hope for the best. Basic would simply lose track of your
program, and may even corrupt it in the process.

There are two ways to use this command. One is to alter Start before loading
in your program; then when you load it in, Basic will load it to the new
address.

Secondly, you could move a resident Basic program with the ibmove
command described above, which automatically adjusts the value of Start to
point to the relocated program.

In either case, the most interesting use of the command is probably to put
more than one Basic program into your machine at the same time (by

24

successively loading and then moving) and then to switch between them by
altering Start.

TRON / TROFF

Syntax: [tron,<<start line>>,<<end line,<<x coordinate>>,<<y
coordinate>>
or itroff

Function: Switch on or off enhanced Trace facility.

The Trace facility implemented in Amstrad Basic, is of limited use in program
debugging. Toolkit's Trace functions are a little easier to use.

If you set trace on (by typing Itron[EYIE:Y), and then run a program you will
see a continuously changing number appear in the top left hand corner of the
screen. This, as you would expect gives the line number currently being
executed.

The four optional parameters with Itron allow you to specify, if you wish, a
start and end program line between which the trace will function. If none are
given the default is taken to be the whole program.

You may also specify the coordinates of the position at which the trace
information will be printed on the screen. In this way you can avoid
overprinting an area of particular interest to you. The graphics coordinates
used in this command are the same as used in Amstrad Basic for printing
text. Thus the range in mode 1 is 1-40 horizontal, and 1-25 vertical: the origin
is the top left hand corner, and corresponds to coordinates 1,1. You should
note however, that if you wish to specify coordinates, you must also put in
start and end line numbers; otherwise Toolkit will take your coordinates to be
line numbers.

If no trace coordinate parameters are entered Toolkit will place the trace
display at the top left of the screen.

Slow motion and pause
When trace is enabled the user is given two extra controls over his program
to assist with debugging. Holding down the EIIIall key will slow down the

rate at which the program executes, and pressing the FIRIXIATZ] will
temporarily halt the program.

XREF
Syntax: Ixref
Function: Provides extensive information about Basic variables.

When xref is called, the user is prompted as follows:

25

Enter Options:

1. Numeric Variables

2. String Variables

3. Arrays

4. Functions

5. GOSUBs

6. Send output toprinter
Press ENTER to start:

You may choose any combination of the six menu items, pressing at
the end. Toolkit will supply commas to separate each of the numbers
entered. If you type “12” (choosing to display data on both numeric and
string variables) and press [HXIIF:), you will see a display of the following
kind:

op = 13

130 150 18680 2000
D1$ = "Title"

30 40 5@
box = Undefined

100 150 and so on

In this display, op, D1$ and box are all variables. The first has a current value
of 13, the second is a string variable currently set to “Title", while the third is
as yet undefined.

The variable op is referred to on program lines 130, 150, 1860, 2000 and so
on, and this cross referencing is what gives this powerful utility its name.

If you rerun Ixref, selecting options 3, 4 or 5 you will get a similar display; but
this time for either arrays (giving the values of all elements!), functions or
GOSUBs, depending on the option chosen.

By adding “6” to your choice of options you will produce a printout of the
cross referencer’s output.

Note that to prevent the cross referencer displays from scrolling, as with all

other Toolkit displays, you shouid press [2®:\4=. Pressing any other key
will continue the scrolling display.

26

COMMAND SUMMARY

HELP

Syntax: |help
Function: General help page giving command list, and syntax.

TOOLS

Syntax: itools

Function: Displays a menu from which almost all of Toolkit's commands
may be selected, and sets the function keys for use with Toolkit.

TOOLSOFF

Syntax: [toolsoff
Function: Clears Toolkit from memory.

BMOVE

Syntax: Ibmove,<address>
Function: moves a Basic program in memory to a different address.

DUMPA / DUMPE

Syntax: |dumpa
or ildumpe
Function: 16 tone screen dump for Amstrad or Epson printers.

EMEM

Syntax: lemem,<address>,<<rom number>>
Function: Display and allow editing of the contents of memory.

FORMAT

Syntax: Iformat
Function: Format a disc

FREE

Syntax: Ifree
Function: Gives a set of status information.

KON / KOFF

Syntax: lkon
or | koff
Function: Turns on or off Toolkit’s abbreviated keyword entry feature.

27

KEY

Syntax: lkey,<<first key>>,<<last key>>

Function: Lists the function key definitions in a form in which they can be
edited.

KEYDEF
Syntax: |keydef, < <first key>>,<<last key>>
Function: Lists what codes any key or group of keys have been set to.

LIST

Syntax: llist,<filename>,<<start line no>>,<<end line no>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Lists a program directly from cassette or disc without affecting
any program in memory.

LCOPY

Syntax: |lcopy,<start line>,<end line>,<new start line>
Function: Copy a set of Basic lines to a new position.

LMOVE
Syntax: |Imove,<start line>,<end line>,<new start line>
Function: Move a set of Basic lines to a new position.

PACK
Syntax: Ipack
Function: Compacts a Basic program.

PARTSAVE

Syntax: |partsave,<filename>,<<start line>>,<<end line>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Saves a specified part of a program to cassette or disc.

PMEM
Syntax: Ipmem,<start address>,<end address>,<<rom number>>
Function: Dumps memory block to printer.

PRON / PROFF

Syntax: |pron
or |proff
Function: Turns printer on or off.

28

RENUM

Syntax: [renum,<<new start line>>,<<old start line>>,<<new
increment>>,<<old end line>>

Function: Wholly or partially renumber Basic program.

REPLACE

Syntax: replace,<search string>,<<replace string>>,<<start
line>>,<<end line>>

CPC464 users should type the command name only; the parameters will be
prompted for.

Function: Search for occurrences of a given string and replace it with
another.

RESET

Syntax: Ireset
Function: Resets the chief machine parameters to their value at start-up.

ROM
Syntax: Irom,<<rom number>>
Function: Gives details of roms present in the machine.

RSX

Syntax: Irsx
Function: List resident system extensions.

SEARCH

Syntax: isearch,<search string>,<<start line>>,<<end line>>

CPC464 users should enter the command name only; parameters will be
prompted for.

Function: Display all occurrences of a given string.

START
Syntax: Istart,<address>
Function: Alters the start address of a Basic program in memory.

TRON / TROFF
Syntax: |tron,<<start line>>,<<end line,<<x coordinate>>,<<y
coordinate>>
or |troff
Function: Switch on or off enhanced Trace facility.

XREF

Syntax: Ixref
Function: Provides extensive information about Basic variables.

29

BEEBUGSOFT FOR THE AMSTRAD

Our Amstrad range includes:
® TOOLKIT

e ULTRABASE

© REMBRANDT

® BEEBUGSOFT

The Software Manager, Beebugsoft, Dolphin Place,
Holywell Hill, St. Albans, Herts. AL1 1EX.

| —

	Pag 01
	Pag 02
	Pag 03
	Pag 04
	Pag 05
	Pag 06
	Pag 07
	Pag 08
	Pag 09
	Pag 10
	Pag 11
	Pag 12
	Pag 13
	Pag 14
	Pag 15
	Pag 16
	Pag 17
	Pag 18
	Pag 19
	Pag 20
	Pag 21
	Pag 22
	Pag 23
	Pag 24
	Pag 25
	Pag 26
	Pag 27
	Pag 28
	Pag 29
	Pag 30

